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Abstract: The use of intra-operative blood salvage, dialysis, and artificial organs are associated with
the application of non-physiological mechanical stress on red blood cells (RBCs). To explore the
effect of these procedures on red cell deformability, we determined it before and after the mechanical
stress application both in an in vitro system and following a blood-saving procedure. RBC from
eight healthy donors and fifteen packed RBC units were subjected to mechanical stress. RBCs
from five patients undergoing orthopedic surgery were also collected. We measured the percent of
undeformable cells (%UDFC) in the red cell samples using our cell flow properties image analyzer,
which provides the distribution of RBC deformability in a large cell population. Mechanical stress
systematically reduced the cell deformability and increased the %UDFC, while simultaneously
causing hemolysis of rigid, undeformable RBCs. Ultimately, the overall result depended on the initial
level of the undeformable cells; the stress-induced change in the proportion of rigid cells (∆%UDFC)
increased (∆%UDFC > 0) when its initial value was low, and decreased (∆%UDFC < 0) when its
initial value was high. This suggests that the final impact of mechanical stress on the percent of rigid
cells in the RBC population is primarily determined by their initial concentration in the sample.

Keywords: red blood cells; deformability; shear stress; mechanical stress; blood salvage

1. Introduction

Significant blood loss during surgery may be acceptable to a certain degree [1,2].
However, a rapid and significant decrease in blood volume may lead to hypovolemic
shock [3,4]. In addition, the red blood cell (RBC) loss harms organ vitality [5,6].

To maintain blood volume in a bleeding patient, the currently available options include
the transfusion of stored, packed RBC (PRBC) from an autologous [7] or allogeneic source [8]
and blood salvage [9] throughout the surgery. These techniques are not faultless, and their
effects on RBCs can be considerable. RBCs are constantly subjected to shear stress in circulation,
affecting their functionality [10–14]. An even more significant effect on RBC physiological
properties is exerted by flow through various types of artificial devices [10,15–17] or by blood
processing procedures (e.g., dialysis, salvage) [18–20], where the level of shear stress can be
significantly higher than physiological, as reported in numerous studies [16,19,21,22].

Several strategies can be used to diminish the transfusion of allogeneic RBCs; blood
salvage is one of them [9]. Blood-saving throughout surgery is becoming increasingly
popular as a strategy to reduce allogeneic blood transfusions. This approach eliminates
the risk of immunological transfusion reactions and infectious disease transmission [9]. It
is a cost-effective procedure to avoid RBC loss, reducing the need for allogeneic red cell
transfusions [23,24]. Many devices are available for blood salvage during surgery [23,24].

Nevertheless, some studies have reported significant variability in the quality of the
obtained RBCs with a significant elevation in plasma-free hemoglobin in the circulation
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of patients undergoing perioperative auto-transfusion [18,25–27]. However, since during
the RBC collection and purification, they are exposed to mechanical stress, blood salvage
is associated with a reduction in the lifespan of erythrocytes [28–30]. Although the effect
of mechanical action is beyond doubt, the detailed mechanism of the influence of blood
salvage procedure on the functionality of RBCs remains under discussion [29].

Depending on the level of shear stress and its duration, the exposure can lead to cell
hemolysis. [31–37]. However, even before cell destruction, there is a change in the properties
of the cytosol, cytoskeleton, and cell membrane [12]. The RBC undergoes structural changes
in response to the supraphysiological mechanical stress [16,36,38–40]. Prolonged exposure
to supraphysiological shear stress may promote the spread of abnormal erythrocyte mor-
phology [22], phosphatidylserine externalization [41], and increased vesiculation [41,42].
Ultimately, these changes lead to the destruction of RBCs [31–37]. The effect of mechanical
stress on erythrocytes was analyzed using a numerical approach [35], in vitro and ex vivo
experiments [32,33,36,37,43,44].

Freitas Leal et al. [41] demonstrated that the flow of stored RBCs through a heart-lung
machine provoked alterations in RBC structure and functionality. These include elevation
in osmotic fragility, alteration in cell aggregability and deformability, and acceleration of
microvesicle formation. The degree and kinetics of these changes depend on the cell storage
duration in the blood bank. The article’s authors [41] conclude that their data will help
develop, improve, and control the quality of the extracorporeal circuit approach.

Watanabe et al. [14] used a shear (counter-rotation) system coupled to a microscope to
directly monitor RBC fragmentation and hemolysis, which were recognized after exposure
to shear stress of 288 Pa for 40 s. Later, the same research group [12] visualized the
presence of abnormal RBCs (with damaged morphology) under prolonged (more than
100 s) exposure to shear stress of 60 Pa that induced asymmetric cell elongation. In regards
to physiological conditions, Zhu et al. [45] demonstrated (using model simulations of
the flow of erythrocytes through the human spleen’s venous fissures) that erythrocytes’
deformation can contribute to cell membrane vesiculation and subsequent decrease in
its surface-area-to-volume ratio. These changes should lead to an alteration in the cell’s
functionality, for example, an increase in its rigidity [46,47].

Deformability is one of the vital features of RBCs. Under circulating conditions, healthy
erythrocytes are easily deformed, facilitating their passage through narrower microvessels.
RBCs with increased rigidity weaken perfusion and oxygen delivery to tissues [48–51] and
can block microvessels [51–53]. Relatively rigid (e.g., aged) RBCs prevent the passage of the
cells in the spleen vasculature and increase splenic RBC sequestration and destruction [54–56].
Previously, we demonstrated that the transfusion of stored units with a high fraction of rigid
(undeformable) RBCs provoke impaired blood skin perfusion [57]. Therefore, the alteration in
cell deformability induced by mechanical stress (for example, during perioperative salvage [18])
is highly significant.

In a previous study [58], we examined how cell deformability is altered during the
preparation of donated blood for storage as a packed RBC (PRBC) unit. This procedure,
which includes centrifugation and filtration, affects cell membrane composition, leading
to mixed results [56,59,60]. We have previously shown [58] that, depending on the initial
level of the donor RBCs’ deformability, both a decrease and an increase in the fraction of
undeformable cells can occur. The change in the overall deformability depended on the
initial level of undeformable cells (%UDFC); it increased when the baseline %UDFC was low
and decreased when it was high. Based on our data, we hypothesized that exposing cells
to high shear stress during the preparation of a PRBC unit, is likely to have two opposite
effects: first, the destruction of undeformable RBCs, thereby reducing their percent in
the population; second, mechanical damage to the RBC membrane with a subsequent
increase in the cell’s rigidity (thereby increasing the %UDFC). Consequently, the final effect
of the process of unit preparation is determined primarily by the initial concentration of
undeformable cells in the blood collected from the donor.
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To substantiate this hypothesis, we examined the shear stress effect on RBC deforma-
bility using two other methods of shear stress application: (1) in vitro application of
mechanical stress to RBCs and (2) blood salvage procedures applied in the operating rooms
for auto-transfusion of patients’ blood.

2. Materials and Methods

Experimental design: Mechanical stress was applied to RBCs using two methods
(see Figure 1):

1. RBCs suspended in PBS buffer were rolled with steel beads [61].
2. Blood salvage procedure, in which the whole blood of a patient undergoing orthope-

dic surgery was collected and processed for re-administration to the patient, using
the OrthoPAT (Haemodynamics, Boston, MA, USA). RBCs were collected before
and after the mechanical stress exposure, and cell deformability was assessed as
described below.
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Figure 1. Flowchart of the experimental design.

2.1. Materials

Antiaerosol pipette tips (1 mL, catalog T1000.96) were purchased from Neptune
Scientific (San Diego, CA, USA). Stainless steel beads (catalog Kit8589) were purchased
from Nation-Skander California Co. (Anaheim, CA, USA). Bovine Serum Albumin (catalog
A3294) was purchased from Sigma (St. Louis, MO, USA); phosphate-buffered saline (PBS)
without calcium and magnesium (catalog 02-023-1A) was purchased from B.I. (Kibbutz
Beit-Haemek, Israel).

2.2. Freshly Donated Blood

Blood samples were collected from eight healthy volunteers after obtaining an Insti-
tutional Helsinki Committee Regulations Permit (98290, Hadassah Hospital, Jerusalem,
Israel). The blood was collected into vacuette tubes (Greiner Bio-One, Frickenhausen,
Austria) containing K3EDTA.

2.3. RBC from Packed RBC Units (PRBC)

Blood was drawn from fifteen Hadassah Hospital Blood Bank donors into standard
sterile bags containing citrate-phosphate-dextrose (Fresenius Kabi AG, Homburg, Ger-
many). Collected blood was centrifuged (Roto Silenta 630 RS, Tuttlingen, Germany) for
6 min (1754× g, at room temperature) for RBC isolation. Units of concentrated RBCs
(non-leukofiltrated) were stored in CPDA-1 under 2–6 ◦C. In the presents study we used
outdated packed RBC units with 35–38 day storage duration. These cells are stored (under
standard conditions) for a maximum of three days after the unit expires. Five ml were
drawn from the PRBC unit and the RBCs were washed in PBS (twice) by centrifugation
(500× g for 10 min).
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2.4. Preparation of RBC from Freshly Collected Blood

RBCs were isolated from freshly collected blood by centrifugation, and washed
three times by centrifugation (500× g for 10 min) in PBS.

2.5. Application of Mechanical Stress

Mechanical stress was induced using the previously described setup [61,62], which
is widely used to characterize cells’ mechanical fragility [10,11,33,63–69]. In brief, 3 mL
of RBC (10%) suspension in PBS were rocked (at 40 cycles/min) for one hour at room
temperature in glass test tubes (13 mm × 100 mm) containing five steel beads (3.175 mm).
This conventional method leads to shear stress-induced hemolysis of less than 5% [61,62]
and is thus considered moderate mechanical stress. After the treatment, RBCs were isolated
and washed once in PBS and then resuspended in PBS supplemented with 0.5% albumin
for deformability measurements.

2.6. Surgery Patients

In an Institutional Review Board-approved cohort study, five patients (four females,
one male, ages 14–24) scheduled for elective multiple-level spine fusion, underwent pre-
surgery workouts, including blood count and anesthesiologist examination.

2.7. RBC from Salvage Procedure

RBCs were twice washed and resuspended in Ca2+/Mg2+ -phosphate-buffered saline
(PBS), pH = 7.4. The OrthoPAT (orthopedic perioperative auto-transfusion system) process
is divided into the collection, filtering, washing, and re-infusion phases. RBCs from the
operative field are collected using a dedicated double-lumen suction device. One lumen
suctions blood from the operative field, and the other lumen adds a predefined portion
of heparinized buffer to the salvaged blood. The collected blood is then filtrated and
collected into a reservoir. Component separation is reached by a precision centrifuge. RBCs
are then washed and filtered through a semi-permeable membrane, and salvaged RBCs
are resuspended in the buffer (Hct = 50–80%). The obtained cells may subsequently be
transfused back into the patient at any time within a six-hour window.

2.8. Preparation of RBC from the Operating Room

RBCs were collected from the patient’s blood (before the operation and after RBC
salvaging by OrthoPAT), washed (in PBS) by centrifugation, and then resuspended in the
phosphate-buffered saline supplemented with 0.5% of albumin for the following measure-
ments of cell deformability.

2.9. RBC Deformability

RBC deformability was determined using our original cell flow properties analyzer
(CFA), where the change of RBC shape was directly visualized in microfluidic (with a
200 µm gap) under a shear stress of 3.0 Pa [46,58,62]. 50 µL of RBC suspension (Hct = 1%,
phosphate-buffered saline supplemented with 0.5% of albumin) are inserted into the mi-
crofluidic and incubated for 15 min (at room temperature) when the RBC are attached
to the glass slide. The attached cells in the microfluidic are then subjected to a buffer
flow, and the deformability of cells is determined at a shear stress of 3.0 Pa. During the
measurements, 14–21 images of randomly chosen fields (with an area of 0.1 mm2) are col-
lected [46,58,62]. RBC deformability is determined by the shear stress-induced elongation
and expressed by the elongation ratio (ER), namely, the ratio between the major (a) and
minor (b) axes, according to the equation ER = a/b, where ER = 1 reflects a spherical RBC
that is not deformed at the shear stress applied. This procedure is applied to each RBC in
a population of 8000–10,000 cells and provides the deformability distribution in the cell
population, which allows for the derivation of various deformability parameters [46,58,62].
In the present study, we focused on the percentage of undeformable cells (%UDFC) in the
cell population characterized by ER ≤ 1.1. Our choice is explained by the fact that this
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parameter characterizes the size of the fraction of rigid cells capable of hindering adequate
blood microcirculation.

The percent of UDFC was derived for each RBC sample (freshly donated, stored, and
salvaged during surgery) before and after the application of mechanical stress (by rolling
with steel beads or salvage processing). We calculated the %UDFC change (∆%UDFC) from
the difference in the percentage of undeformable cells before and after the application of
mechanical stress (by rolling steel beads or blood salvage).

2.10. Statistical Analysis

All data are presented as mean ± SD. We examined statistical significance using the
paired two-tailed Student’s t-test (SPSS 21). p values were considered significant at p < 0.05.

3. Results
3.1. Effect of Moderate Mechanical Stress on RBC Deformability

Figure 2 shows the impact of moderate mechanical stress (hemolysis < 5%) on the
portion of rigid, undeformable cells (%UDFC) in both freshly-collected and cold-stored
RBC. This figure demonstrated that the application of shear stress led to both an increase
and a decrease in %UDFC. Furthermore, we did not observe a significant difference in
the concentration of undeformable cells between samples obtained before and after the
exposure to mechanical stress. Thus, the median value of %UDFC was 2.63% for cells
before (RBCB) treatment and 3.68% for mechanically-treated cells (RBCMS), p = 0.45.
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Figure 2. Percentage of undeformable cells (%UDFC) in samples collected before (RBCB) and after
mechanical stress application (RBCMS). Mechanical stress was applied to cells by rolling freshly
donated and stored RBCs with steel beads. Identical symbols designate the same RBC sample
before and after applying mechanical stress. No significant difference between the two groups was
observed, p = 0.45.

In addition, we analyzed the impact of mechanical stress separately for freshly do-
nated and stored RBCs. Figure 3 shows that the change in the proportion of rigid cells is
primarily positive (∆UDFC > 0) for freshly-donated cells and negative for stored RBC. Thus,
mechanical stress leads predominantly to an increase in the fraction of non-deformable cells
in the case of freshly donated RBCs, and, conversely, to a decrease in the fraction of rigid
cells when stored RBCs are analyzed. The observed difference in the response to mechanical
stress seems to be related to the fact that the initial concentration of undeformable cells is
significantly higher for samples of stored RBCs than fresh ones. Furthermore, as we have
previously shown [61], these are the rigid cells that are predominately destroyed as a result
of mechanical impact. Therefore, the %UDFC predominately decreases when stored cells
are exposed to mechanical stress.
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Figure 3. Alteration (after rolling cells with steel beads) of the percentage of undeformable cells
(∆UDFC, %) in the RBC population for fresh and stored samples. No significant difference between
the two groups, p = 0.154.

Based on the results presented in Figure 2, we divided all the samples (whether fresh
or stored) into two groups based on the percent of non-deformable RBCs before mechanical
stress application. As a cutoff parameter, we chose the median value of the percentage
of undeformable cells in the sample (2.63%, as mentioned earlier). As demonstrated in
Figure 4, for both fresh and stored RBCs, the application of mechanical stress decreased the
level of rigid cells (∆UDFC < 0) when its initial value (before treatment) was higher than
the median (2.63%), and increased it (∆UDFC > 0) when the initial value was lower than
the median.
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Figure 4. Alteration in the percentage of undeformable cells (∆UDFC, %) in the RBC population
following mechanical stress (applied to cells by rolling with steel beads). p = 0.0007.

Thus, we found that samples with a low concentration of undeformable cells subjected
to mechanical stress predominately showed an increase in this fraction, while samples with
a high concentration of such cells (predominantly stored cells) mostly showed a decrease
in this fraction.

Furthermore, (Figure 5) the mechanical stress-induced change in the level of rigid
cells (∆UDFC,%) showed a significant linear correlation (r = 0.87; p = 1.4 × 10−7) with the
proportion of the rigid cells before treatment (%UDFCB).
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3.2. Effect of Blood Salvage on RBC Deformability

Figure 6 depicts representative images of a patient’s RBCs before and after the applica-
tion of cell salvage (Figure 6A) and the average distribution curves of RBC deformability,
expressed by cell elongation ratio (ER), for the five surgery patients (Figure 6B). This figure
shows that, on the average, the ER distribution curve does not change as a result of the
salvage procedure.
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The results are summarized in Table 1. The data show that blood salvage does not
change the average number of undeformable cells (obtained for five blood samples), similar
to the effect of rolling the cells with metal balls, depicted above (see Figure 2).

Table 1. Characterizing of RBC deformability for salvaged blood (RBCSl) and freshly-collected
cells (RBCB).

Parameters *
After Salvage Before Salvage

p Values
Average ±SD Average ±SD

UDFC, % 3.23 1.75 2.31 1.60 > 0.05
* UDFC—fraction of un-deformable (ER ≤ 1.1) cells in RBC population %.

Furthermore, although Table 1 shows no significant difference in %UDFC between
cells before (native) and after salvage, in individual cases the salvage did induce either an
increase or decrease in the %UDFC, as shown in Figure 7.
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Figure 7. Percentage of undeformable cells (%UDFC) in RBC population before and after salvage.

4. Discussion

RBC deformability is the ability of cells to adjust their shape to pass through microves-
sels, especially capillaries, which are narrower than erythrocyte diameter. Increased rigidity
interferes with blood perfusion and impairs oxygen delivery to peripheral tissues [48–51].
Rigid RBCs can weaken tissue perfusion and block capillaries [51–53]. Deformability is
a function of some basic properties of the erythrocyte, such as membrane surface area-
to-volume ratio, cytosol viscosity, and binding stability between the lipid bilayer and
cytoskeleton [51,70]. All these factors are affected by the cell environment and external
conditions. Additional factors include the shear stress level applied to the RBC and the
flow pattern. RBCs are subjected to mechanical stress as they pass through the cardiovascu-
lar system but do not sustain significant damage. However, normal erythrocytes can be
damaged in non-physiological conditions such as high mechanical stress created by flow in
artificial organs or auxiliary devices. This can cause deterioration in the vital properties of
RBCs, which reduces their ability to resist further damage and leads to impairment of cell
integrity and subsequent hemolysis.

The physiological level of shear stress (up to 5 Pa [71]) enables RBC deformation,
detachment of red cells from the endothelium, and disaggregation of rouleaux without
inducing immediate or long-term injury to blood components [31]. In contrast, supraphysi-
ological shear stress can impair RBC deformability without initiating hemolysis [31,72].

RBC damage is always observed when blood is exposed to shear stress levels above
5 Pa but below a “hemolytic threshold” [12,31,39,72]. The destruction of RBCs (i.e., hemoly-
sis) can occur when the RBC is exposed to shear stress that exceeds the hemolytic thresh-
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old [15,21]. At the same time, it is essential to point out that two factors determine the
outcome of a mechanical effect: the level of applied stress and the duration of its applica-
tion [15].

Although most authors indicate a deterioration in cell deformability following me-
chanical stress [31,72], some publications report an improvement in deformability [22,73].
A comparison of the various results allows us to conclude that moderate mechanical stress
(5–10 Pa) should lead to an improvement in cell deformability [22,73] and high stress should
lead to its deterioration [31,72]. Lee et al. [72] showed that RBC deformability begins to
decrease when the shear stress exceeds 30 Pa and suggests that deformability measurement
can be a marker for showing erythrocyte sub-hemolytic damage.

One of the clinical setups in which mechanical stress is applied to RBCs outside of the
body is blood salvage. Intraoperative autologous blood transfusion has expanded in recent
decades [9,74]. There are conflicting results regarding the effect of blood salvage on red
cell properties [18,75,76]. Vonk et al. [76] report that cell savage “does not severely alter the
rheological properties of blood.” In line with these results, Salaria et al. [75] demonstrated
(for patients undergoing cardiac surgery) that transfusion of salvaged RBCs does not lead
to a decrease in deformability and an increase in aggregation of a recipient’s red cells.

In contrast, Gu et al. [18] observed that the blood salvage reduced the RBC’s deforma-
bility but did not affect the RBC aggregation. Thus, we can conclude that there is no
unequivocal conclusion in the literature about the effect of mechanical stress on the prop-
erties of RBCs. The characteristics of the applied stress will most probably determine the
result of mechanical action, but it remains unknown whether the cells’ initial (pre-exposure)
properties themselves are a factor influencing the observed effect.

In a previous study, we tried to assess the effect of the processing of donated blood
into a packed RBC unit (in which the RBCs are subjected to shear stress induced by
centrifugation and filtration) on the RBC deformability [58]. We found that the change in
the percentage of undeformable cells (%UDFC) was bidirectional, depending on its initial
level. The percentage of UDFC increased when its initial level was low and decreased when
it was high [58]. In the present study, we set out to determine whether that relationship
is specific to the preparation of storage units or whether it can be extended to a broader
range of situations in which cells are subjected to moderate mechanical stress. For that
purpose, we have analyzed the distribution of RBC deformability following the application
of moderate mechanical stress, either in vitro (by rolling RBCs with metal beads) or during
blood salvage, focusing on the percentage of undeformable cells, as described in Methods.

For both procedures, in all study groups, we observed, in accord with our previous
findings, that the ∆%UDFC was bidirectional, depending on its initial level (Figures 2 and 7);
the %UDFC increased when its initial level was low and decreased when it was high.

This phenomenon can be explained by the results presented by Sakota et al. [32]
and Yokoyama et al. [77], who demonstrated that in the blood (from Holstein calves or
pigs) sheared by rotary pumps, an increase in the MCV of erythrocytes and a decrease
in MCHC were observed. The authors [77] speculated that the likely mechanism is that
aged erythrocytes with smaller volumes and higher cytosol concentrations of hemoglobin
were primarily destroyed, leaving younger cells with higher volumes and lower Hb con-
centrations. Thus, they assume that the selective destruction of the aged RBCs occurred by
removing more fragile cells possessing a lower hemolytic threshold. Due to the aged RBCs’
higher fragility [62], i.e., lower resistance to shear stress, their selective destruction leads to
an elevation of average MCV and a reduction of MCHC following blood pumping [32,77].

In light of the cited publications [32,77], we can provide the following explanation for
our results: Exposure of red cells to moderate mechanical stress initiates a deterioration in
the deformability of each cell. However, due to the RBC population being a mixture of cells
of different ages and damage level, their exposure to mechanical stress induces differential
impairment in cell deformability and selective destruction of “aged”/defective cells. Thus,
in our system, we simultaneously observe the results of two processes: the decrease in
cell deformability and the “destruction” of non-deformable cells. Therefore, the overall
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effect depends on the proportion of undeformable cells in the RBC sample before treatment.
With a significant amount of UDFC in the original sample, applying mechanical stress will
result in partial hemolysis of these cells and, as a result, a decrease in their proportion in
the RBC population. In an inverse situation, an increase in the fraction of undeformable
cells is observed.

5. Conclusions

The use of intra-operative blood salvage, dialysis, and artificial organs and devices is
associated with the application of moderate mechanical stress on RBCs. It has been previ-
ously demonstrated that prolonged application of supraphysiological mechanical stress
may promote the spread of abnormal erythrocyte morphology [21], phosphatidylserine
externalization [40], the elevation of cell fragility [41], and increased vesiculation [40,41].
Ultimately, these changes lead to cell hemolysis [27,31–36].

We analyzed the alteration of rigid RBC subpopulation weight following mechanical
stress. The main starting point of our study is the assumption that the RBC population is
not homogeneous and, therefore, the response to the mechanical impact depends on the
initial state of the cells. We conclude that the overall result depends on the initial proportion
of undeformable cells: a stress-induced change in the proportion of rigid cells increased
(∆%UDFC > 0) when its initial value was low, and decreased (∆%UDFC < 0) when its initial
value was high.

The findings and considerations above suggest that moderate mechanical stress in-
duces impairment in RBC deformability. However, since the erythrocyte population is a
mixture of cells with different levels of accumulated damage [78,79], the impact of me-
chanical stress causes a variable response. Thus, cells with a low initial degree of damage
partially lose their ability to deform. In contrast, cells with a large number of membrane
defects are destroyed (hemolyzed) under the action of the applied mechanical impact. Thus,
on the one hand, there is a deterioration in the deformability of most cells, and on the other
hand, there is selective destruction of “aged”/inferior cells. Moreover, we have shown that
the above conclusions are valid for various cases of mechanical action on RBCs (rotation
with steel balls, blood salvage, and preparation of stored RBCs units [58]). This allows us
to hope that the results of this study will present the need to consider the patient-to-patient
variability of RBC properties when artificial organs are developed.
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