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Abstract: Sound event detection (SED) plays an important role in understanding the sounds in
different environments. Recent studies on standardized datasets have shown the growing interest
of the scientific community in the SED problem, however, these did not pay sufficient attention to
the detection of artificial and natural sound. In order to tackle this issue, the present article uses
different features in combination for detection of machine-generated and natural sounds. In this
article, we trained and compared a Stacked Convolutional Recurrent Neural Network (S-CRNN),
a Convolutional Recurrent Neural Network (CRNN), and an Artificial Neural Network Classifier
(ANN) using the DCASE 2017 Task-3 dataset. Relative spectral–perceptual linear prediction (RASTA-
PLP) and Mel-frequency cepstrum (MFCC) features are used as input to the proposed multi-model.
The performance of monaural and binaural approaches provided to the classifier as an input is
compared. In our proposed S-CRNN model, we classified the sound events in the dataset into two
sub-classes. When compared with the baseline model, our obtained results show that the PLP-based
ANN classifier improves the individual error rate (ER) for each sound event, e.g., the error rate (ER)
is improved to 0.23 for heavy vehicle events and 0.32 for people walking, and minor gains are shown
in other events as compared to the baseline. Our proposed CRNN performs well when compare to
the baseline and to our proposed ANN model. Moreover, in cross-validation trials, the results in
the evaluation stage demonstrate a significant improvement compared to the best performance of
DCASE 2017 Task-3, reducing the ER to 0.11 and increasing the F1-score by 10% in the evaluation
dataset. Erosion and dilation were used during post-processing.

Keywords: artificial neural network; Mel-frequency cepstrum; multi-model stacked convolutional
recurrent neural network; perceptual linear prediction

1. Introduction

The main aim of using sound event detection (SED) [1,2] is to recognize and detect
sound events in audio signals, that is, onsets and offsets of events in urban and industrial
environments. SED has a wide range of applications, including robots and automated
driving, in addition to playing a significant part in processing acoustic signals [3], automatic
surveillance of acoustics activities [4], and video retrieval using audio signals [5]. In
daily life, we encounter common sound events such as birdsong, dogs barking, human
conversation, music, etc. SED implementation faces a number of real-life challenges,
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which include intra-class variability, definitive ambiguity, and overlapping sound events.
Recognition of such overlapping sound events is referred as polyphonic SED, as shown in
Figure 1.
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Figure 1. A general illustration of SED model.

SED is the process of jointly identifying the various sound event classes and determin-
ing the onset and offset times of each individual sound event instance. In Figure 1, where
the two sound event classes are active (time) at the same time, this kind of overlapping
can be seen. Polyphonic SED is the term used to describe the SED task in such complex
sound scenes with overlapping sound events. The most recent polyphonic SED techniques
use deep learning-based methodologies. In the order to train an SED model, datasets that
include both audio and the related sound event activity annotation are required. This
is shown in Figure 1, which illustrates a general outline for developing SED models for
an audio dataset that can extract important audio features. Afterwards, a deep learning
technique can be employed to transform these features to a sound event as an output matrix.

A number of well-known models [6–10] have been proposed to classify polyphonic
SED tasks. For example, Non-negative Matrix Factorization (NMF) [11] can be used as
a pre-processing step to create multiple streams of source-separated audio in order to
better deal with overlapping sound events. Similarly, the GMM-HMM model [12] can be
used to obtain temporal information on overlapping sound events. In addition, multiple
DNN-based approaches to address the challenges of polyphonic SED have been proposed
to take advantage of the development of deep learning algorithms. An RNN is a type of
DNN designed to represent sequence data, including text, voice, and audio data.

The goal of the present study is to create a multi-model that can function effectively
with both artificial and natural sounds and to examine how feeding features into the
multi-model affects the F1-score and ER. In this article, the available real-life dataset (here,
Tampere University (TAU) spatial sound events 2017) is divided into two sub-classes,
with the first class consisting entirely of artificial sounds and the second class including
natural sounds.

Our proposed multi-model uses two joint features, MFCC and RASTA-PLP, instead
of using a single feature for the two sub-classes. In addition, three machine learning
algorithms (ANN, CRNN, and S-CRNN) are used with these features for the two sub-
classes. Our obtained results show considerable improvements in both F1-score and ER
compared to the baseline technique. The glossary/abbreviation section at the end of the
article describes the acronyms and abbreviations used throughout in the article. The major
contributions of this article are as follows:

• Our proposed stacked multi-model is accurate when used to split and classify artificial
and natural sounds, with a high F1-score when fed into the S-CRNN separately.

• For overlapping sounds, that is, polyphonic sound events, CRNN works well com-
pared to alternatives, with the overall ER improved to 0.11 and the F1-score by 10% on
the evaluation dataset.
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• Finally, for artificial sounds with continuous behavior, such as car sounds, a short filter
mask is best; however, for non-continuous sounds, such as speaking, it is preferable to
utilize a longer length of filter mask in the post-processing stage.

The rest of the article is organized as follows. Section 2 presents existing works related
to the SED model. A brief overview of the DCASE dataset is presented in Section 3. The
proposed methodology is described in Section 4. Our results are discussed in Section 5.
Finally, Section 6 presents concluding remarks and future research directions.

2. Related Work

Using machine learning for DCASE challenges has substantially accelerated SED
research in recent years. Various algorithms have been suggested for the DCASE challenge
2013, including HMM, SVM, and GMM, all based on supervised machine learning. The
DNN-based classification of polyphonic SED was modelled in DCASE 2015. The DCASE
2016–2022 competitions have triggered a wave of DNN-based SED approaches [13].

The authors in [1] used a single channel log-mel-band energy (MBE) as the audio fea-
ture in the baseline technique for the dataset. The network had two FC layers, the dropout
and prediction layers, each with 50 units, with the dropout layer having a 0.2 dropout rate.
The number of sigmoid units in prediction layer was equal to the number of classes in the
dataset. The Adam optimizer and cross-entropy loss were used for training the network
over 200 iterations.

In [2], the authors investigated and analyzed the performance of three distinct binaural
characteristics, namely, the magnitude and phase components of the short-term Fourier
transform, log-mel-band energy, and the extracted log-mel-band energy feature in three
different resolution windows. They found that utilizing binaural features produced an
error rate comparable to or better than that of single channel features. Using the dataset,
it was discovered that the log-mel-band energy feature extracted in various resolution
windows produced better best results than the other features.

In [14], the authors evaluated mel-filter bank characteristics with identical bank area
and height. They applied a DNN structure to all DCASE 2016 [1] tasks, which performed
well on all tasks compared to the baseline [15], except for Task 2. They drew the conclusion
that DNNs can be successful in many of these tasks, although they may not be always work
well, as in the case of DCASE 2016 Task 2.

In [16], the authors applied Soft-Median Selection (SMS) to smooth out the features of
frames. First, a filter called the Differentiable Soft-Median Filter (DSMF) was created for
use with neural networks. Second, the SMS was created by combining the DSMF with a
Linear Selection (softmax layer). The suggested DSMF addresses the issue of the gradient
algorithm failing to smoothly propagate through the median filter.

The authors in [17] used an attention-based capsule network (AttCapsNet) module.
They proposed a bidirectional gated recurrent unit (BGRU) module, and a pixel-based
attention and bidirectional gated recurrent unit (PBA-AttCapsNet-BGRU) model. Three
components of the methods made up the network framework: a CNN audio labelling net-
work, a CNN sound event classification network, and a CRNN feature extraction network.

The study in [18] demonstrates how imposing restrictions during training might
help in the design of a CRNN network with a clear functional structure which performs
better at SED. For the purpose of locating leaks in the pipes in an industrial setting, the
authors suggested a multi-stage Machine Learning (ML) pipeline. Using feature selection
approaches, they first minimized the dimensionality of data, then added time correlations
by extracting time-based feature which were finally fed to a support vector machine (SVM).

In [19], the authors employed 40 log-mel filter bank coefficients to process mono-
phonic data taken as an input and to normalize the feature output with zero mean and
unit variance. They used a bidirectional RNN as their classifier, with 50 hidden units
for the input sequence of consecutive 50 frames, and did not apply any post-processing.
Performance on the developmental dataset was assessed, and their proposed approach
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outperformed the baseline [1]. They came to the conclusion that RNNs are more efficient
and adaptable while dealing with varied audio analysis issues.

In [20], a binaural I-Vectors Deep Convolutional Neural Networks (DCNN) and the
late fusion method were used as a hybrid approach. For Short-Time Fourier Transform
(STFT) post-processing, they used a logarithmic filter bank with 24 bands and 2048 sample
windows. They demonstrated that Binaural MFCC shows superior results to the mono-
channel approach by comparing Monaural mel-frequency cepstral coefficients MFCC with
Binaural MFCC.

In [21], the authors combined an LSTM network with log-mel-band energy charac-
teristics. To extend their model, they built three separate channels and employed several
data fusion techniques. Experimental results demonstrated that their methodology outper-
formed the baseline in terms of performance.

The authors in [22] introduced a CNN model using both short-term and long-term
data as input. Additionally, they described a number of optimization techniques, including
class-wise early stopping and frequent validation with adaptive thresholds. Comparing
the suggested framework to the baseline system, there were noticeable improvements.

To simulate the temporal evolution of sound occurrences, the ref. [23] first introduced
a multi label bi-RNN. Additionally, the authors suggested using data augmentation to ad-
dress the issue of data scarcity and investigated the most effective augmentation techniques
to improve performance.

The two channels were combined into one in [24], and the converted spectrum was
calculated using the mel-band energy. In this paper, training was carried out utilizing a
CNN, showing the feasibility of doing so for SED.

The work in ref. [25] provided a CNN-based SED using a class-wise distance-based
approach. By calculating the difference between the audio features of each frame and the
class-wise distance of each event, the CNN output could be modified. The detected sound
segments were then segmentally re-evaluated using the class-wise distances.

The authors in ref. [26] proposed a more developed version of Neuro-Evolution of
Augmenting Topologies (NEAT). They investigated the use of small networks that might
compete the much larger networks currently used for SED. In their work, use of k-means
clustering and wavelet-based deep scattering transform were employed with NEAT for a
more compact representation of the sound input.

The multi-model system put forth in [19] uses DNN to identify car-related sound
events. Five models were built on CRNN to identify other sound events, such as children,
large vehicles, people speaking, and people walking. Raw audio and log-mel energies were
used as input to the features.

In [20], a 20 ms window size was used with a Hamming window and a 10 ms hop-
length, and inputs were transformed into a time-frequency representation. MFCC was
used as the input feature. The authors divided each audio characteristic into a one-second
window, which they then broadcast into a CRNN network. The two primary components
of their framework [27] were feature extraction and Bi-LSTM classification.

In the light of above discussion, the existing works in the literature are summarized
and compared in Table 1 based on their different SED models and different classification
strategies (networks) in different environments with various sound features. In this review,
it can be seen that most of the previous works are multi-feature, e.g., existing research
works have considered either MFCC, log-mel energy, pitch, or a combination of these. For
example, researchers have employed time-domain features, including parameters such
as short time energy, zero crossing rate, gradient index, etc., to represent a signal in the
time domain, e.g., signal amplitude values. The pitch feature represents the perception
of a sound frequency, e.g., low pitch sounds are associated with low frequency sound
waves, and high pitch sounds are associated with high frequency sound waves. Similarly,
a sound is processed in the frequency domain via frequency filters. It is first converted
using Fourier analysis, then multiplied using the filter function, and then transformed back
into the spatial domain. The log-mel energy represents frequencies logarithmically (the
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corner frequency) over a specific threshold. For instance, in a spectrogram with a linear
scale, the vertical space between 1000 and 2000 Hz is half that between 2000 and 4000 Hz.
The distance between the ranges is almost the same in the mel spectrogram. However,
research work for the SED challenge in urban environments using a combination of MFCC
and RASTA-PLP is limited, and requires the attention of engineers and researchers. MFCC
is particularly useful for natural sounds. This feature is based on human hearing, which
cannot perceive frequencies over 1 Khz. Similarly, the RASTA-PLP feature works better
with artificial sounds, which have a greater likelihood of containing noise. The majority
of noise-reduction methods used in voice recognition systems heavily rely on applying
various filtering strategies of the RASTA-PLP filter across a range of frequency frames; for
instance, a band-pass filter can be used to eliminate frames and background noise that
changes slowly.

Table 1. Summary and comparison of related works on SED models.

Literature
(Year) SED Model Classification Strategy/Network Audio

Environment Feature(s)

[1]
2017

Baseline
2017 Multi-layer perceptron Urban Log-mel energy

[2]
2017

Adavanne
TUT 1 CRNN Urban Log-mel energy

[8]
2016

Baseline
2016 GMM Urban MFCC

[16]
2022

Soft-Median
Choice CB+SMC+CDPP Domestic Log-mel energy

[17]
2022

Capsule
Network PBA-AttCapsNet-BGRU Smart cars Log-mel energy

[13]
2022

Audio Tagging
Consistency Constraint ATCC-CRNN Domestic Log-mel energy

[18]
2022

Pipe
Leakages SVM Pipe leakage Time-domain features

[20]
2017 Vu-Task3 RNN Urban Log-mel energy

[28]
2002

Viterbi
Algorithm HMM/MLP Clean Speech RASTA-PLP

Frequency filtering

[21]
2017

Zhou
PKU 1 LSTM Urban Log-mel energy

[22]
2017

Lee
SNU 3 CNN Urban Log-mel energy

[23]
2017

Lu
THU 1 RNN Urban MFCC

Pitch

[24]
2017

Chen
UR 1 CNN Urban Log-mel energy

[25]
2017

Xia
UWA 3 CNN Urban Log-mel energy

[26]
2017

Kroos
CVSSP 2

Neuro-
evolution Urban Scattering transfer

Clustering

[19]
2017

Hu
BUPT 2 BGRU Urban Raw audio

[27]
2017 Li Scut 2 Bi-LSTM Urban MFCC

Proposed
2022

Stacked
Multi-Model CRNN, S-CRNN, and ANN Urban RASTA-PLP,

MFCC
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Therefore, there is a need to develop multi-model classification techniques based
on MFCC and RASTA-PLP features for the SED challenge for both natural and artificial
sounds in urban environments. The existing schemes in the literature do not address this
or use both these features in their SED models. Such an approach could lead to improved
overall F1-score and reduced ER. This is the main reason for our proposing a multi-model
classification strategy for use in an urban environment.

3. Overview of DCASE Dataset

The DCASE dataset used in this article is TUT Sound Events 2017, which is a subset
of TUT Acoustic Scenes 2017 [1]. It is made up of acoustic audio recordings that include
artificial and natural sounds from different streets with varying amounts of traffic and
other activities in urban and suburban environments. Each audio recording is between
three and five minutes long, and they are collected in different locations. In daily life, there
are six different types of focused sound classes (occurrences) that are quite prevalent. The
following sound classes were chosen for the tasks: brakes squeaking, car sounds, children,
large vehicles, people speaking, and people walking. Each class was further subdivided
into distinct sub-classes such as car engine running, car passing by, and car running; all
of these noises are collectively referred to as “car”. Similarly, children screaming and
children chatting were classed as “children”, and “large vehicle” sounds included sounds
from buses, trucks, etc. When listening to these audio samples, it can be challenging
to distinguish the “person speaking” class of sounds, as voices are quickly masked by
background noise from different levels of traffic and other activities. It is very difficult to
hear “people walking”, as the recordings include other noises that sounds similar. Due to its
low sample count and short average length compared to other types of sound occurrences,
“brakes squeaking” is difficult to detect in this situation. Neither in the training audio set
nor in the test audio set is possible to control how many overlapping sound occurrences
occur at each instant. A Roland Edirol R-09 wave recorder with a sampling rate of 44.1 kHz
and resolution of 24 bits was used in conjunction with a Binaural Soundman OKM II
Klassik/studio A3 electret in-ear microphone to capture the audio events.

Based on the number of examples available for each sound event, the development
(Dev-Set) and evaluation datasets (Eval-Set) were separated in the given DCASE dataset.
Each recording in the Dev-set was utilized precisely once as test data, and it was made
up of four folds, each comprising training and test subsets. Table 2 lists the number of
instances for each event subclass in the Dev-Set and Eval-Set.

Table 2. Audio event instances per subclass.

Event
(Subclass)

Brakes
Squeaking Car Children Large

Vehicle
People

Speaking
People

Walking
Total

Occurrences

Dev-Set 52 304 44 61 89 109 659

Eval-Set 23 106 15 24 37 42 272

4. Proposed Methodology

In this section, we provide details about our proposed stacked multi-model for SED,
as depicted in Figure 2, including sub-sections on the input of audio signals (i.e., events),
features extraction, classifier, post-processing, and output. The main aim of this article is
to examine the effectiveness of binaural and monaural audio characteristics in order to
contrast their outcomes. Below is a detailed description of our proposed methodology used
in the neural network for the SED challenge.
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Figure 2. Proposed stacked multi-model for SED.

4.1. Input of Audio Signals

In this stage, a windowing procedure is applied to the input audio signals in order
to divide these continuous audio streams into smaller signal audio segments which are
recorded by a microphone. This is accomplished by turning the potentially unlimited signal
streams into a continuous series of finite blocks by sliding a window function over the
audio stream data.

4.2. Features Extraction

In this stage, we use the parameters in Table 3 to find and extract MFCC and RASTA-
PLP features in order to effectively extract and differentiate between both binaural and
monaural features. Further details are provided in the following sub-sections.

Table 3. Parameters used in feature extraction.

Parameters MFCC RASTA-PLP

Sampling frequency 44.1 kHz 44.1 kHz

Hop length 20 ms 20 ms

Mel-filter length 40 Nil

Model order Nil 12

Window Hamming Hamming

Window size 1024 1024

Do Rasta Nil Yes

4.2.1. MFCC

The MFCC feature is applied to sub-class A as input to the classifier in the proposed
SED model. Because humans can hear sounds at frequencies below 1 kHz, this measure
is used as the foundation for MFCC feature extraction. Additionally, two feature types,
namely, a pre-emphasis filter and triangular-filter, are used by the MFCC; these are spaced
logarithmically above 1000 Hz or linearly below 1000 Hz. On the mel-frequency scale, a
subjective pitch is provided to capture key phonetic features of speech (i.e., audio signals).
The following steps clearly describe the MFCC used in the proposed SED model:

1. The first step in the MFCC is to apply a pre-emphasis filter to increase the strength of
the signal at higher frequencies. To decrease noise during audio capture, the following
filtering procedure is carried out. Equation (1) presents the input–output connection
in the time domain which provides the framework for this filter:

y(n) = x(n)− αx(n− 1) (1)

where x is the input audio signal, α is a constant filter coefficient with a value equal to
0.9 ≤ α ≤ 1, y is the output audio signal, and n is the time domain.

2. The audio signal is next split into frames within the range of 20 to 40 ms.
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3. A Hamming window is applied to each frame after the audio signal is segmented into
frames, as modelled in Equation (2):

y(n) = x(n)× w(n) (2)

where y(n) is the output audio signal and x(n) is the input audio signal convolved
with w(n), that is, the hamming window calculated in Equation (3):

w(n) = 0.54− 0.46cos
(

2πn
N − 1

)
0 ≤ n ≤ N − 1 (3)

where N represents total number of frames and n is the time domain.
4. Using STFT, the time domain data are converted to frequency domain data for each

frame N, which procedure is formulated in Equation (4):

P =
|STFT(xi)|2

N
(4)

where xi denotes the ith frame of signal x such that i = 0, 1, 2,..., N − 1 and P is the
power spectrum.

5. A triangular filter is used to calculate the filter bank using Equation (5):

m = 2595log10

(
1 +

f
700

)
(5)

where m is the mel scale used to convert an audio frequency into a frequency range
that people can hear and f represents the frequency, which can be computed using
Equation (6):

f = 700
(

10m/2595 − 1
)

(6)

6. The inverse logarithm of this log spectrum should be determined after obtaining the
relative auditory spectra.

4.2.2. RASTA-PLP

The majority of noise reduction methods used in voice recognition systems rely on
applying various filtering strategies across a range of frequency frames [28]. Similar to the
RASTA-PLP feature extraction methodology, several algorithms are based on frames and
high-pass or band filtering methods. This method makes use of the RASTA filter. This filter
is a band-pass filter used to eliminate frames and background noise that change slowly.
The steps listed below can be used to obtain RASTA-PLP:

1. First, audio signals are divided into frames.
2. Then, the logarithm of the short-time critical-band spectrum is determined. The

transformation of the bark frequency Ω from the angular frequency ω is computed
as shown in Equation (7):

Ω(ω) = 6ln
{

ω/1200π +
[
(ω/1200π)2 + 1

]0.5
}

(7)

3. Next, we take the regression line-based temporal derivative of the aforementioned spectrum.
4. Then, an IIR system is utilized to perform temporal derivative filtering on the log-

critical band.
5. In order to imitate human hearing, an equal loudness curve is added.
6. The inverse logarithm of this log spectrum should be determined after obtaining the

relative auditory spectra.
7. After all of the spectral pole models have been calculated, the PLP requirements

are satisfied.
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4.3. Classifier

In this paper, we use a range of DNN techniques, including ANN, CRNN, and S-CRNN,
for the classification of sound events in urban environments. As mentioned in the features
extraction stage, we compared and examined both the monaural and binaural features.

We used four hidden states in our proposed artificial neural network (ANN). Each
training fold recording was split into frames with a length of 0.1 s, which were then further
divided into sub-frames of 25 ms; features were extracted from each frame using a hop size
of 10 ms. We initially applied a 0.3 s dilation mask to the output values acquired by the
ANN. Dilation was used for zeros that were within 0.3 seconds.

In addition, we used a CRNN model to train local shift-invariant patterns from the
acoustic data. We used a filter size of 3 × 3, with batch normalization and max pooling
applied after every layer. In order to maintain the temporal resolution of the input, max
pooling was only carried out on the frequency axis. In order to learn long-term temporal
activity patterns, the layers of CNN are further fed to bidirectional gated recurrent units
(Bi-GRU). This is followed by layers of time-distributed fully-connected (dense) layers.
In order to produce output with multiple labels, the prediction layer contains a sigmoid
activation layer, as shown in Figure 3. The Adam optimizer ([29]) was used, with a learning
rate of 0.0001 and a binary cross-entropy loss function [30]. Dropout was used to overcome
over-fitting and enhance robustness. The TensorFlow [31] library was used as the backend
in Keras, which is an open source software package used to construct artificial neural
networks and other design architectures.
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Here, we summarize Figure 3, which represents the working CRNN model. Monaural
and binaural features are retrieved from the input audio signal during feature extraction.
The extracted features are sent to the CNN layer, which performs a mathematical activity
that involves multiplying two functions (sounds) represented as matrices to create a third
function, i.e., the output sound. The output is sent to the Gated Recurrent Unit (bi-GRU),
which is designed to exploit connections made through a series of nodes in order to carry
out machine learning tasks related to memory and clustering, such as speech recognition.
The output of the GRU is subsequently sent via a fully connected (FC) layer, which means
that a layer is said to be fully connected if all of its inputs are connected to each activation
unit of the layer above it. Next, the Sigmoid layer receives the input, on which it employs a
sigmoid function to effectively represent a probability. Its range is 0 to 1, and its domain is
only real numbers. The sigmoid layer can be used for network layers other than output
layers. Erosion and dilation filters are used in the post-processing layer on the output from
the sigmoid layer.

Additionally, we employed an S-CRNN which used two concurrent CRNNs with the
same set of parameters described above. We refer to this as the S-CRNN model (depicted
in Figure 4), as the dataset for the S-CRNN was divided into two subclasses (natural
and artificial events), with one subclass fed to one CRNN and the other subclass to the
other CRNN.
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In Figure 4, the urban dataset has been split into two subclasses, subclass A (natural
sounds) and subclass B (artificial sounds). We used a distinct feature engineering approach
for each of the two subclasses. The same CRNN was applied in parallel to the subclasses in
distinct sound applications. The CRNNs employed here are the same as those discussed in
Figure 3, except two parallel CRNNs are employed instead of one. For artificial sounds with
continuous behavior, such as car sounds, a small size was used for the filter mask; for non-
continuous sounds, such as human conversation, a larger length of filter mask was used in
the post-processing stage. This is the main advantage of parallel CRNN (that is, S-CRNN).
RASTA-PLP and MFCC each perform well with both natural and artificial sounds.

4.4. Post-Processing

In the post-processing stage, we used several different sizes of erosion and dilation
masks. Further, we eroded the post-dilation findings using a 0.2-s erosion mask. Because it
is difficult for any class to last for only 0.2 or 0.3 s, we performed both erosion and dilation.
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4.5. Output

Based on the output from the last recurrent layer, the role of the feed-forward layer
is to provide reliable sound event activity prediction. In order to produce output with
multiple labels, the prediction layer contains a sigmoid activation layer. The output of the
sigmoid layer is defined in Equation (8):

ŷ = σ
(

wTh + b
)

(8)

where σ is a sigmoid layer function, w is the weighted vector, T is the transpose, h is the
input vector, and b is the bias, which is used to better fit the data.

5. Experimental and Performance Evaluation

In this section, we provide the details of the experimental setup using the acoustic
sound dataset with the TensorFlow library. All of the implementation programmes were
created in an experimental Python environment using Tensorflow for deep learning on
a 64-bit desktop with an Intel Core i5-7300HQ quad core processor (6 MB cache, up to
3.5 GHz), 16 GB of 2400 MHz DDR4 memory, 128 GB of SSD storage, 1 TB of 5400RPM
SATA storage, and a GTX 1060 6 GB graphics card.

5.1. Evolution Metrics

The TensorFlow library was used to implement and analyze the performance of the
proposed stacked multi-model for SED detailed in Section 4. TensorFlow is an open-source
and free end-to-end software library with Keras as the backend used for multiple machine
and deep learning tasks. It provides high-level APIs built in Python for easily training and
building deep learning models in deep neural networks. All three models are available
in the library, and were modified and trained according to the available DCASE dataset.
The evolution metrics used throughout the experiments were the F1-score and ER. The
ideal F1-score is 100, which indicates that the system is providing the highest precision
and recall values. Conversely, the worst F1-score is 0, which indicates that the system is
providing the lowest precision and recall values. The segment-wise F1-score is modelled as
formulated below:

F1 =
2 ·∑K

k=1 TP(k)
2 ·∑K

k=1 TP(k) + ∑K
k=1 FP(k) + ∑K

k=1 FN(k)
(9)

where k presents the number of sound event labels active in both the predictions and
ground truth and TP represents true or positive for each segment of one second. The
number of sound event labels that are active in predictions and inactive in the ground truth
is known as FP, denoting false positive. Similarly, the number of sound event labels that
are active in the ground truth and inactive in the predictions is known as FN, meaning
false negatives. The second metric, the error rate (ER), is measured using the following
Equation (10):

ER =
∑K

k=1 S(k) + ∑K
k=1 D(k) + ∑K

k=1 I(k)

∑K
k=1 N(k)

(10)

where N(k) represents the total number of sound event labels that are currently active
in the ground truth of a segment k. The following equations are used to calculate the
substitutions S(k), deletions D(k), and insertions I(k) for each of the K one-second segments
in Equations (11)–(13), respectively:

S(k) = min(FN(k), FP(k)) (11)

D(k) = max(0, FN(k)− FP(k)) (12)

I(k) = max(0, FP(k)− FN(k)) (13)
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where D(k) represents the number of reference events that were not correctly identified (false
negatives after substitutions S(k) are accounted for) and I(k) represents the number of events
in system output that are not correct (false positives after substitutions are accounted for).

5.2. Results and Discussion

To evaluate the efficacy of our proposed SED model on accurately solving the SED
challenge, we used many feature combinations that we then evaluated and tested using
various classifier combinations such as ANN, CRNN, and S-CRNN. After running the
TensorFlow experimental model, we obtained the following experimental results, which
are tabulated, compared, and discussed in detail below in order to show that the proposed
model works as expected.

5.2.1. ANN-Based Classifier

In this section, we compare and analyze the results obtained in the experiment using
the ANN classifier on the Dev-Set, which are tabulated in Table 4 below. The baseline
model [1] utilizes MFCC for feature extraction, while the ANN-based classifier uses both
MFCC and RAST-PLP as feature extraction methods. The results show that applying
RASTA-PLP improved both the ER and the F1-Score as compared to the MFCC in the
baseline model. For clarity, F-score and F1-score have the same meaning in this article.

Table 4. Comparison of results using ANN classifier on Dev-Set.

Sound Events
Class

Baseline [1] ANN

MFCC MFCC RASTA-PLP

ER F1-Score ER F1-Score ER F1-Score

Brakes Squeaking 0.98 4 1.00 0 0.95 7

Car 0.57 74 0.51 55 0.47 63

Children 1.35 0 1.01 40 1.21 0

Large Vehicle 0.9 51 0.80 27 0.67 38

People Speaking 1.25 18 0.99 0 0.92 10

People Walking 0.9 51 0.93 10 0.58 48

In Figure 5, the obtained ER results using the ANN-based classifier are compared with
the baseline model. The lowest ER was achieved using ANN RASTA-PLP for the sound
of squeaking brakes (0.95), followed by those of cars (0.47), heavy vehicles (0.67), people
speaking (0.92), and people walking (0.58), while for sound events such as children the
lowest ER achieved using ANN with the MFCC feature was 1.01.

Figure 6 depicts the F1-score comparison of the ANN-based classifier with the baseline
model. The overall F1-score using RASTA-PLP is not improved; however, when using
ANN-based MFCC, the F1-score is improved compared to the baseline model. For example,
for large vehicles, when using ANN-based MFCC the F1-score obtained is 27, which lower
than the other two extraction features. For car sounds, the baseline F1-score is 74 as
compared to other features (i.e., in the range of 70–80).

In summary, when comparing the ER results obtained using the ANN-based classifier
to the baseline model, the lowest ER was achieved using ANN RASTA-PLP as a feature
input for the sound of squeaking brakes (0.95), followed by those of cars (0.47), heavy
vehicles (0.67), and people speaking (0.92), while the lowest ER (1.01) was achieved for
people walking (0.58) and sound events such as children by the ANN with MFCC features.
As measured by the F1-score, squeaking brakes are detected well using RASTA-PLP, while
using MFCC as the input feature works well for detecting sounds made by children as
compared to the baseline model.
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5.2.2. CRNN-Based Classifier

This section presents the results obtained in the experiment using the CRNN-based
classifier, which employs the same parameters as [2] except that instead of using log-mel
energy it uses both monaural features, that is, MFCC, RASTA-PLP, and binaural features,
that is, the combination of MFCC and RASTA-PLP. In this experiment, we split the urban
dataset into two sub-tasks, namely, machine-generated sounds and natural sounds. For the
first task we used a 0.7-s filter mask and the second we used a 0.3-s filter mask. Performance
on car and large vehicle sound events was better as filter size is raised in post-processing,
whereas for the other sound event classes the performance was worse, and vice versa. The
results of the CRNN-based experiments are shown in Table 5.
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Table 5. Comparison of results using CRNN classifier on Dev-Set.

Sound Events
Class

Baseline [1] CRNN

MFCC MFCC RASTA-PLP MFCC+
RASTA-PLP

ER F1-Score ER F1-Score ER F1-Score ER F1-Score

Brakes
Squeaking 0.98 4 0.81 0.28 0.97 0.04 0.85 0.09

Car 0.57 74 0.44 0.6 0.38 0.71 0.44 0.55

Children 1.35 0 0.98 0 1 0 1.2 0

Large Vehicle 0.9 51 0.70 0.52 0.67 0.43 0.69 0.51

People Speaking 1.25 18 0.95 0.07 0.98 0.02 0.99 0

People Walking 0.9 51 0.57 0.56 0.78 0.32 0.8 0.41

Figures 7 and 8 illustrate the performance when using the CRNN-based classifier
utilizing hybrid features as input. The comparison shows that the combination of these
hybrid features is not as effective as the individual features alone. When comparing
individual feature ER and F1-score, MFCC performs better in terms of F1-score, whereas
RASTA-PLP performs better in terms of ER.
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For example, the MFCC feature in the CRNN for squeaking brakes has the highest
F1-score (i.e., 28) and the lowest ER (i.e., 0.81). In the case of car sounds, the RASTA-PLP in
CRNN achieves the lowest ER (i.e., 0.38), whereas the baseline [1] has the highest F1-score
(i.e., 74). In addition, for children, F1-score achieved is 0, and RASTA-PLP achieves the
lowest ER (i.e., 1). In the large vehicle class, the lowest ER is 0.67 and the highest F1-score
is 52, both achieved with RASTA-PLP in CRNN. For people speaking, the baseline yields
the highest F1-score of 18 and the lowest ER (i.e., 0.95). Similarly, in the people walking
class, MFCC in CRNN achieves an F1-score of 56 and an ER of 0.57.

In short, the MFCC feature in the CRNN for squeaking brakes has the highest F1-score
(i.e., 28) and the lowest ER (i.e., 0.81). In case of cars, RASTA-PLP in CRNN achieves
the lowest ER (i.e., 0.38) whereas the baseline model has the highest F1-score (i.e., 74). In
addition, for children, the F1-score achieved is 0, and RASTA-PLP achieves the lowest ER
(i.e., 1). In the large vehicle class, the lowest ER is 0.67 and the highest F1-score is 52, both
achieved with RASTA-PLP in CRNN. For people speaking, the baseline model yields the
highest F1-score of 18 and lowest ER (i.e., 0.95). Similarly, in the people walking class,
MFCC in CRNN achieves an F1-score of 56 and an ER of 0.57.

5.2.3. S-CRNN-Based Classifier

In this section, we use a multi model classifier that is, S-CRNN, which employs two
parallel CRNNs for the two subclasses in the dataset. Subclass 1 includes brakes squeaking,
car sounds, and large vehicle sounds, while subclass 2 consists of sound events in the
classes of children, people speaking, and people walking as listed in Table 6.

Table 6. Comparison of results using S-CRNN classifier on Dev-Set and Eval-Set.

Sound Events Class

Dev-Set Eval-Set

Baseline [1] S-CRNN Baseline [1] S-CRNN

MFCC MFCC+RASTA-PLP MFCC MFCC+RASTA-PLP

ER F1-Score ER F1-Score ER F1-Score ER F1-Score

Brakes
Squeaking 0.98 4 0.69 48 0.92 16.5 0.69 55

Car 0.57 74 0.33 67 0.76 61.5 0.14 66

Children 1.35 0 0.87 17 2.6 0 0.8 0

Large Vehicle 0.9 51 0.46 55 1.44 42.7 0. 9 14

People Speaking 1.25 18 0.79 22 1.29 8.6 1 10

People Walking 0.9 51 0.48 57 1.44 33.5 1 54

Figures 9 and 10 make it clear that S-CRNN outperforms the baseline model [1] in ER
and F1-score across both the Dev-Set and Eval-Set. For example, for car events, the lowest
ER of 0.33 is obtained using S-CRNN for the Dev-Set, whereas the baseline [1] achieves an
F1-score of 74. The Dev-Set yields the lowest F1-score of 0 for children events and an ER of
1.36 in the baseline model.

Figures 11 and 12 compare the overall ER and F1-score of S-CRNN with the baseline
model and state-of-the art performer [2]. Clearly showing that using the S-CRNN model
improved the overall F1-score by almost 10 % and the ER to 0.11 on the Eval-Set. In addition,
the S-CRNN performed well on the Dev-Set, with an overall improvement of 2% in the
F1-score is 0.3 in ER.
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We evaluated the performance of our proposed S-CRNN model and compared the
overall ER and F1-score with the baseline model, as shown in Figures 11 and 12. The
baseline model obtains an overall ER of 0.69 and an overall F1-score of 56.7% on the
Dev-Set, whereas these scores are 42.8% and 0.93, respectively, on the Eval-Set. On the
Dev-Set, the Adavanne model achieves an overall ER of 0.25 and an overall F1-score of
79.3%, whereas on the Eval-Set it achieves an overall ER of 0.79 and an overall F1-score of
41.7%. On the Dev-Set, our proposed S-CRNN model obtains an overall ER of 0.22 and an
overall F1-score of 72%, whereas on the Eval- Set the overall ER is 0.68 and the F1-score
is 51%. These results clearly demonstrate that the S-CRNN model increased the overall
F1-score by over 10% and the ER by 0.11 on the Eval-dataset. Additionally, our proposed
S-CRNN performed well on the Dev-Set, with an improved overall ER of 0.3, showing the
efficacy of our proposed model.

6. Conclusions

In this article, we have introduced a novel multi-model for the SED challenge in urban
environments. Because there are several sound event categories which need to be detected
and identified in the urban SED task, our main focus in this article was to divide the dataset
into two subclasses of audio events prevalent in urban environments. For this, all the
machine-generated (i.e., artificial) sound events were placed in the first subclass, while
natural sounds such as human conversation were categorized in the second subclass. To
achieve this, we employed two distinct features (MFCC and RASTA-PLP spectra) for the
two subclasses rather than a single feature for both subclasses. We ran multiple experiments
with various ranges of erosion and dilation masks during the post-processing stage. We
conclude that continuous noises, such as automobile sounds (excluding brakes), require
a modest size of filter mask. As there may be pauses in speech, sounds such as people
speaking require a larger size of filter mask. Furthermore, our proposed stacked multi-
model (S-CRNN) was able to accurately divide and classify the artificial and natural sound
datasets with a high F1-score and low ER. Our future work will focus on developing a
lightweight S-CRNN capable to operate well with embedded systems for a number of
real-world applications, including robotics, voice enhancement, etc., that need low power
and l ow cost. We will try to utilize the real time factor (RTF) in order to determine whether
our proposed model will be effective in real-time.
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Abbreviations

ANN Artificial Neural Network
ASR Automatic Speech Recognition
CNN Convolutional Neural Network
DCASE Detection and Classification of Acoustic Scenes and Events
DNN Deep Neural Network
DCNN Deep Convolutional Neural Network
ER Error rate
FC Fully connected
GMM−HMM Gaussian Mixture Model–Hidden Markov Model
GLU Gated Linear Unit
GTCC Gammatone Cepstral Coefficients
GRU Gated Recurrent Unit
IIR Infinite Impulse Response
KNN k-Nearest Neighbors
LSTM Long short-term memory
MFCC Mel-Frequency Cepstral Coefficients
MVDR Minimum Variance Distortionless Response
NMF Non-negative Matrix Factorization
NS Noise Resistant
NB−ACF Narrow-Band Autocorrelation Function Features
NN Neural Network
PLP Perceptual Linear Prediction
RASTA RelAtive SpecTrA
RNN Recurrent Neural Networks
S−CRNN Stack Convolutional Recurrent Neural Network
SED Sound Event Detection
SVM Support Vector Machine
STFT Short-Time Fourier Transform
TF Time Frequency
TAU Tamper University
WPE Weighted Prediction Error
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