
Citation: Cheung, C.; Rawashdeh, S.;

Mohammadi, A. Jam Mitigation for

Autonomous Convoys via

Behavior-Based Robotics. Appl. Sci.

2022, 12, 9863. https://doi.org/

10.3390/app12199863

Academic Editors: Jose Machado,

Fabrizio Giulietti, Nadjim Horri and

William Holderbaum

Received: 19 August 2022

Accepted: 27 September 2022

Published: 30 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Jam Mitigation for Autonomous Convoys via
Behavior-Based Robotics
Calvin Cheung , Samir Rawashdeh and Alireza Mohammadi *

Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA
* Correspondence: amohmmad@umich.edu

Abstract: Autonomous ground vehicle convoys heavily rely on wireless communications to perform
leader-follower operations, which make them particularly vulnerable to denial-of-service attacks
such as jamming. To mitigate the effects of jamming on autonomous convoys, this paper proposes
a behavior-based architecture, called the Behavior Manager, that utilizes layered costmaps and
vector field histogram motion planning to implement motor schema behaviors. Using our proposed
Behavior Manager, multiple behaviors can be created to form a convoy controller assemblage capable
of continuing convoy operations while under a jamming attack. To measure the performance of
our proposed solution to jammed autonomous convoying, simulated convoy runs are performed
on multiple path plans under different types of jamming attacks, using both the assemblage and
a basic delayed follower convoy controller. Extensive simulation results demonstrated that our
proposed solution, the Behavior Manager, can be leveraged to dramatically improve the robustness
of autonomous convoys when faced with jamming attacks and can be further extended due to its
modular nature to combat other types of attacks through the development of additional behaviors
and assemblages. When comparing the performance of the Behavior Manager convoy to that of the
basic convoy controller, improvements were seen across all jammer types and path plans, ranging
from 13.33% to 86.61% reductions in path error.

Keywords: autonomous convoy; behavior-based robotics; jamming

1. Introduction

Ground vehicle convoys are utilized in both commercial and military applications
in order to reduce costs, increase vehicle efficiency, and improve safety for the transport
personnel. At the most basic level, a convoy is a group of two or more vehicles, traveling
from a set origin to an objective destination under a single leader [1]. From a military
perspective, the use of ground vehicle convoys to perform supply operations is an important
part of an efficient logistics strategy. While several different transportation methods such
as aircrafts, trains, and ships are available, ground vehicles still account for a significant
portion of supply and equipment distribution due to the battlefield complexities and the
need to embed protective measures such as gun trucks [2]. Similarly, the usage of ground
vehicle convoys is vital in the commercial sector, due to the prevalence of paved roads and
cost effectiveness when moving large or heavy materials [3].

With the advent of autonomous driving, there has been heavy focus on leveraging
autonomous vehicles to improve convoys. Much of the research and development towards
autonomous vehicle convoys focus around three iterative employment concepts: minimally
manned (MM), partially manned (PM), and fully autonomous (FA) [4]. In a minimally
manned system, the lead vehicle in the convoy has a human driver, while the follower
vehicles operate autonomously with a safety rider monitoring autonomous performance,
ready to take over in the event a fault occurs. In a partially manned system, the lead vehicle
convoy has a human driver, but all the follower vehicles are autonomous and unmanned. In
a fully autonomous system, all vehicles in the convoy, leader and followers, are unmanned

Appl. Sci. 2022, 12, 9863. https://doi.org/10.3390/app12199863 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12199863
https://doi.org/10.3390/app12199863
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3876-1684
https://orcid.org/0000-0002-1089-3872
https://doi.org/10.3390/app12199863
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12199863?type=check_update&version=1

Appl. Sci. 2022, 12, 9863 2 of 25

autonomous. In all cases, there are numerous benefits in applying autonomy to ground
vehicle convoys. From both the commercial and military perspective, the utilization of
autonomous vehicle convoys can reduce fuel consumption, reduce traffic congestion, and
improve safety [2].

In all the autonomous vehicle convoy employment concepts, the utilization of wireless
communications has been paramount in their development. Two important applications
of wireless communications include inter-vehicle communications (IVC) and Global Po-
sitioning Systems (GPS). IVC is used to exchange vital information between vehicles in
the convoy, including pose, heading, speed, acceleration, and maneuver intentions [5].
This information is used by follower vehicles in maintaining the desired convoy formation
along the desired path. In addition, GPS is often used as a vital tool in providing position,
navigation, and timing information for each vehicle [4]. In many cases, proper wireless
communications are a necessity in the operation of an autonomous convoy, where disrup-
tion of the wireless communications system can cause the autonomous convoy to fail. The
criticality of proper wireless communications extends beyond autonomous convoys and
applies to various other autonomous applications such as surveillance [6], mining, and
agriculture [4]. This outsized importance of wireless communications makes it a critical
piece of the system to protect from potential cyber-physical attacks, such as jamming.

Jamming is a type of denial-of-service attack that attempts to disrupt or block wireless
communications. Jammers interfere with a radio’s ability to transmit or receive data, and
are the most widely used denial-of-service attack for vehicular networks due to their
effectiveness and simplicity [7–9]. The risk of jamming is especially prevalent in military
applications, due to electronic warfare systems and strategies employed by adversaries
to gain tactical advantages [9]. Given the importance of IVC in autonomous convoys,
disruptions caused by jamming could cause instability in the following functionality of the
autonomous convoys, or even potentially cause a complete breakdown of the convoy [4].
Since jamming is one of the most simple and effective denial-of-service attacks [10], it is
important to understand the attack and the proper ways to defend against it. There have
been some limited efforts focused more narrowly on the topic of jamming as it relates to
convoys, with a greater body of work focused on investigating the effects of jamming on
vehicular ad-hoc networks (VANET) in general [11–13].

On the topic of jamming and its effects of vehicular convoys, there has been some
work in developing a framework to measure the impact of the attack and a convoy’s
resilience. Van der Heijden et al. examined three Cooperative Adaptive Cruise Control
convoy controllers and how various attacks such as jamming and data injection impacted
their respective performance [7]. Both an attacker model and an evaluation framework were
developed for a thorough examination of what sort of attack detection and attack resilience
algorithms should be used to resist the effects of attacks on the VANETs. In another convoy
specific effort, Hu et al. investigated how stealthy jamming attacks impacted convoy
stability [14]. The stealthy jammer performed jamming against a simulated convoy’s basic
safety message (BSM), which contains information such as vehicle speed, position, and
acceleration, over the control channel of dedicated short-range communications (DSRC),
but only when the probability of being detected was low. The probability of being detected
was determined based on how significantly jamming at a particular time would affect the
packet loss ratio of the communications. To detect the stealthy jams, they analyzed received
power and transmission delays of messages to differentiate between jamming attacks and
normal interference. The effects of jamming on VANETs in general is a more thoroughly
explored topic. Various efforts have focused on how jamming affects the transmission
of BSMs over DSRC in relation to Forward Collision Warning capabilities [11–13]. These
efforts create attack models to quantify the effects of the jamming attacks and come up
with different mechanisms to mitigate their effects. Alturkostani et al. looked at vehicle
distance with packet delivery ratio to detect jams, causing the system to enter a fail-safe
mode [11]. Serageldin et al. utilized redundant channels and data through dissimilar
message types to reduce the effectiveness of jams [12]. In a different effort, Serageldin et al.

Appl. Sci. 2022, 12, 9863 3 of 25

looked to develop architectures resistant to jamming by using dual and triple-redundant
channels at higher power ratings to enable BSM transmission [13]. Other efforts have
leveraged more of the Wireless Access in Vehicular Environment standards in trying to
detect jams, such as Malebary’s work in looking at beacon frequency from roadside units
to detect jams and broadcast warnings to other network members in its vicinity [8]. As
a whole, prior efforts related to jamming of convoys and VANETS have had a heavy
focus on detection, with a response of either broadcasting warnings to convoy vehicles
or entering fail-safe modes. Rather than investigating the issue of jam detection, which
has been the focus of the previous literature, our proposed solution instead focuses on
control-oriented countermeasures when jamming is unavoidable. We aim to develop
methods and techniques to allow for continued convoy operation in the face of these
denial-of-service attacks, mitigating the undesired outcome of jamming attacks, rather than
the jamming itself.

There are a variety of control approaches and architectures utilized in multirobot
autonomous convoying. More broadly speaking, multirobot convoying is a subset of
formation control, and the proper choice for formation control design is dependent on which
factors need to be prioritized, such as formation shape generation time [15], formation
robustness during network congestion [16], and flexible prioritization between system
performance and control effort [17]. One particularly robust formation control approach
for dynamic environments is behavior-based robotics. In behavior-based robotics, robotic
control is built as a collection of basic behaviors. These behaviors are modular and run in a
concurrent and distributed manner to achieve desired system functionality. The utilization
of behavior-based robotics architectures in multirobot teaming has been previously explored
in various research efforts seeking to take advantage of its benefits in dynamic environments.
Early efforts include DARPA studies on the integration of navigational behaviors and
formation behaviors to create human-led robotic teams to be used in different types of
task environments [18]. This effort looked to take four robot teams and set them in a line,
column, diamond, or wedge using a motor schema behavior approach. The behaviors
used were move-to-goal, avoid-static-obstacle, avoid-robot, maintain-formation, and noise.
Member vehicles in the robotic team transmitted position information to properly space out
appropriately given the formation and method of formation centering. The path error and
duration out of formation of the robots for each formation was compared to one another
to determine which one had the best performance in different experimental scenarios.
Another effort proposed a decentralized method utilizing a formation matrix [19]. In this
effort, each robot leveraged a formation matrix, which defined leader follower pairs. This
formation matrix allocated robots to specific positions in a formation before the system
began operation by using onboard sensors to detect the location of surrounding robots.
Once the proper position of each member robot was allocated, the system was able to
traverse to a destination avoiding obstacles, while maintaining the desired formation based
on what was defined in the matrix. In this approach, a behavior network architecture was
used, in which basic behaviors were linked together and either stimulated or suppressed.
This stimulation/suppression was based on input vector values such as detected object
location. The output vectors of the network defined the robot’s path. While this effort
did not use communications between robotics in motion, initial allocation of vehicles
in the specific starting positions was required for formation matrix setup. In addition,
this effort focused on static robotic formations that maintained their shape, making this
method less suitable for applications such as a convoy following defined roads. More
recent efforts in behavior-based multi-robot teaming have sought to improve performance
by optimizing inter-robot communications, rather than eliminating them. One such effort
created a distributed framework for multirobot behavior sequencing that allowed teams of
robots to adjust to their configuration to meet communication requirements for the different
tasks [20]. The effort focused on the idea that coordinated behaviors between multiple
robots must be sequenced together in a way that takes inter-robot distances into account
to meet information flow constraints due to communications. The constraints translate

Appl. Sci. 2022, 12, 9863 4 of 25

into specific robot position configurations that need to be met within a finite time for the
behaviors to be performed. The framework leveraged finite-time convergence control
barrier functions to adjust configurations to meet the communication requirements for
different sequences of behaviors. While these efforts focused on utilizing behavior-based
control architectures for multi-vehicle teaming, they either heavily rely on IVC throughout
their operations or require a manually arranged initial state. Furthermore, the focus on
traveling in formation shapes makes the multi-vehicle movement less suitable for convoy
path following operations, which is the outcome being sought by industry and military
from autonomous convoying. Our efforts focus on the development of a more flexible
framework towards convoy path following that utilizes on IVC when available and having
the additional capability to activate more robust behaviors not relying on communications
when faced with jamming to continue convoy operations. Refer to Table 1 for a summary
of the control approaches referenced in this section.

Table 1. Prior work in convoying and formation control.

Title Authors Summary

Path Planning for Multiple
Unmanned Vehicles (MUVs)
Formation Shape Generation

Based on Dual RRT
Optimization [15]

Gong, Tianhao; Yang, Yu;
Song, Jianhui

Perform shape formation
generation with multiple
unmanned vehicles using

rapidly-exploring random trees to
plan vehicle paths during

formation.

Research on Self-Organizing
Behavior-Based UAV
Formation Based on

Distributed Control [16]

Yunhe, Li; Bo, Li;
Xiaowei, Niu

Optimize unmanned aerial vehicle
formation through use of detected
information with self-organizing

behaviors with a quasi-static
communication topological

structure.

Autonomous Vehicle Convoy
Formation Control with

Size/Shape Switching for
Automated Highways [17]

Jond, Hossein Barghi;
Platoš, J; Sadreddini,

Zhaleh

Development of a convoy
formation control architecture
consisting of four closed-form

control law algorithms to handle
formation size and shape switching.

Behavior-Based Formation
Control for Multirobot

Teams [18]

Balch, Tucker; Arkin,
Ronald

Integrated navigational and
formation behaviors to create

human-led robotic teams to be used
in different types of task

environments.

Decentralized behavior-based
formation control of multiple
robots considering obstacle

avoidance [19]

Lee, Giroung; Chwa,
Dongkyoung

Proposed a decentralized formation
control method utilizing a

formation matrix and behavior
network architecture.

A Sequential Composition
Framework for Coordinating

Multirobot Behaviors [20]

Pierpaoli, Pietro; Li,
Anqi; Srinivasan, Mohit;

Cai, Xiaoyi; Coogan,
Samuel; Egerstedt,

Magnus

Created a framework for behavior
sequencing that allowed teams of

robots to adjust their configuration
to meet communication

requirements for the different tasks.

This paper investigates developing an autonomous convoy system that mitigates
the effects of jamming attacks. We aim to create an autonomous convoy that does not
inherently rely on any Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) network
communications by design, creating a highly scalable system that is robust to system
error and loss of communications by using only the on-board sensors of each vehicle. A
behavior-based robotics architecture is used to facilitate the employment of simpler sensors
and reduce the reliance on complex planning with world models.

Appl. Sci. 2022, 12, 9863 5 of 25

The contributions of this paper are as follows:

• This paper develops control-oriented countermeasures against jamming attacks on
autonomous vehicle convoys that are independent of traditional radio anti-jamming
techniques. This allows for layers of protection against jamming at both the network
and convoy controller level, improving the robustness and performance of an overall
convoy system when confronted with jamming.

• This paper creates an architecture for behavior-based robotics that is uniquely inte-
grated with the Robot Operating System (ROS) framework. This architecture combined
a Motor Schema behavior-based robotics with the ROS navigation stack to a depth
that had not previously been seen, paving the path for the greater ROS community to
leverage behavior-based robotic architectures.

• The jamming-proof motion planning in this paper improves upon the basic Motor
Schema approach by integrating it with vector field histogram motion planning,
allowing us to avoid the pitfalls of potential field motion planning.

The remainder of the paper is organized as follows: Section 2 provides background on
autonomous ground vehicle convoys, jammers, and behavior based robotics; Sections 3 and 4
discusses the materials and methods used, including the behavior-based robotics archi-
tecture, algorithms, and design of experiment; Section 4 shows the results to quantify the
performance differences between autonomous ground convoy systems when jam mitigation
is present; and Section 5 contains the final discussions and conclusions.

2. Background

The purpose of this effort is to develop an autonomous ground vehicle convoy system
that mitigates the effects of jamming by utilizing a behavior-based robotics approach. To
enable proper exploration of the effort, the following sections provide a brief background
on three topics fundamental to our work: autonomous ground vehicle convoys, jammers,
and behavior-based robotics.

2.1. Autonomous Ground Vehicle Convoys

Autonomous ground vehicle convoys are composed of a leader vehicle and follower
vehicles. Follower vehicles follow the path of the leader at a given offset distance. While
there are various levels of autonomy employed by the autonomous ground vehicle convoys,
such as MM, PU, and FA [4], the fundamental design of autonomous convoys remains
consistent. The leader vehicle sets the path, either through human driving or autonomous
navigation, and utilizes V2V communications to send information to the follower vehicles.
The information sent varies depending on system design, but typically includes path points,
vehicle pose, vehicle speed, and other sensor information to help follower vehicles track
their leader. The follower vehicle uses onboard sensors to estimate its own state, and
produces a state estimate of its leader using the information received from V2V and various
onboard sensors. A path planning system uses the state information and leader path points
to generate a motion plan, and the vehicle is actuated accordingly [3]. Figure 1 lays out the
high-level architecture as described.

The V2V communications sent between vehicles can contain a broad range of informa-
tion from a wide suite of sensors. Information relevant to the vehicle’s speed and position,
such as sensor data (cameras, GPS, Light Detection and Ranging [LiDAR], wheel encoders,
etc.), vehicle kinematics and intended maneuvers, would all need to go through the V2V
communications to allow follower vehicles to reach the desired speed and formation for
leader following [2]. Various V2V communication topologies can be utilized in autonomous
ground vehicle convoys, depending on the needs of the system. Figure 2 shows some com-
mon leader-follower topologies used, including predecessor following, predecessor-leader
following, bidirectional, and bidirectional-leader [21].

Appl. Sci. 2022, 12, 9863 6 of 25

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 26

The V2V communications sent between vehicles can contain a broad range of
information from a wide suite of sensors. Information relevant to the vehicle’s speed and
position, such as sensor data (cameras, GPS, Light Detection and Ranging [LiDAR], wheel
encoders, etc.), vehicle kinematics and intended maneuvers, would all need to go through
the V2V communications to allow follower vehicles to reach the desired speed and
formation for leader following [2]. Various V2V communication topologies can be utilized
in autonomous ground vehicle convoys, depending on the needs of the system. Figure 2
shows some common leader-follower topologies used, including predecessor following,
predecessor-leader following, bidirectional, and bidirectional-leader [21].

Figure 1. High-level architecture for a follower vehicle in an autonomous ground vehicle convoy. Figure 1. High-level architecture for a follower vehicle in an autonomous ground vehicle convoy.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 26

Figure 2. Common leader-follower communication topologies, adapted from [21]: (a) predecessor
following; (b) predecessor-leader following; (c) bidirectional; (d) bidirectional-leader.

2.2. Jammers
Jamming is an effective and simple radio interference attack that can be used against

wireless networks. In its most basic form, jammers emit radio frequency signals to fill a
wireless channel to interfere with the sending and receiving of wireless communications.
The jammer can work to either prevent the source from transmitting packets or disrupt
the receiver from properly recognizing and processing legitimate packets. The end result
in either case is the interference of the physical transmission and reception of wireless
communications [10]. Different classifications of jammers utilize different techniques in
jamming wireless networks. The five most commonly described techniques in literature
are as follows in Table 2.

Table 2. Common Jamming Techniques.

Jammer Type Description

Constant [8,10–12,22]
Continuously emits random noise over a wireless medium to interfere with legitimate

communications.

Deceptive [10,12,22]
Periodically inject valid packets in their transmissions to deceive receivers into believing that

legitimate messages are being sent.

Random [8,10–12,22]
Operates on jam and sleep periods. They will jam for a time duration of tJ, and sleep for a

duration tS before jamming again. Both tJ and tS can be either fixed or values random.
Reactive [8,10,12,22] Continuously monitor a communications channel and only jams when it senses activity.

Intelligent [11,22]
Uses knowledge of the communications protocols they are seeking to jam and analyze the

transmissions to target specific messages or message types.

Figure 2. Common leader-follower communication topologies, adapted from [21]: (a) predecessor
following; (b) predecessor-leader following; (c) bidirectional; (d) bidirectional-leader.

2.2. Jammers

Jamming is an effective and simple radio interference attack that can be used against
wireless networks. In its most basic form, jammers emit radio frequency signals to fill a

Appl. Sci. 2022, 12, 9863 7 of 25

wireless channel to interfere with the sending and receiving of wireless communications.
The jammer can work to either prevent the source from transmitting packets or disrupt
the receiver from properly recognizing and processing legitimate packets. The end result
in either case is the interference of the physical transmission and reception of wireless
communications [10]. Different classifications of jammers utilize different techniques in
jamming wireless networks. The five most commonly described techniques in literature
are as follows in Table 2.

Table 2. Common Jamming Techniques.

Jammer Type Description

Constant [8,10–12,22] Continuously emits random noise over a wireless medium to interfere with
legitimate communications.

Deceptive [10,12,22] Periodically inject valid packets in their transmissions to deceive receivers into believing that
legitimate messages are being sent.

Random [8,10–12,22] Operates on jam and sleep periods. They will jam for a time duration of tJ, and sleep for a duration tS
before jamming again. Both tJ and tS can be either fixed or values random.

Reactive [8,10,12,22] Continuously monitor a communications channel and only jams when it senses activity.

Intelligent [11,22] Uses knowledge of the communications protocols they are seeking to jam and analyze the
transmissions to target specific messages or message types.

Despite the relative simplicity of basic jammers, such as constant jamming and random
jamming, jamming attacks are difficult to defend against. Conventional security mecha-
nisms are ineffective, because attackers can disrupt the entire medium of communications
itself rather than having to exploit the traditional areas of confidentiality, authentication,
and integrity [10]. Additionally, the deployment of jammers has a low barrier to entry. All
radio operations on a wireless communications channel can be completely disrupted by a
single device emitting noise at high power, regardless of what security measures are built
into the underlying communications protocols. In addition, Software Defined Radios that
can be used to launch jamming attacks are becoming increasingly affordable and easy to
use [9]. In response to the vulnerabilities presented by jamming, several efforts throughout
the years have proposed different anti-jamming methods. While many novel anti-jamming
methods exist, the primary mechanisms to mitigate jamming can be broadly classified into
larger groupings, with two prominent groupings being filtering and Spread Spectrum (SS)
techniques. In filtering techniques, the radio receiver attempts to filter out the jammed
signal by various means so that the intended signal can be properly parsed. One method
of doing this used beamforming, in which a beamformer performed spatial filtering of
spatial samples collected from propagating wave fields [23]. It then separated signals
with overlapping frequency content that were delivered from different spatial locations.
In a different filtering approach, an adaptive Gaussian filter was used to combat jam-
ming caused by narrowband interference with gaussian white noise and pulsed noise [24].
The adaptive filter used optimal time-frequency localization and variable notch depth in
conjunction with a fast Fourier-transform-based correlation to filter both continuous and
time-varying narrowband interface. In addition to filtering techniques, SS techniques are
often used to combat jamming. With SS techniques, a narrowband information signal uses
data-independent, random sequences to spread the signal over a wide band of frequencies,
in hopes that the jammer is unable to disrupt the entire frequency band [25]. The receiver
can then correlate the signal it received with a copy of the random sequence to decode
the data that was meant to be delivered. The two most commonly used SS techniques are
direct sequence SS (DSSS) and frequency hopping SS (FHSS) [26]. In DSSS systems, the
information signal is spread throughout the entire available bandwidth at the same time.
This spreading of the signal causes the energy present at each particular frequency of the
bandwidth to be very low and mistaken as noise by jammers that are actively listening for
signals to jam. The intended receiver can then reconstruct the signal that it received from

Appl. Sci. 2022, 12, 9863 8 of 25

all the frequencies in the bandwidth. In FHSS systems, data is sent through a narrowband
signal, but the frequency and channel being used to transmit signal rapidly changes. The
frequency hopping pattern is known by the sender and intended receiver, allowing for
messages to successfully be sent between them. In addition to filtering and spread spec-
trum techniques, various unique anti-jamming methods have been proposed to protect
against the attacks, including exploiting reactive jammer reaction times [27], jammed node
isolation [28], and directional antennas [29]. While all these methods can be effective at
countering jamming attacks, no solution can offer absolute protection in all scenarios. For
this reason, creating robust autonomous convoy solutions that can maintain operation in
the face of a jamming attack is important for widespread commercial and military adoption.

2.3. Behavior-Based Robotics

The development of behavior-based robotics was a response to the prevalent control
paradigms of the time, which were rooted in function-based, deliberative models [30], as
shown in Figure 3a. Under the deliberative approach, robotic control relied heavily on world
models. Updates to the world model would be determined in a sensing phase, plans based
on the model were calculated in a planning phase, and action would then be taken in an
acting phase. This approach responded poorly in dynamic environments due to the slow
speed of model updates coupled with the need for re-planning [31].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 26

Figure 3. Robotic control approaches: (a) deliberative approach; and (b) reactive approach [31].

To address the issues of deliberative control, researchers began to develop more
reactive approaches with faster response times that would be more suited to the dynamic,
real-world environments. In these reactive control approaches, there is a tight coupling
between sensors and actuators. Control is performed via concurrent condition-action
rules so that no complex computations or world models are needed, as shown in Figure
3b. A sensor reads the environment and acts upon the information given the condition-
action rules in place. The tight coupling minimizes the need for heavy computation and
complex world model [31]. Despite the benefits afforded by reactive control approaches,
a purely reactive approach limits an autonomous system’s ability to perform complex
tasks. While there are various approaches that leverage reactive control with internal
states and models, one approach that is particularly well suited to dynamic environments
and multi-vehicle control is behavior-based robotics.

In a behavior-based robotics approach, robotic control is built as a collection of basic
behaviors, with behaviors being defined as something that generates a motor response
given some sensory stimulus. These behaviors are modular, and run in a concurrent and
distributed manner to achieve desired system functionality. For instance, an autonomous
vehicle that moves from its origin to some target location may be concurrently running
behaviors such as Move-to-Goal, Avoid-Obstacles, and Stay-on-Path at all times in order
to meet the system objective. These different behaviors may be purely reactive, in which
they take sensor readings and use rule-based logic to immediately generate some desired
motor response, or they can maintain their own state and memory to allow for more
complex behaviors. With behaviors being run concurrently, an arbitration mechanism is
used to decide on what actions to take, whether it be a single behavior’s output or a fusion
of multiple behaviors [32]. Arbitration techniques vary based on the specific behavior-
based robotics architecture that is being used. Some examples include subsumption
architectures [30], motor schemas [33], and circuit architectures [34]. Figure 4 shows an
example of how a generalized behavioral-based robotics architecture can be laid out.

Figure 4. A generalized behavioral-based robotics architecture.

Figure 3. Robotic control approaches: (a) deliberative approach; and (b) reactive approach [31].

To address the issues of deliberative control, researchers began to develop more reactive
approaches with faster response times that would be more suited to the dynamic, real-world
environments. In these reactive control approaches, there is a tight coupling between
sensors and actuators. Control is performed via concurrent condition-action rules so that
no complex computations or world models are needed, as shown in Figure 3b. A sensor
reads the environment and acts upon the information given the condition-action rules
in place. The tight coupling minimizes the need for heavy computation and complex
world model [31]. Despite the benefits afforded by reactive control approaches, a purely
reactive approach limits an autonomous system’s ability to perform complex tasks. While
there are various approaches that leverage reactive control with internal states and models,
one approach that is particularly well suited to dynamic environments and multi-vehicle
control is behavior-based robotics.

In a behavior-based robotics approach, robotic control is built as a collection of basic
behaviors, with behaviors being defined as something that generates a motor response
given some sensory stimulus. These behaviors are modular, and run in a concurrent and
distributed manner to achieve desired system functionality. For instance, an autonomous
vehicle that moves from its origin to some target location may be concurrently running
behaviors such as Move-to-Goal, Avoid-Obstacles, and Stay-on-Path at all times in order to
meet the system objective. These different behaviors may be purely reactive, in which they
take sensor readings and use rule-based logic to immediately generate some desired motor
response, or they can maintain their own state and memory to allow for more complex be-
haviors. With behaviors being run concurrently, an arbitration mechanism is used to decide
on what actions to take, whether it be a single behavior’s output or a fusion of multiple
behaviors [32]. Arbitration techniques vary based on the specific behavior-based robotics
architecture that is being used. Some examples include subsumption architectures [30],

Appl. Sci. 2022, 12, 9863 9 of 25

motor schemas [33], and circuit architectures [34]. Figure 4 shows an example of how a
generalized behavioral-based robotics architecture can be laid out.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 26

Figure 3. Robotic control approaches: (a) deliberative approach; and (b) reactive approach [31].

To address the issues of deliberative control, researchers began to develop more
reactive approaches with faster response times that would be more suited to the dynamic,
real-world environments. In these reactive control approaches, there is a tight coupling
between sensors and actuators. Control is performed via concurrent condition-action
rules so that no complex computations or world models are needed, as shown in Figure
3b. A sensor reads the environment and acts upon the information given the condition-
action rules in place. The tight coupling minimizes the need for heavy computation and
complex world model [31]. Despite the benefits afforded by reactive control approaches,
a purely reactive approach limits an autonomous system’s ability to perform complex
tasks. While there are various approaches that leverage reactive control with internal
states and models, one approach that is particularly well suited to dynamic environments
and multi-vehicle control is behavior-based robotics.

In a behavior-based robotics approach, robotic control is built as a collection of basic
behaviors, with behaviors being defined as something that generates a motor response
given some sensory stimulus. These behaviors are modular, and run in a concurrent and
distributed manner to achieve desired system functionality. For instance, an autonomous
vehicle that moves from its origin to some target location may be concurrently running
behaviors such as Move-to-Goal, Avoid-Obstacles, and Stay-on-Path at all times in order
to meet the system objective. These different behaviors may be purely reactive, in which
they take sensor readings and use rule-based logic to immediately generate some desired
motor response, or they can maintain their own state and memory to allow for more
complex behaviors. With behaviors being run concurrently, an arbitration mechanism is
used to decide on what actions to take, whether it be a single behavior’s output or a fusion
of multiple behaviors [32]. Arbitration techniques vary based on the specific behavior-
based robotics architecture that is being used. Some examples include subsumption
architectures [30], motor schemas [33], and circuit architectures [34]. Figure 4 shows an
example of how a generalized behavioral-based robotics architecture can be laid out.

Figure 4. A generalized behavioral-based robotics architecture. Figure 4. A generalized behavioral-based robotics architecture.

The behavior-based robotics architecture developed for this effort was based on Motor
Schemas, a neurological-based approach towards behavioral robotics inspired by schema
theory [33]. A schema is a unit of behavior that describes how an agent should react in
a given situation and how the reaction can be performed [32]. The concurrent control of
many different schemas is used to explain motor behavior. In the Motor Schema approach,
each motor schema has an associated perceptual schema that provides the sensor informa-
tion, which the motor schema uses to generate motor responses per its defined behavior.
This is traditionally conducted through potential field response vectors around the robot.
Coordination of motor schemas is achieved cooperatively, with no hierarchy of behaviors.
Instead, weightings for the motor schemas are set based on a robot’s current needs and com-
bined through vector addition. The coordination between different schemas allows for the
execution of complex, emergent actions with only a small number of primitive behaviors.

3. Materials and Methods

This following section details the development and testing of the proposed behavior-
based autonomous ground vehicle convoy system. A description of the tools leveraged,
jamming attacker model, behavior-based robotics architecture, experimental design, and
data analysis methods ensue for a thorough discussion on the quantifiable benefits of the
proposed system.

3.1. Tools

Development of our autonomous ground vehicle convoy system leveraged the ROS.
ROS is a flexible framework for the development of autonomous robotic software, leverag-
ing a collection of libraries, tools, and conventions to facilitate and encourage collaborative
software development and reuse [35]. In addition, Gazebo, an open-source 3D robotics
simulator, was used in development, due to its integration with ROS and overall com-
munity support [36]. Utilizing ROS and Gazebo in our effort allowed us to build upon
pre-existing models for our own developmental and simulation environment. To that end,
the Clearpath Husky model was chosen as the robotic platform for development.

The Clearpath Husky is a robotic platform that is specialized for research and rapid
prototyping [37]. The ROS libraries and Gazebo models are well supported with a large
user base, making it an ideal platform to leverage for development [38]. The sensor suite
used in this effort includes a GPS, inertial measurement unit, and a forward facing 270◦

field-of-view LiDAR system. Figure 5 shows a convoy of Clearpath Husky models in a

Appl. Sci. 2022, 12, 9863 10 of 25

column convoy formation, along with ROS sensor visualization tools showing the 270◦

field-of-view LMS1xx LiDAR for each vehicle.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 26

Figure 5. Convoy of Clearpath Husky robots in the Gazebo robotics simulator with each robot’s
sensor visualization in ROS tools.

3.2. Attacker Model
To develop a jamming attacker model, certain assumptions regarding the network

configuration of the robots had to be established beforehand. We assumed that the three
Clearpath Husky robots were equipped with wireless radios, allowing them to become
mobile nodes. Each node would be able to transmit and receive data packets, forming a
generic autonomous vehicular ad-hoc network, similar to what is described in an IEEE
802.11bd network. In addition, each node would be able to leave and rejoin the network
without causing the ad-hoc network to fail. Due to the proximity of the robots, we
simplified the overall model by assuming that no signal loss or degradation occurs from
separation distances between the robots.

The jamming attacker model developed for this effort allows for a choice between
simulating a constant jammer and a random jammer. The constant jammer type was
chosen due to it being the worst-case jamming attack [12], while the random jammer type
allows us to test a greater range of unique jamming scenarios in which follower vehicles
end up being partially in the jamming zone. The other types of jammers described are
focused on disguising jamming attacks. Since detecting disguised jamming attacks was
not a focus of this effort, we focused on constant and random attacker models.

In developing the attacker model, a few key assumptions were made regarding its
configuration and capabilities. Firstly, the jammer would be a single node, acting as a
single point of jamming in the environment. The jammer was assumed to not be restricted
by its power source, meaning it would run continuously for indefinite periods of time
without any issue. In addition, it would be frequency unbounded, meaning that the
jammer would successfully jam on all frequencies the network communicated on. This
maximized the impact of the jamming attacks, making it so we considered packets to be
dropped completely when going from the sender to receiver. Implementing jamming in
this fashion allowed us to simulate an upper bound on successful denial-of-service attacks
[7]. To simplify the jamming model, we assumed that all areas of the jamming zone were
equally strong, with no wireless communication being possible anywhere within the
jammed area.

The jammer developed for this effort is configurable with the following inputs:

Figure 5. Convoy of Clearpath Husky robots in the Gazebo robotics simulator with each robot’s
sensor visualization in ROS tools.

3.2. Attacker Model

To develop a jamming attacker model, certain assumptions regarding the network
configuration of the robots had to be established beforehand. We assumed that the three
Clearpath Husky robots were equipped with wireless radios, allowing them to become
mobile nodes. Each node would be able to transmit and receive data packets, forming a
generic autonomous vehicular ad-hoc network, similar to what is described in an IEEE
802.11bd network. In addition, each node would be able to leave and rejoin the network
without causing the ad-hoc network to fail. Due to the proximity of the robots, we simplified
the overall model by assuming that no signal loss or degradation occurs from separation
distances between the robots.

The jamming attacker model developed for this effort allows for a choice between
simulating a constant jammer and a random jammer. The constant jammer type was chosen
due to it being the worst-case jamming attack [12], while the random jammer type allows
us to test a greater range of unique jamming scenarios in which follower vehicles end up
being partially in the jamming zone. The other types of jammers described are focused on
disguising jamming attacks. Since detecting disguised jamming attacks was not a focus of
this effort, we focused on constant and random attacker models.

In developing the attacker model, a few key assumptions were made regarding its
configuration and capabilities. Firstly, the jammer would be a single node, acting as a
single point of jamming in the environment. The jammer was assumed to not be restricted
by its power source, meaning it would run continuously for indefinite periods of time
without any issue. In addition, it would be frequency unbounded, meaning that the jammer
would successfully jam on all frequencies the network communicated on. This maximized
the impact of the jamming attacks, making it so we considered packets to be dropped
completely when going from the sender to receiver. Implementing jamming in this fashion
allowed us to simulate an upper bound on successful denial-of-service attacks [7]. To

Appl. Sci. 2022, 12, 9863 11 of 25

simplify the jamming model, we assumed that all areas of the jamming zone were equally
strong, with no wireless communication being possible anywhere within the jammed area.

The jammer developed for this effort is configurable with the following inputs:

• lat, long—latitudinal and longitudinal coordinates for the center of the jammer;
• rJ—radius of the jamming area, centered at lat, long;
• type of jammer;
• tJ—jamming time for random jammer;
• tS—sleep time for random jammer.

The latitudinal and longitudinal coordinates for the jammers center and the jamming
radius create a cylindrical jamming zone. Figure 6 illustrates the jamming attack model
targeted at a robotic convoy.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 26

● lat, long—latitudinal and longitudinal coordinates for the center of the jammer;
● rJ—radius of the jamming area, centered at lat, long;
● type of jammer;
● tJ—jamming time for random jammer;
● tS—sleep time for random jammer.

The latitudinal and longitudinal coordinates for the jammers center and the jamming
radius create a cylindrical jamming zone. Figure 6 illustrates the jamming attack model
targeted at a robotic convoy.

Figure 6. A convoy entering a jamming zone of radius rJ centered at lat, long.

3.3. Behavior Manager
As previously described, a behavior-based robotics architecture uses a collection of

basic behaviors to perform robotic control, where behaviors are modular components that
generate motor responses given some sensory stimulus which are run in a concurrent and
distributed manner. Behavior-based robotic architectures are particularly well-suited to
multi-vehicle control in dynamic environments due to scalability, decentralization of
control, and tight coupling of rapid sensor readings to real-time path planning [31,39].
The advantages inherent to a behavior-based robotics architecture make it highly well-
suited to provide robust protections against jamming for an autonomous convoy. Using
the Motor Schema approach as a starting point, we developed a novel behavior-based
robotics architecture that uniquely takes advantage of the layered costmap system implicit
in the ROS navigation stack. Our behavior-based architecture, henceforth referred to as
the Behavior Manager, encompasses behavioral costmaps, behaviors, assemblages, and
how they holistically interact. The following sections provide details on the general design
of the Behavior Manager, along with the specific implemented system we are proposing
for jamming mitigation of autonomous convoys.

3.3.1. Behavioral Costmaps
A core component of the Behavior Manager are the behavioral costmaps.

Traditionally, costmaps are two-dimensional grids in which every cell represents a
traversibility cost around a robot, based on sensor readings. These costs are used in
calculating the optimal path when traversing to a goal by a path planner [31]. ROS utilizes
a layered costmap system, in which multiple, separate costmaps are defined for different

Figure 6. A convoy entering a jamming zone of radius rJ centered at lat, long.

3.3. Behavior Manager

As previously described, a behavior-based robotics architecture uses a collection of
basic behaviors to perform robotic control, where behaviors are modular components that
generate motor responses given some sensory stimulus which are run in a concurrent
and distributed manner. Behavior-based robotic architectures are particularly well-suited
to multi-vehicle control in dynamic environments due to scalability, decentralization of
control, and tight coupling of rapid sensor readings to real-time path planning [31,39].
The advantages inherent to a behavior-based robotics architecture make it highly well-
suited to provide robust protections against jamming for an autonomous convoy. Using
the Motor Schema approach as a starting point, we developed a novel behavior-based
robotics architecture that uniquely takes advantage of the layered costmap system implicit
in the ROS navigation stack. Our behavior-based architecture, henceforth referred to as the
Behavior Manager, encompasses behavioral costmaps, behaviors, assemblages, and how
they holistically interact. The following sections provide details on the general design of
the Behavior Manager, along with the specific implemented system we are proposing for
jamming mitigation of autonomous convoys.

3.3.1. Behavioral Costmaps

A core component of the Behavior Manager are the behavioral costmaps. Traditionally,
costmaps are two-dimensional grids in which every cell represents a traversibility cost
around a robot, based on sensor readings. These costs are used in calculating the optimal

Appl. Sci. 2022, 12, 9863 12 of 25

path when traversing to a goal by a path planner [31]. ROS utilizes a layered costmap
system, in which multiple, separate costmaps are defined for different contexts. Each
costmap is considered a layer that is combined to create a master costmap, which is utilized
by the path planner [40].

The Behavior Manager leverages ROS’ layered costmap system by having each layer
represent the costs as defined by a perceptual schema behavior. In essence, every costmap
layer exists due to a behavior dictating that a costmap is needed to perform some behavior.
These costmap layers, which we call behavioral layers, are utilized both individually and
as a combined master costmap by the different behaviors and by the Behavior Manager’s
path planning system. In our implementation of the behavioral layers, the costmaps are
200 × 200 grids, with every cell containing a value between 0 and 254. The autonomous
vehicle is centered at the approximate center of the costmap, at the grid index (100,100).
Figure 7 shows a simplified example of the behavioral costmaps.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 26

contexts. Each costmap is considered a layer that is combined to create a master costmap,
which is utilized by the path planner [40].

The Behavior Manager leverages ROS’ layered costmap system by having each layer
represent the costs as defined by a perceptual schema behavior. In essence, every costmap
layer exists due to a behavior dictating that a costmap is needed to perform some
behavior. These costmap layers, which we call behavioral layers, are utilized both
individually and as a combined master costmap by the different behaviors and by the
Behavior Manager’s path planning system. In our implementation of the behavioral
layers, the costmaps are 200 × 200 grids, with every cell containing a value between 0 and
254. The autonomous vehicle is centered at the approximate center of the costmap, at the
grid index (100,100). Figure 7 shows a simplified example of the behavioral costmaps.

Figure 7. Simplified example of 5 × 5 behavioral costmaps, combined into a master costmap via
addition.

3.3.2. Behaviors
In general, behaviors are modular components that generate motor responses given

some sensory stimulus which are run in a concurrent and distributed manner [32]. In the
Motor Schema approach, the definition of behaviors is expanded, and they are categorized
as either motor schemas, which generate motor responses per its defined behavior, or
perceptual schemas, which provide sensor information to the other behaviors [33]. The
Behavior Manager is based on the Motor Schema approach, and accordingly, categorizes
its behaviors as either perceptual schemas or motor schemas.

Behavior Manager perceptual schema behaviors utilize sensor data and generate
behavioral costmaps based on the requirements of the behavior. For example, Figure 8
shows how a Keep-Standoff-Distance perceptual schema behavior would work. Figure 8a
shows the world state, with the autonomous vehicle in the center, and an obstacle being
detected in the upper right-hand corner. Figure 8b shows what the LiDAR readings would
be, with a value of 253 being associated with the detected obstacle. Figure 8c shows the
final behavioral costmap, with the perceptual schema increasing the costs in the area
directly around the obstacle to meet the behavior’s goal of keeping a standoff distance
between the autonomous vehicle and objects detected by the sensors. Each perceptual
schema has a gain that it assigns to its behavioral costmap to be used when combining the
layers into a master costmap. Multiple perceptual schemas are run concurrently, creating
multiple behavioral costmaps that are used by the greater Behavior Manager in individual
behaviors and in overall path planning.

Figure 7. Simplified example of 5 × 5 behavioral costmaps, combined into a master costmap
via addition.

3.3.2. Behaviors

In general, behaviors are modular components that generate motor responses given
some sensory stimulus which are run in a concurrent and distributed manner [32]. In the
Motor Schema approach, the definition of behaviors is expanded, and they are categorized
as either motor schemas, which generate motor responses per its defined behavior, or
perceptual schemas, which provide sensor information to the other behaviors [33]. The
Behavior Manager is based on the Motor Schema approach, and accordingly, categorizes
its behaviors as either perceptual schemas or motor schemas.

Behavior Manager perceptual schema behaviors utilize sensor data and generate
behavioral costmaps based on the requirements of the behavior. For example, Figure 8
shows how a Keep-Standoff-Distance perceptual schema behavior would work. Figure 8a
shows the world state, with the autonomous vehicle in the center, and an obstacle being
detected in the upper right-hand corner. Figure 8b shows what the LiDAR readings would
be, with a value of 253 being associated with the detected obstacle. Figure 8c shows the final
behavioral costmap, with the perceptual schema increasing the costs in the area directly
around the obstacle to meet the behavior’s goal of keeping a standoff distance between the
autonomous vehicle and objects detected by the sensors. Each perceptual schema has a
gain that it assigns to its behavioral costmap to be used when combining the layers into
a master costmap. Multiple perceptual schemas are run concurrently, creating multiple
behavioral costmaps that are used by the greater Behavior Manager in individual behaviors
and in overall path planning.

Appl. Sci. 2022, 12, 9863 13 of 25Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 26

Figure 8. A simplified example of a Keep-Standoff-Distance perceptual schema behavior: (a) the
world state, with the autonomous vehicle in the center, and an obstacle being detected in the upper
right-hand corner; (b) costmap with LiDAR readings; (c) final behavioral costmap, with the
perceptual schema increasing the costs in the area directly around the obstacle.

Behavior Manager motor schemas produce target goals, expressed as two-
dimensional Cartesian coordinates T, based on the requirements of the behavior. For
example, Figure 9 shows two different notional motor schema behaviors. Figure 9a
represents a Stay-on-Road behavior. The target goal produced, represented by the star,
causes the vehicle to stay on the road. Figure 9b on the other hand, represents a Follow-
Leader behavior, with the leader being represented by a dog on the grass. The target goal
produced directs the vehicle towards the leader. Each motor schema has a gain that it
assigns to the goal that it produces. The goals and associated gains are utilized by the
Behavior Manager to determine the final goal point for path planning.

Figure 9. Two examples of motor schema behaviors: (a) Stay-of-Path; (b) Follow-Leader.

In the development of our autonomous convoy system, we created four behaviors to
allow for leader following in the presence of jams: two motor schemas and two perceptual
schemas. The behaviors are Move-to-Goal, Maintain-Formation, Avoid-Obstacle-
Proximity, and Avoid-Leader-Zone, respectively.

Move-to-Goal
The Move-to-Goal motor schema behavior enables basic goal following. A high-level

planner provides a coordinate B as an input to the Move-to-Goal behavior. The behavior
then publishes the coordinates as the target goal. For our autonomous convoy following

Figure 8. A simplified example of a Keep-Standoff-Distance perceptual schema behavior: (a) the
world state, with the autonomous vehicle in the center, and an obstacle being detected in the upper
right-hand corner; (b) costmap with LiDAR readings; (c) final behavioral costmap, with the perceptual
schema increasing the costs in the area directly around the obstacle.

Behavior Manager motor schemas produce target goals, expressed as two-dimensional
Cartesian coordinates T, based on the requirements of the behavior. For example, Figure 9
shows two different notional motor schema behaviors. Figure 9a represents a Stay-on-Road
behavior. The target goal produced, represented by the star, causes the vehicle to stay on
the road. Figure 9b on the other hand, represents a Follow-Leader behavior, with the leader
being represented by a dog on the grass. The target goal produced directs the vehicle
towards the leader. Each motor schema has a gain that it assigns to the goal that it produces.
The goals and associated gains are utilized by the Behavior Manager to determine the final
goal point for path planning.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 26

Figure 8. A simplified example of a Keep-Standoff-Distance perceptual schema behavior: (a) the
world state, with the autonomous vehicle in the center, and an obstacle being detected in the upper
right-hand corner; (b) costmap with LiDAR readings; (c) final behavioral costmap, with the
perceptual schema increasing the costs in the area directly around the obstacle.

Behavior Manager motor schemas produce target goals, expressed as two-
dimensional Cartesian coordinates T, based on the requirements of the behavior. For
example, Figure 9 shows two different notional motor schema behaviors. Figure 9a
represents a Stay-on-Road behavior. The target goal produced, represented by the star,
causes the vehicle to stay on the road. Figure 9b on the other hand, represents a Follow-
Leader behavior, with the leader being represented by a dog on the grass. The target goal
produced directs the vehicle towards the leader. Each motor schema has a gain that it
assigns to the goal that it produces. The goals and associated gains are utilized by the
Behavior Manager to determine the final goal point for path planning.

Figure 9. Two examples of motor schema behaviors: (a) Stay-of-Path; (b) Follow-Leader.

In the development of our autonomous convoy system, we created four behaviors to
allow for leader following in the presence of jams: two motor schemas and two perceptual
schemas. The behaviors are Move-to-Goal, Maintain-Formation, Avoid-Obstacle-
Proximity, and Avoid-Leader-Zone, respectively.

Move-to-Goal
The Move-to-Goal motor schema behavior enables basic goal following. A high-level

planner provides a coordinate B as an input to the Move-to-Goal behavior. The behavior
then publishes the coordinates as the target goal. For our autonomous convoy following

Figure 9. Two examples of motor schema behaviors: (a) Stay-of-Path; (b) Follow-Leader.

In the development of our autonomous convoy system, we created four behaviors to
allow for leader following in the presence of jams: two motor schemas and two perceptual
schemas. The behaviors are Move-to-Goal, Maintain-Formation, Avoid-Obstacle-Proximity,
and Avoid-Leader-Zone, respectively.

Move-to-Goal

The Move-to-Goal motor schema behavior enables basic goal following. A high-level
planner provides a coordinate B as an input to the Move-to-Goal behavior. The behavior
then publishes the coordinates as the target goal. For our autonomous convoy following

Appl. Sci. 2022, 12, 9863 14 of 25

system, Move-to-Goal is used by the vehicles to move towards GPS breadcrumbs provided
by their respective leaders for a PF convoy approach as follows:

T = B, (1)

where new GPS breadcrumb B coordinates are provided periodically.

Maintain-Formation

The Maintain-Formation motor schema behavior mitigates the effects of jamming
attacks on autonomous convoy following by generating target goals T that are not depen-
dent on a leader’s GPS coordinates. Instead, the behavior uses the density-based spatial
clustering of applications with noise (DBSCAN) algorithm to find a target goal nearest to
the last known valid goal and to continue convoy operations during jamming attacks.

DBSCAN is a non-parametric clustering algorithm that, when given a set of points,
groups together points that are closely packed together into different clusters [41]. In
the Maintain-Formation behavior, the points provided are from the behavioral costmaps
generated by the Avoid-Obstacle-Proximity perceptual schema. For every cluster identified,
the center of mass for each cluster is calculated for comparison to the last known valid T
coordinates. To find the center of mass Ci, where C are the coordinates of the center of mass
for cluster I, and i = 1, . . . , n clusters, we considered each cluster as a system of weighted
particles Pj, where j = 1, . . . , n. The coordinates for each particle were given by the costmap
cell coordinates cj, with the mass mj for each particle being defined as the cost for each
given coordinate. The formula for Ci is as follows:

Ci =
1

Mi
∑n

j=1 mjcj, (2)

where Mi is the total cost of all the cluster points in cluster i, given by:

Mi = ∑n
j=1 mj. (3)

When the autonomous vehicle fails to receive a GPS breadcrumb coordinate B, the
Behavior Manager determines that a denial-of-service attack is occurring and that com-
munications with the rest of the convoy have been disrupted. The Maintain-Formation
behavior will then find the Ci nearest to the last valid target goal T, and set that as T. This
process is repeated until a new valid B is provided, as shown in Algorithm 1.

Algorithm 1 Maintain-Formation

1: if no B received from leader
2: Ci = center of mass of clusters 1, . . . , n from DBSCAN(costmap)
3: temp_distance = high value placeholder
4: for i = 1, . . . , n
5: cluster_distance = distance between T and Ci
6: if cluster_distance < temp_distance
7: T = Ci
8: temp_distance = cluster_distance
9: end if
10: next i
11: end if

Avoid-Obstacle-Proximity

The Avoid-Obstacle-Proximity perceptual schema behavior produces a behavioral
costmap that includes costs for objects detected by LiDAR, along with a buffer zone of
costs around the objects, in which the cost of the cell decreases as the distance from the
object increases, up to a preset radius. The implementation of the buffer zone leverages

Appl. Sci. 2022, 12, 9863 15 of 25

the inflation layer provided by the ROS Navigation stack [42], which assigns a cost around
objects with the following formula:

cost = e(−1×s×(d−r))(o− 1), (4)

where s is a cost scaling factor, d is the distance from the obstacle, r is the robot’s radius,
and o is the cost to assign a cell that falls within the robot’s radius. Refer to Figure 10
for an example of how the buffer zone inflation is represented on a costmap. The buffer
zone provided by the Avoid-Obstacle-Proximity behavior helps to prevent the vehicle from
getting too close to obstacles, decreasing the chances of collisions.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 26

the inflation layer provided by the ROS Navigation stack [42], which assigns a cost around
objects with the following formula: 𝑐𝑜𝑠𝑡 = 𝑒ሺെ1 ൈ 𝑠 ൈ ሺ𝑑 െ 𝑟ሻሻሺ𝑜 െ 1ሻ, (4)

where s is a cost scaling factor, d is the distance from the obstacle, r is the robot’s radius,
and o is the cost to assign a cell that falls within the robot’s radius. Refer to Figure 10 for
an example of how the buffer zone inflation is represented on a costmap. The buffer zone
provided by the Avoid-Obstacle-Proximity behavior helps to prevent the vehicle from
getting too close to obstacles, decreasing the chances of collisions.

Figure 10. Costmap inflation in the Avoid-Obstacle-Proximity behavior: (a) the costmap produced
from LiDAR sensing a construction cone; (b) the costmap produced from creating a buffer zone of
inflated costs around the construction cone.

Avoid-Leader-Zone
The Avoid-Leader-Zone perceptual schema behavior produces a behavioral costmap

that inserts a high-cost ring of a preset radius around a robot’s leader. This ring creates a
zone around the leader that the follower vehicles will not enter, in effect enforcing a
following distance between the vehicles. To do this, the behavior takes the position of its
leader as an input. If network communications are available, the position is provided
wirelessly by the lead vehicle. If the convoy is under a jamming attack, the target goal T,
as provided by the Maintain-Formation behavior is used instead. The costmap
coordinates that comprise the ring are calculated using basic trigonometric functions to
obtaining coordinates of a scaled unit circle with an offset center, as follows: 𝑥௜ = 𝑓𝑙𝑜𝑜𝑟 ቀ௔௙ 𝑐𝑜𝑠 𝑐𝑜𝑠 ቀ ௜௡ 2𝜋ቁ ቁ ൅ 𝑙௫, (5) 𝑦௜ = 𝑓𝑙𝑜𝑜𝑟 ቀ௔௙ 𝑠𝑖𝑛 𝑠𝑖𝑛 ቀ ௜௡ 2𝜋ቁ ቁ ൅ 𝑙௬, (6)

where [xi, yi] are costmap indices for each point in the ring; i = 1, …, n costmap cells, with
n representing the number of total number costmap cells the ring should contain; a is the
radius of the leader’s following distance zone; f is the costmap cell resolution; and [lx, ly]
is the costmap index of the leader. Figure 11 shows a robot and the leader zone produced
by the Avoid-Leader-Zone behavior.

Figure 10. Costmap inflation in the Avoid-Obstacle-Proximity behavior: (a) the costmap produced
from LiDAR sensing a construction cone; (b) the costmap produced from creating a buffer zone of
inflated costs around the construction cone.

Avoid-Leader-Zone

The Avoid-Leader-Zone perceptual schema behavior produces a behavioral costmap
that inserts a high-cost ring of a preset radius around a robot’s leader. This ring creates
a zone around the leader that the follower vehicles will not enter, in effect enforcing a
following distance between the vehicles. To do this, the behavior takes the position of
its leader as an input. If network communications are available, the position is provided
wirelessly by the lead vehicle. If the convoy is under a jamming attack, the target goal T, as
provided by the Maintain-Formation behavior is used instead. The costmap coordinates
that comprise the ring are calculated using basic trigonometric functions to obtaining
coordinates of a scaled unit circle with an offset center, as follows:

xi = f loor
(

a
f

coscos
(

i
n

2π

))
+ lx, (5)

yi = f loor
(

a
f

sinsin
(

i
n

2π

))
+ ly, (6)

where [xi, yi] are costmap indices for each point in the ring; i = 1, . . . , n costmap cells, with
n representing the number of total number costmap cells the ring should contain; a is the
radius of the leader’s following distance zone; f is the costmap cell resolution; and [lx, ly] is
the costmap index of the leader. Figure 11 shows a robot and the leader zone produced by
the Avoid-Leader-Zone behavior.

Appl. Sci. 2022, 12, 9863 16 of 25Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 26

Figure 11. Behavioral costmap created by the Avoid-Leader-Zone perceptual schema behavior.

3.3.3. Assemblages
At a basic level, assemblages are the complex tasks that the robot is trying to

accomplish. The assemblages are composed of multiple concurrently running behaviors.
The behaviors can be classified as motor schemas, which produce goals to generate motor
responses, or perceptual schemas, which generate behavioral costmaps. The behavioral
costmaps are used by the motor schema behaviors in goal generation and by the
assemblage for navigation. The assemblage acts as a coordinator of the behaviors,
weighing and combining them as appropriate for the task at hand. Figure 12 shows the
architecture of an assemblage.

Figure 12. Architecture of an assemblage.

For our effort, we utilized the behaviors described above and developed a Follow-
Leader-with-Jam-Mitigation (FLJM) assemblage that performs autonomous convoying
with jam mitigation techniques. The architecture of the assemblage and the associated
behaviors can be seen in Figure 13.

Figure 11. Behavioral costmap created by the Avoid-Leader-Zone perceptual schema behavior.

3.3.3. Assemblages

At a basic level, assemblages are the complex tasks that the robot is trying to accom-
plish. The assemblages are composed of multiple concurrently running behaviors. The
behaviors can be classified as motor schemas, which produce goals to generate motor
responses, or perceptual schemas, which generate behavioral costmaps. The behavioral
costmaps are used by the motor schema behaviors in goal generation and by the assem-
blage for navigation. The assemblage acts as a coordinator of the behaviors, weighing and
combining them as appropriate for the task at hand. Figure 12 shows the architecture of an
assemblage.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 26

Figure 11. Behavioral costmap created by the Avoid-Leader-Zone perceptual schema behavior.

3.3.3. Assemblages
At a basic level, assemblages are the complex tasks that the robot is trying to

accomplish. The assemblages are composed of multiple concurrently running behaviors.
The behaviors can be classified as motor schemas, which produce goals to generate motor
responses, or perceptual schemas, which generate behavioral costmaps. The behavioral
costmaps are used by the motor schema behaviors in goal generation and by the
assemblage for navigation. The assemblage acts as a coordinator of the behaviors,
weighing and combining them as appropriate for the task at hand. Figure 12 shows the
architecture of an assemblage.

Figure 12. Architecture of an assemblage.

For our effort, we utilized the behaviors described above and developed a Follow-
Leader-with-Jam-Mitigation (FLJM) assemblage that performs autonomous convoying
with jam mitigation techniques. The architecture of the assemblage and the associated
behaviors can be seen in Figure 13.

Figure 12. Architecture of an assemblage.

For our effort, we utilized the behaviors described above and developed a Follow-
Leader-with-Jam-Mitigation (FLJM) assemblage that performs autonomous convoying with
jam mitigation techniques. The architecture of the assemblage and the associated behaviors
can be seen in Figure 13.

Appl. Sci. 2022, 12, 9863 17 of 25Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 26

Figure 13. Architecture of the Follow-Leader-with-Jam-Mitigation assemblage.

The basic task of the FLJM assemblage is to perform leader following. An
autonomous vehicle running the assemblage will take an assigned leader and await
waypoints from them to follow. If the vehicle’s network communications are unavailable,
either due to a system failure or a denial-of-service attack, it will continue following the
moving cluster of costmap points nearest to the last valid waypoint. Once network
communications and waypoints are available again, the assemblage will revert to
following waypoints. As with all assemblages, the FLJM assemblage is responsible for
goal and behavioral costmap combination/selection for all the behaviors. The costmap
gains for Avoid-Obstacle-Proximity and Avoid-Leader-Zone are set to be equal, meaning
that combining their behavioral costmaps is conducted through addition. Essentially, the
costmaps are stacked on top of each other and the sum cost of every cell forms the master
costmap. For goal combination, a selection method is utilized. If the system detects valid
waypoints from network communications, the T provided by Move-to-Goal is used,
allowing for waypoint following. If no network communications are received, the T
provided by Maintain-Formation is used until network communications are restored and
waypoints are provided again. Figure 14 characterizes the interactions between behaviors
and waypoint transmissions through the network.

Figure 14. Architecture of the Follow-Leader-with-Jam-Mitigation assemblage.

Figure 13. Architecture of the Follow-Leader-with-Jam-Mitigation assemblage.

The basic task of the FLJM assemblage is to perform leader following. An autonomous
vehicle running the assemblage will take an assigned leader and await waypoints from them
to follow. If the vehicle’s network communications are unavailable, either due to a system
failure or a denial-of-service attack, it will continue following the moving cluster of costmap
points nearest to the last valid waypoint. Once network communications and waypoints are
available again, the assemblage will revert to following waypoints. As with all assemblages,
the FLJM assemblage is responsible for goal and behavioral costmap combination/selection
for all the behaviors. The costmap gains for Avoid-Obstacle-Proximity and Avoid-Leader-
Zone are set to be equal, meaning that combining their behavioral costmaps is conducted
through addition. Essentially, the costmaps are stacked on top of each other and the sum
cost of every cell forms the master costmap. For goal combination, a selection method
is utilized. If the system detects valid waypoints from network communications, the
T provided by Move-to-Goal is used, allowing for waypoint following. If no network
communications are received, the T provided by Maintain-Formation is used until network
communications are restored and waypoints are provided again. Figure 14 characterizes
the interactions between behaviors and waypoint transmissions through the network.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 26

Figure 13. Architecture of the Follow-Leader-with-Jam-Mitigation assemblage.

The basic task of the FLJM assemblage is to perform leader following. An
autonomous vehicle running the assemblage will take an assigned leader and await
waypoints from them to follow. If the vehicle’s network communications are unavailable,
either due to a system failure or a denial-of-service attack, it will continue following the
moving cluster of costmap points nearest to the last valid waypoint. Once network
communications and waypoints are available again, the assemblage will revert to
following waypoints. As with all assemblages, the FLJM assemblage is responsible for
goal and behavioral costmap combination/selection for all the behaviors. The costmap
gains for Avoid-Obstacle-Proximity and Avoid-Leader-Zone are set to be equal, meaning
that combining their behavioral costmaps is conducted through addition. Essentially, the
costmaps are stacked on top of each other and the sum cost of every cell forms the master
costmap. For goal combination, a selection method is utilized. If the system detects valid
waypoints from network communications, the T provided by Move-to-Goal is used,
allowing for waypoint following. If no network communications are received, the T
provided by Maintain-Formation is used until network communications are restored and
waypoints are provided again. Figure 14 characterizes the interactions between behaviors
and waypoint transmissions through the network.

Figure 14. Architecture of the Follow-Leader-with-Jam-Mitigation assemblage.

Figure 14. Architecture of the Follow-Leader-with-Jam-Mitigation assemblage.

Appl. Sci. 2022, 12, 9863 18 of 25

3.3.4. Path Planning

A key difference between the Behavior Manager and the traditional Motor Schema
approach is how motor responses are generated and acted upon. While the Motor Schema
approach uses potential field response vectors and navigation, the Behavior Manager
leverages layered costmaps with Vector Field Histogram (VFH) path planning. VFH is a
path planning technique that was developed specifically to address the inherent limitations
of potential field methods, such as U-shaped obstacle traps, oscillation in narrow corridors,
or the inability to pass between closely spaced objects [43]. The VFH method represents
the obstacles around a robot with certainty values in a Cartesian histogram grid. Data
reduction over the histogram grid reduces it to a polar histogram of angular sectors around
the robot with associated polar obstacle densities. Based on the desired goal and polar
obstacle densities, drive and steering commands are given that best avoid obstacles while
making progress towards the goal [44]. VFH was chosen as our path planning technique
because of the aforementioned histogram grid. By using the combined layered behavioral
costmap as the histogram grid, we naturally integrated costmap-based perceptual schemas
with path planning, thereby avoiding potential field methods and their pitfalls.

3.4. Experimental Setup

To test the efficacy of the FLJM assemblage, we compared its performance to that of
a basic convoy controller in a Gazebo simulation environment. The Gazebo world used
in the experiment contained a flat ground pane without terrain or obstacles and a three-
vehicle convoy of Cleapath Husky robots, a four-wheel skid-steer robotic vehicle. The setup
was kept minimal to reduce the variables present when testing convoy performance. For
the basic convoy controller, we implemented a leader-follower controller that performed
“delayed following” with a predecessor-leader following network topology. In a “delayed
following” approach, a lead vehicle records the path it drove and relays that information to
followers to repeat after some time delay [45]. This approach is recognized as a common
leader-follower convoying method [46], making it the ideal baseline for comparison.

The high-level autonomous convoy setup was kept consistent between the basic
convoy controller and the FLJM assemblage for an accurate comparison. In both cases,
the autonomous convoy was FA and consisted of three vehicles: one convoy leader that
drove along preset path plans, and two autonomous followers. The convoy leader precisely
followed through given path points, allowing for repeatability in test runs, resulting
in better comparisons between the basic convoy controller and the FLJM assemblage.
Both unmanned followers would be running either the basic convoy controller or FLJM
assemblage to perform autonomous following, depending on which system was being
tested at the time. Each vehicle recorded GPS breadcrumbs of its position that it transmitted
to its direct follower when wireless network communications were available.

The two preset path plans created for the test runs were a square loop and a roundabout
turn, as seen in Figure 15. These paths were chosen to mimic common road formations
and driving maneuvers. The square loop tests basic turns, while the roundabout tests
the intersections of the same name. In addition, jamming zones were established along
the paths to simulate the effects of denial-of-service attacks on the autonomous convoy.
Figure 16 overlays the jamming zones along the paths.

To comparatively test the performance of the convoy controllers, multiple test runs
with the three vehicle convoy were performed for each jammed path shown in Figure 16.
Ahead of each test run, the autonomous followers were configured to use either the basic
convoy controller or the FLJM assemblage. Five runs were performed under constant
jamming, and an additional five runs were performed under random jamming, with tJ,
and tS set to 10 s and 2 s, respectively. Both the basic convoy controller and the FLJM
assemblage were tested in this fashion for each path plan.

Appl. Sci. 2022, 12, 9863 19 of 25
Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 26

Figure 15. The preset path plans for the lead vehicle: (a) square loop and (b) roundabout.

Figure 16. Jamming zones overlaid onto the preset plans for the lead vehicle: (a) square loop and (b)
roundabout.

To comparatively test the performance of the convoy controllers, multiple test runs
with the three vehicle convoy were performed for each jammed path shown in Figure 16.
Ahead of each test run, the autonomous followers were configured to use either the basic
convoy controller or the FLJM assemblage. Five runs were performed under constant
jamming, and an additional five runs were performed under random jamming, with tJ,
and tS set to 10 s and 2 s, respectively. Both the basic convoy controller and the FLJM
assemblage were tested in this fashion for each path plan.

4. Results
To measure the performance of the convoy controllers, we calculated the mean

absolute error (MAE) between the follower vehicles’ path and the convoy leader’s path.
The MAE was chosen as the measurement for evaluation as it has a direct interpretation
to the real-world quantities being compared, namely the Euclidian distances between
follower points and convoy leader points, in addition to not inflating the penalty for larger
errors via squaring, which occurs in other commonly used performance measurements
such as root mean squared error [47]. The paths of both the followers and the convoy
leader were sampled at a rate of 1000 Hz, respectively creating arrays of position points

Figure 15. The preset path plans for the lead vehicle: (a) square loop and (b) roundabout.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 26

Figure 15. The preset path plans for the lead vehicle: (a) square loop and (b) roundabout.

Figure 16. Jamming zones overlaid onto the preset plans for the lead vehicle: (a) square loop and (b)
roundabout.

To comparatively test the performance of the convoy controllers, multiple test runs
with the three vehicle convoy were performed for each jammed path shown in Figure 16.
Ahead of each test run, the autonomous followers were configured to use either the basic
convoy controller or the FLJM assemblage. Five runs were performed under constant
jamming, and an additional five runs were performed under random jamming, with tJ,
and tS set to 10 s and 2 s, respectively. Both the basic convoy controller and the FLJM
assemblage were tested in this fashion for each path plan.

4. Results
To measure the performance of the convoy controllers, we calculated the mean

absolute error (MAE) between the follower vehicles’ path and the convoy leader’s path.
The MAE was chosen as the measurement for evaluation as it has a direct interpretation
to the real-world quantities being compared, namely the Euclidian distances between
follower points and convoy leader points, in addition to not inflating the penalty for larger
errors via squaring, which occurs in other commonly used performance measurements
such as root mean squared error [47]. The paths of both the followers and the convoy
leader were sampled at a rate of 1000 Hz, respectively creating arrays of position points

Figure 16. Jamming zones overlaid onto the preset plans for the lead vehicle: (a) square loop and
(b) roundabout.

4. Results

To measure the performance of the convoy controllers, we calculated the mean absolute
error (MAE) between the follower vehicles’ path and the convoy leader’s path. The MAE
was chosen as the measurement for evaluation as it has a direct interpretation to the real-
world quantities being compared, namely the Euclidian distances between follower points
and convoy leader points, in addition to not inflating the penalty for larger errors via
squaring, which occurs in other commonly used performance measurements such as root
mean squared error [47]. The paths of both the followers and the convoy leader were
sampled at a rate of 1000 Hz, respectively creating arrays of position points for each vehicle.
The Euclidean distance between the follower position points and corresponding convoy
leader positions points were then used to calculate the MAE with the following formula:

MAE =
∑n

i=1|ei|
n

, (7)

where e is the Euclidean distance between the follower and convoy leader position points,
and i = 1, . . . , n, where n is the size of the array e. Table 3 shows the average MAE over five
runs for each convoy controller for both the square path and roundabout path when under
a constant jamming attack. Figure 17 shows the paths of the five runs taken by the followers,
overlaid on the convoy leader’s goal points for a visual comparison of performance.

Appl. Sci. 2022, 12, 9863 20 of 25

Table 3. Average MAE under a constant jamming attack.

Convoy Configuration Square (m) Roundabout (m)

Follower 1 Using Basic Convoy Controller 1.2665 3.1334
Follower 2 Using Basic Convoy Controller 1.9226 3.5205

Follower 1 Using FLJM assemblage 0.4942 0.4197
Follower 2 Using FLJM assemblage 0.7321 0.8452

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 26

for each vehicle. The Euclidean distance between the follower position points and
corresponding convoy leader positions points were then used to calculate the MAE with
the following formula: MAE = ∑೙೔సభ |௘೔|௡ , (7)

where e is the Euclidean distance between the follower and convoy leader position points,
and i = 1, …, n, where n is the size of the array e. Table 3 shows the average MAE over five
runs for each convoy controller for both the square path and roundabout path when under
a constant jamming attack. Figure 17 shows the paths of the five runs taken by the
followers, overlaid on the convoy leader’s goal points for a visual comparison of
performance.

Table 3. Average MAE under a constant jamming attack.

Convoy Configuration Square (m) Roundabout (m)
Follower 1 Using Basic Convoy Controller 1.2665 3.1334
Follower 2 Using Basic Convoy Controller 1.9226 3.5205

Follower 1 Using FLJM assemblage 0.4942 0.4197
Follower 2 Using FLJM assemblage 0.7321 0.8452

Figure 17. Plot of the paths taken by the followers under constant jamming on the square path for
(a) follower 1 and (b) follower 2; and on the roundabout path for (c) follower 1 and (d) follower 2.

Likewise, Table 4 shows the average MAE while under a random jamming attack
with tJ, and tS set to 10 s and 2 s, while Figure 18 shows the paths taken for the five runs
by the followers, overlaid on the convoy leader’s goal points for a visual comparison of
performance.

Figure 17. Plot of the paths taken by the followers under constant jamming on the square path for
(a) follower 1 and (b) follower 2; and on the roundabout path for (c) follower 1 and (d) follower 2.

Likewise, Table 4 shows the average MAE while under a random jamming attack
with tJ, and tS set to 10 s and 2 s, while Figure 18 shows the paths taken for the five runs
by the followers, overlaid on the convoy leader’s goal points for a visual comparison of
performance.

Table 4. Average MAE under a random jamming attack.

Convoy Configuration Square (m) Roundabout (m)

Follower 1 Using Basic Convoy Controller 0.6844 1.2637
Follower 2 Using Basic Convoy Controller 1.0028 1.0697

Follower 1 Using FLJM assemblage 0.4680 0.4821
Follower 2 Using FLJM assemblage 0.7654 0.9271

Appl. Sci. 2022, 12, 9863 21 of 25

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 26

Table 4. Average MAE under a random jamming attack.

Convoy Configuration Square (m) Roundabout (m)
Follower 1 Using Basic Convoy Controller 0.6844 1.2637
Follower 2 Using Basic Convoy Controller 1.0028 1.0697

Follower 1 Using FLJM assemblage 0.4680 0.4821
Follower 2 Using FLJM assemblage 0.7654 0.9271

Figure 18. Plot of the paths taken by the followers under random jamming on the square path for
(a) follower 1 and (b) follower 2; and on the roundabout path for (c) follower 1 and (d) follower 2.

As seen in Table 3, the utilization of the FLJM assemblage significantly improved
convoy performance across both path plans when compared to the basic convoy controller
under constant jamming. When following the squared loop path, using the FLJM
assemblage decreased the average MAE by 60.98% for follower 1 and 61.92% for follower
2. The improvement was even more drastic with the roundabout path, where the average
MAE was decreased by 86.61% and 75.99% for follower 1 and follower 2, respectively.
These significant improvements were due to the basic convoy controller missing turns
that the convoy leader performed in the jamming zones laid out in yellow in Figure 16.
As seen in Figure 17, the FLJM assemblage allowed the followers to successfully continue
leader-following inside the constant jamming zones, whereas the stoppage of
communications prevented the followers from getting proper waypoints when relying
solely on basic delayed following.

As seen in Table 4, the utilization of the FLJM assemblage also improved convoy
performance across both path plans when compared to the basic convoy controller under
random jamming. When following the squared loop path, using the FLJM assemblage
decreased the average MAE by 31.62% for follower 1 and 23.67% for follower 2.
Improvement was exhibited with the roundabout path as well, where the average MAE
was decreased by 61.85% and 13.33% for follower 1 and follower 2, respectively.

Figure 18. Plot of the paths taken by the followers under random jamming on the square path for
(a) follower 1 and (b) follower 2; and on the roundabout path for (c) follower 1 and (d) follower 2.

As seen in Table 3, the utilization of the FLJM assemblage significantly improved
convoy performance across both path plans when compared to the basic convoy controller
under constant jamming. When following the squared loop path, using the FLJM assem-
blage decreased the average MAE by 60.98% for follower 1 and 61.92% for follower 2.
The improvement was even more drastic with the roundabout path, where the average
MAE was decreased by 86.61% and 75.99% for follower 1 and follower 2, respectively.
These significant improvements were due to the basic convoy controller missing turns that
the convoy leader performed in the jamming zones laid out in yellow in Figure 16. As
seen in Figure 17, the FLJM assemblage allowed the followers to successfully continue
leader-following inside the constant jamming zones, whereas the stoppage of communica-
tions prevented the followers from getting proper waypoints when relying solely on basic
delayed following.

As seen in Table 4, the utilization of the FLJM assemblage also improved convoy
performance across both path plans when compared to the basic convoy controller under
random jamming. When following the squared loop path, using the FLJM assemblage de-
creased the average MAE by 31.62% for follower 1 and 23.67% for follower 2. Improvement
was exhibited with the roundabout path as well, where the average MAE was decreased by
61.85% and 13.33% for follower 1 and follower 2, respectively.

While the utilization of the FLJM assemblage yielded similar performance across both
the constant and random jammers, the performance improvements when compared to
the basic convoy controller were less significant under random jamming attacks. This is
due to the nature of random jammers, which alternate between a jamming and sleeping
state. Rather than missing all the convoy leader’s waypoints in a jamming zone, as in
the case of constant jamming, the follower vehicles would periodically receive network
transmissions from the jamming zone under random jamming, allowing for occasional
transmission of waypoints inside the jammed area. This can be seen when comparing the

Appl. Sci. 2022, 12, 9863 22 of 25

basic convoy controller paths in Figures 17 and 18. In Figure 17, the basic convoy controller
followers stop outside of the jamming zones and only restart following when the convoy
leader exits the constant jamming zone. In Figure 18 however, the followers are able to
break into the random jamming zone and follow the occasional waypoints they receive
when the jammer is sleeping. These results demonstrate that the value of using jamming
mitigation techniques increases accordingly with the severity of the jamming attack. As
previously stated, constant jamming is considered the worst-case jamming scenario with
the most damaging impact, so the potential benefits afforded by using the FLJM assemblage
is greater when compared to a random jamming attack, as seen in the experimental results
described here.

While the results described here were focused on the constant and random jammer
attack model developed for this effort, the performance benefits provided by the FLJM
assemblage would be realized even when applied to other attacker models. Various other
attacker models have focused on reactive jammers with assumptions of global eavesdrop-
ping, zero-delay jamming startup, and unbounded frequency jamming [9,48]. With these
attacker models, the FLJM assemblage performance would match that of our constant
jammer, given that the reactive jamming occurs instantaneously when entering the jammed
areas and disrupts all communications, which closely aligns with our model for constant
jamming. Other attacker models have additional parameters for their reactive jammers,
such as jamming range, triggering range, and multiple jammer nodes, but they make the
same uniform power and omnidirectionality of jamming assumptions we made in our
model, resulting in the same cylindrical jamming zones [28]. While the notion of multiple
jamming zones introduces coverage areas of different shapes due to overlapping cylinders,
the performance improvements from using the FLJM assemblage will remain due to the
reactive jammer closely aligning with our constant jamming model. In addition, other at-
tacker models have focused on more dynamic jamming scenarios, such as the jammer being
embedded in one of the convoy’s follower vehicles [7]. In this attacker model, a follower
vehicle in a convoy would switch from a standard network node into a uniform power
mobile jammer that prevented messages from arriving at their destination. Assuming the
mobile jammer continues following its leader to disguise its adversarial nature, the FLJM
assemblage would once again allow for continued convoy operations. In this scenario,
the jammed vehicles would remain in the Maintain-Formation behavior for as long as the
mobile jammer was activated and switch back to Move-to-Goal upon the deactivation of
the jammer. Convoy operations would continue for all vehicles in the convoy. As described
in these examples, the benefits of utilizing the FLJM assemblage are generally applicable
and has the potential to improve the performance and robustness of autonomous vehicle
convoys against a wide range of jamming attacks.

5. Discussion

Jamming attacks are a simple, yet effective type of denial-of-service attack that have
the potential to adversely degrade the performance of autonomous convoys. While many
efforts have been undertaken to detect the presence of jams, we focused our efforts on
finding ways to mitigate a jammer’s effects to allow for continued convoy operation. The
prevalence of behavior-based robotics approaches in multi-vehicle teaming made it a prime
starting point for developing an approach to allow convoy following when confronted with
jamming, and lead to the development of the Behavior Manager.

By utilizing the Behavior Manager and creating behaviors and assemblages to mitigate
the effects of jamming, we were able to show improved convoy performance with up to
an 86.61% reduction in average MAE. This demonstrates that a behavior-based robotics
approach can be leveraged to dramatically improve the robustness of autonomous convoys
when faced with jamming attacks. Furthermore, the modular nature of the Behavior
Manager means that the capabilities can be extended to mitigate the effects of other types
of attacks, such as LiDAR spoofing, replay attacks, and RADAR absorption [49], through
the development of additional behaviors and assemblages.

Appl. Sci. 2022, 12, 9863 23 of 25

A potential future area of research on the usage of behavior-based robotics towards
mitigating the effects of attacks is dynamic behavioral weighting. While the usage of
Q-learning towards behavior selection has been researched in the past [50], the application
of modern learning techniques, such as deep reinforcement learning, towards multi-robot
attack mitigation is a novel area that warrants further investigation. By training on datasets
that demonstrate human reactions to attacks on manned convoys, the robustness of au-
tonomous convoy systems utilizing behavior-based robotics could be greatly improved on,
creating even more stable systems able to handle a broad spectrum of attacks.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, in-
vestigation, resources, data curation, writing—original draft preparation, visualization, project
administration: C.C.; writing—review and editing, supervision, funding acquisition: A.M. and S.R.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Murphy, T.J. Convoy Operations in Afghanistan Handbook; U. S. Army Combined Arms Center: Fort Leavenworth, KS, USA, 2010.
2. Cheung, C.; Mohammadi, A.; Rawashdeh, S.; Baek, S. Delivery of Healthcare Resources Using Autonomous Ground Vehicle

Convoy Systems: An Overview. Front. Robot. AI 2021, 8, 250. [CrossRef]
3. Nahavandi, S.; Mohamed, S.; Hossain, I.; Nahavandi, D.; Salaken, S.M.; Rokonuzzaman, M.; Ayoub, R.; Smith, R. Autonomous

Convoying: A Survey on Current Research and Development. IEEE Access 2022, 10, 13663–13683. [CrossRef]
4. McKay, S.; Boyer, M.E.; Beyene, N.M. Automating Army Convoys: Technical and Tactical Risks and Opportunities; RAND: Santa

Monica, CA, USA, 2020.
5. Llatser, I.; Festag, A.; Fettweis, G. Vehicular Communication Performance in Convoys of Automated Vehicles. In Proceedings of

the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016.
6. Lopes, H.J.; Lima, D.A. Cellular Automata in path planning navigation control applied in surveillance task using the e-Puck

architecture. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON,
Canada, 11–14 October 2020.

7. van der Heijden, R.; Lukaseder, T.; Kargl, F. Analyzing Attacks on Cooperative Adaptive Cruise Control (CACC). In Proceedings
of the 2017 IEEE Vehicular Networking Conference (VNC), Turin, Italy, 27–29 November 2017.

8. Malebary, S. Real-Time Jamming Detection in Vehicular Network. Int. J. Sci. Res. Innov. Technol. 2016, 3, 159–166.
9. Sciancalepore, S.; Di Pietro, R. Bittransfer: Mitigating Reactive Jamming in Electronic Warfare Scenarios. IEEE Access 2019, 7,

156175–156190. [CrossRef]
10. Xu, W.; Trappe, W.; Zhang, Y.; Wood, T. The Feasibility of Launching and Detecting Jamming Attacks in Wireless Networks. In

Proceedings of the 6th ACM International Symposium on Mobile ad Hoc Networking and Computing-MobiHoc ‘05, Champaign,
IL, USA, 25–27 May 2005.

11. Alturkostani, H.; Chitrakar, A.; Rinker, R.; Krings, A. On the Design of Jamming-Aware Safety Applications in VANETs. In
Proceedings of the 10th Annual Cyber and Information Security Research Conference, Oak Ridge, TN, USA, 7–9 April 2015.

12. Serageldin, A.; Alturkostani, H.; Krings, A. On the Reliability of DSRC Safety Applications: A Case of Jamming. In Proceedings
of the 2013 International Conference on Connected Vehicles and Expo (ICCVE), Las Vegas, NV, USA, 2–6 December 2013.

13. Serageldin, A.; Krings, A. The Impact of Dissimilarity and Redundancy on the Reliability of DSRC Safety Applications. In
Proceedings of the 2014 28th International Conference on Advanced Information Networking and Applications Workshops,
Victoria, BC, Canada, 13–16 May 2014.

14. Hu, Y.; Shan, H.; Dutta, R.G.; Jin, Y. Protecting Platoons from Stealthy Jamming Attack. In Proceedings of the 2020 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST), Kolkata, India, 15–17 December 2020.

15. Gong, T.; Yu, Y.; Song, J. Path Planning for Multiple Unmanned Vehicles (Muvs) Formation Shape Generation Based on Dual RRT
Optimization. Actuators 2022, 11, 190. [CrossRef]

16. Yunhe, L.; Bo, L.; Xiaowei, N. Research on Self-Organizing Behavior-Based UAV Formation Based on Distributed Control.
In Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, Vancouver, BC, Canada, 26–28
August 2019.

http://doi.org/10.3389/frobt.2021.611978
http://doi.org/10.1109/ACCESS.2022.3147251
http://doi.org/10.1109/ACCESS.2019.2949716
http://doi.org/10.3390/act11070190

Appl. Sci. 2022, 12, 9863 24 of 25

17. Jond, H.B.; Sadreddini, Z.; Platoš, J. Autonomous Vehicle Convoy Formation Control with Size/Shape Switching for Automated
Highways. Int. J. Eng. 2020, 33, 2174–2180.

18. Balch, T.; Arkin, R.C. Behavior-Based Formation Control for Multirobot Teams. IEEE Trans. Robot. Autom. 1998, 14, 926–939.
[CrossRef]

19. Lee, G.; Chwa, D. Decentralized Behavior-Based Formation Control of Multiple Robots Considering Obstacle Avoidance. Intell.
Serv. Robot. 2017, 11, 127–138. [CrossRef]

20. Pierpaoli, P.; Li, A.; Srinivasan, M.; Cai, X.; Coogan, S.; Egerstedt, M. A Sequential Composition Framework for Coordinating
Multirobot Behaviors. IEEE Trans. Robot. 2021, 37, 864–876. [CrossRef]

21. Zheng, Y.; Eben Li, S.; Wang, J.; Cao, D.; Li, K. Stability and Scalability of Homogeneous Vehicular Platoon: Study on the Influence
of Information Flow Topologies. IEEE Trans. Intell. Transp. Syst. 2016, 17, 14–26. [CrossRef]

22. Pelechrinis, K.; Iliofotou, M.; Krishnamurthy, S.V. Denial of Service Attacks in Wireless Networks: The Case of Jammers. IEEE
Commun. Surv. Tutor. 2011, 13, 245–257. [CrossRef]

23. Van Veen, B.D.; Buckley, K.M. Beamforming: A Versatile Approach to Spatial Filtering. IEEE ASSP Mag. 1988, 5, 4–24. [CrossRef]
24. Luo, G.Y. On-Line Wavelet Filtering of Narrowband Noise in Signal Detection of Spread Spectrum System for Location Tracking.

Int. J. Commun. Syst. 2011, 25, 598–615. [CrossRef]
25. Popper, C.; Strasser, M.; Capkun, S. Anti-Jamming Broadcast Communication Using Uncoordinated Spread Spectrum Techniques.

IEEE J. Sel. Areas Commun. 2010, 28, 703–715. [CrossRef]
26. Poisel, R. Modern Communications Jamming Principles and Techniques; Artech House: Boston, MA, USA, 2011.
27. Liu, Y.; Ning, P. Bittrickle: Defending against Broadband and High-Power Reactive Jamming Attacks. In Proceedings of the 2012

Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012.
28. Xuan, Y.; Shen, Y.; Nguyen, N.P.; Thai, M.T. A Trigger Identification Service for Defending Reactive Jammers in WSN. IEEE Trans.

Mob. Comput. 2012, 11, 793–806. [CrossRef]
29. Noubir, G. On Connectivity in Ad Hoc Networks under Jamming Using Directional Antennas and Mobility. In Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; pp. 186–200.
30. Brooks, R. A Robust Layered Control System for a Mobile Robot. IEEE J. Robot. Autom. 1986, 2, 14–23. [CrossRef]
31. Siciliano, B.; Khatib, O. (Eds.) Springer Handbook of Robotics; Springer International Publishing: Cham, Switzerland, 2016.
32. Arkin, R.C. Behavior-Based Robotics; MIT Press: Cambridge, MA, USA, 2000.
33. Arkin, R.C. Motor Schema—Based Mobile Robot Navigation. Int. J. Robot. Res. 1989, 8, 92–112. [CrossRef]
34. Kaelbling, L.P. An Architecture for Intelligent Reactive Systems. Reason. About Actions Plans 1987, 395–410. [CrossRef]
35. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A. ROS: An open-source Robot Operating System.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) Workshop on Open Source Robotics,
Kobe, Japan, 12–17 May 2009.

36. Koenig, N.; Howard, A. Design and Use Paradigms for Gazebo, an Open-Source Multi-Robot Simulator. In Proceedings of the
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 28
September–2 October 2004.

37. Clearpath Robotics. Robots/Husky-ROS. Available online: http://wiki.ros.org/Robots/Husky (accessed on 10 June 2022).
38. Clearpath Robotics. Husky/husky: Common Packages for the Clearpath Husky. Available online: https://github.com/husky/

husky (accessed on 10 June 2022).
39. Soni, A.; Hu, H. Formation Control for a Fleet of Autonomous Ground Vehicles: A Survey. Robotics 2018, 7, 67. [CrossRef]
40. Lu, D.V.; Hershberger, D.; Smart, W.D. Layered Costmaps for Context-Sensitive Navigation. In Proceedings of the 2014 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014.
41. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with

noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4
August 1996; pp. 226–231.

42. Macenski, S. costmap_2d/hydro/inflation. Available online: http://wiki.ros.org/costmap_2d/hydro/inflation (accessed on 12
July 2022).

43. Koren, Y.; Borenstein, J. Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. In Proceedings of
the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991.

44. Borenstein, J.; Koren, Y. The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots. IEEE Trans. Robot. Autom. 1991,
7, 278–288. [CrossRef]

45. Vasseur, L.; Lecointe, O.; Dento, J.; Cherfaoui, N.; Marion, V.; Morillon, J.G. Leader-Follower Function for Autonomous Military
Convoys. SPIE Proc. 2004, 5422, 326–337.

46. Zhao, X.; Yao, W.; Li, N.; Wang, Y. Design of Leader’s Path Following System for Multi-Vehicle Autonomous Convoy. In
Proceedings of the 2017 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 27–29 October 2017.

47. Li, X.R.; Zhao, Z. Measures of Performance for Evaluation of Estimators and Filters. SPIE Proc. 2001, 4473, 530–541.
48. Pietro, R.D.; Oligeri, G. Silence Is Golden: Exploiting Jamming and Radio Silence to Communicate. ACM Trans. Inf. Syst. Secur.

2015, 17, 1–24. [CrossRef]

http://doi.org/10.1109/70.736776
http://doi.org/10.1007/s11370-017-0240-y
http://doi.org/10.1109/TRO.2020.3036628
http://doi.org/10.1109/TITS.2015.2402153
http://doi.org/10.1109/SURV.2011.041110.00022
http://doi.org/10.1109/53.665
http://doi.org/10.1002/dac.1278
http://doi.org/10.1109/JSAC.2010.100608
http://doi.org/10.1109/TMC.2011.86
http://doi.org/10.1109/JRA.1986.1087032
http://doi.org/10.1177/027836498900800406
http://doi.org/10.1016/B978-0-934613-30-9.50019-6
http://wiki.ros.org/Robots/Husky
https://github.com/husky/husky
https://github.com/husky/husky
http://doi.org/10.3390/robotics7040067
http://wiki.ros.org/costmap_2d/hydro/inflation
http://doi.org/10.1109/70.88137
http://doi.org/10.1145/2699906

Appl. Sci. 2022, 12, 9863 25 of 25

49. Chowdhury, A.; Karmakar, G.; Kamruzzaman, J.; Jolfaei, A.; Das, R. Attacks on Self-Driving Cars and Their Countermeasures: A
Survey. IEEE Access 2020, 8, 207308–207342. [CrossRef]

50. Martinson, E.; Stoytchev, A.; Arkin, R. Robot Behavioral Selection Using Q-Learning. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and System, Lausanne, Switzerland, 30 September–4 October 2002.

http://doi.org/10.1109/ACCESS.2020.3037705

	Introduction
	Background
	Autonomous Ground Vehicle Convoys
	Jammers
	Behavior-Based Robotics

	Materials and Methods
	Tools
	Attacker Model
	Behavior Manager
	Behavioral Costmaps
	Behaviors
	Assemblages
	Path Planning

	Experimental Setup

	Results
	Discussion
	References

