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Abstract: Gate allocation has always been a fundamental but critical issue in the daily operation of
airports, which is related to service quality and schedule efficiency. In order to obtain reasonable and
efficient gate allocation results, in this paper, a multi-commodity network flow model is proposed
to describe the gate allocation process in flight flow, based on which a multi-objective optimization
model is constructed. It not only comprehensively considers the flight information of aircraft arrivals
and departures, but also integrates the broader interests of passengers, airlines, and airports. To
solve it, a linear weighting technique is applied. In addition, K-means cluster analysis is used to
explore different weight combinations, and on this basis, the idle time of the gate is introduced as a
performance evaluation index to guide the selection of the final weight. By analyzing the optimization
results of actual operation data, the proposed model significantly balances the interests of multiple
parties and the number of flights at each gate and has a relatively high gate-utilization rate. It
can provide rich decision support and a reasonable allocation scheme for airport management to a
certain extent.

Keywords: airport operations; gate allocation; multi-commodity network flow; binary integer linear
programming; idle time

1. Introduction

Over the past few decades, the rapid development of the civil aviation industry has
been witnessed. However, the contradiction between the rapid increase in the demand
for civil aviation transportation and the lack of existing resources has become more and
more prominent. The contradiction reduces the airport’s operational efficiency in the
central position, making it easy to cause large-scale delays [1]. The fundamental solution
to this problem is to increase the airport’s capacity among which the construction of
infrastructure is the most direct way. However, this method is challenging due to high
costs and long periods. Another way is to increase the airport capacity by improving the
operating efficiency, which is also the direction of this paper. As one of the important
resources in airport surfaces, the gate is a main factor to ensure the efficient operation of
the airport [2]. Under the circumstance of limited gate resources, the allocation of gates
will play a key role in the transition and connection of aircraft entering and leaving the
airport. An effective gate allocation scheme can help reduce surface conflicts and flight
delays, thereby improving service quality and passenger satisfaction.

Gate allocation refers to selecting suitable and compatible gates for arrival and depar-
ture flights with a fixed occupancy time to complete the corresponding surface tasks [3]. It
is essentially a resource scheduling and optimization problem that is ubiquitous in various
fields [4–8]. At the airport planning level, the manager allocates the gate reasonably accord-
ing to the number, location, and type to meet the expected demand of surface flights. At the
airport operation level, based on the flight plan data and appropriate optimization goals,
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we can predict the assignment of the aircraft in advance. According to the actual operation
of the airport surface, the results of gate allocation can have a huge impact on a variety of
stakeholders, especially passengers, airlines, and airports. Passengers expect to walk the
shortest distance to board the corresponding flight or arrive at the corresponding terminal
smoothly. Airlines want to minimize taxi time due to congestion and surface conflicts and
maximize the operational efficiency of their resources. The airport hopes to optimize the use
of surface resources, thereby ensuring passenger satisfaction and balancing the interests of
multiple airlines. Therefore, in order to comprehensively consider the interests of multiple
parties and generate an efficient and reasonable gate allocation scheme, this paper builds
a multi-objective optimization model of gate allocation based on the multi-commodity
network flow theory. To solve it, a regularized linear weighting method converts it into
a single-objective optimization model. Furthermore, to analyze and evaluate different
weight combinations, cluster analysis is applied. According to the analysis results, different
weight combinations may correspond to the same objective function value. Therefore,
the gate robustness is introduced as an auxiliary indicator to determine the most suitable
weight combination. The proposed model is validated on the real data of Shanghai Pudong
International Airport.

Overall, our main contributions can be summarized as follows:

(1) A multi-objective optimization model based on multi-commodity network flow is
proposed, where the interests of passengers, airports, and airlines are comprehen-
sively considered.

(2) A linear weighting method is used to solve the multi-objective optimization model,
where cluster analysis and auxiliary metrics are used to determine weight combinations.

(3) Extensive experimental analysis is performed on real operational data, and the va-
lidity of the allocation results is illustrated from both qualitative and quantitative
perspectives, respectively.

The rest of this paper is organized as follows. In Section 2, the related work is
reviewed, and the research status of gate allocation is introduced from three aspects. The
problem description is presented in Section 3. In Section 4, the optimization objectives and
constraints are explained in detail. Section 5 shows the experimental verification results.
Finally, the conclusion and prospect of future work are presented in Section 6.

2. Literature Review

The gate allocation will significantly affect the quality of passenger service. Departing
passengers want the distance from the waiting port to boarding the plane to be as short as
possible and arriving passengers want the travel time from the aircraft to baggage claim to
be as fast as possible. Transfer passengers want the distance between the corresponding
two flight gates to be as short as possible. Since 1971, some scholars have paid attention
to the problem of gate allocation considering passenger satisfaction [9], which is also the
first group of people to pay attention to and solve the gate allocation problem. Among the
optimization objectives from the perspective of passenger satisfaction, the most frequently
used one is to minimize the walking distance of passengers. In earlier studies, most
scholars only considered the single objective optimization problem [10–13]. In the 21st
century, multi-objective optimization methods occupied the main proportion [14–18]. In
addition, some studies changed the perspective of the optimization objective, such as
minimizing the total waiting time of passengers [14] or minimizing the transit time of
passengers [19,20]. Maharjan B et al. [21] considered the transit time of passengers and
the transit walking distance. Since overall passenger satisfaction is proportional to the
number of passengers, the number of passengers is also considered an essential parameter
of passenger satisfaction [22,23] to reduce the overall walking cost of passengers and the
possibility of missing flights as much as possible.

Since 2000, scholars have begun considering the interests of airlines and airport
operations more comprehensively. The continuous airport operation needs to ensure the
satisfaction of passengers and airlines’ preferences simultaneously to ensure the efficient
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operation and constant income of the airport. The primary consideration of the airport
is to maximize the function of surface resources so that the utilization of resources can
reach the optimal mode as close as possible. Drexl A et al. [16] considered different airlines’
preferences for gates and established a multi-objective model. Jaehn F [24] improved the
utilization of gates by reducing idle time. It used a genetic algorithm to solve the problem.
Bolat A [25] also considered the utilization of gates and solved it using an adaptive particle
swarm algorithm. In addition, the robustness of the gate is also regarded as an important
perspective. For the possibility of changes in the arrival and departure times of flights, the
dynamic ability of the optimization model can be improved by minimizing the variance of
idle time [17,26,27]. Maximizing compatibility is also an option to enhance the robustness
of gates [23,28].

For airlines, ground operations must be performed as efficiently as possible with
limited resources. Reducing the number of aircraft with unassigned gates [15,17,23,28–30]
and the number of aircraft allocated to remote gates [18,31] can improve ground operation
efficiency and reduce ground consumption costs. When the aircraft cannot temporarily
reach the contact gate for various reasons, passengers must take airport buses to the location
without the corridor bridge to board the plane, which consumes a lot of time and cost on the
ground and reduces passengers’ patience and comfort. In addition, reducing the total cost
of towing an aircraft from a remote gate is also a method chosen by many types of literature.
Using special airport vehicles such as tractors to tow aircraft requires considerable cost, so
we try our best to avoid the arrival and departure flights of the same aircraft not being at
the same gate and the situation that the aircraft needs to be towed to the corresponding
gate. Towing operations can be reduced by minimizing the number of towing tasks [32–34]
or the towing cost. Kumar and Bierlaire [35] developed a linear programming model to
optimize the towing cost of aircraft under certain constraints. Yu, Zhang, and Lau [36]
established the quadratic objective function. They used the adaptive search algorithm
to solve it, which reduced the towing cost and improved the robustness of the aircraft
to a certain extent. Liang et al. [37] proposed an adaptive improved genetic algorithm
combining parallel advantages and elite strategies to improve the decision-making ability
of large-scale handling data on the real airport surface. Some studies guarantee the interests
of airlines by reducing the waiting time and consumption cost [38–40], and passengers’
overall satisfaction in the waiting process is also a part of the consideration [41]. During the
process of surface control, the gate allocated to the aircraft will be temporarily busy, so the
aircraft and passengers need to spend time waiting on the ground until the corresponding
gate is free. Moreover, some scholars also consider more practical effects, such as aircraft
fuel consumption [21].

3. Problem Description

The gate allocation problem proposed in this paper involves arrival and departure,
which are continuous and highly correlated. Airport Collaborative Decision-Making
(ACDM) provides accurate and detailed decision-making support from multiple sources in
surface control. Additionally, it provides rich information to a large extent for the solution
of multi-objective optimization problems. Firstly, the arrival flight lands on the designated
runway at the landing time to complete the runway taxiing task, then leaves the runway,
enters the taxiway, and meets the surface taxiing task according to the path and designated
rules. Then, the aircraft enters the apron taxiway and stops at the pre-allocated gate at the
in-block time. After completing the ground support work, the departure process of the
corresponding aircraft will be carried out. For a departing aircraft, it first leaves the gate
at the off-block time and enters the apron taxiway. Then, according to the corresponding
taxi path, it arrives at the runway threshold and enters the runway at the take-off time.
Due to the high uncertainty and flexibility of the airport surface, some assumptions are
made in the modeling process to realize the multi-objective gate allocation and provide the
optimization scheme of surface resource scheduling. The solution to the problem is based
on the following assumptions.
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(1) Solving the gate allocation problem requires multiple sources of information, such
as flight plans, aeronautical information publication, airport layouts, etc. We assume
that the above information is known and complete to support subsequent studies and
experiments.

(2) We assume that the total number of flights is kept within the airport capacity, and
enough remote gates are set up to allocate each flight.

To describe the resource situation of an airport, the network model of the airport gate
schedule is established, and the knowledge of graph theory is used to construct the directed
graph G = (V, E), where V is the set of nodes and E is the set of directed edges. The gate
allocation problem is similar to the multi-commodity network flow model, which is the
problem of allocating different gates as different commodities from the same origin node to
the same destination node in the network. The paradigm of the multi-commodity network
flow model is shown in Figure 1a, which includes four types of nodes and five types of
arcs, as detailed below:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 16 
 

 
(a) 

 
(b) 

Figure 1. Multi-commodity network flow model for gate allocation. (a) The basic paradigm. (b) An 
example of the allocation result with three gates and five flight pairs. 

The gate flows through the direction of the arc in the network as a commodity. It 
starts from the origin node and flows through the intermediate nodes to the destination 
node to form a complete commodity flow. The multi-commodity network flow model is 
the interleaved network formed by multiple commodity flows. Figure 1b shows a feasible 
allocation scheme for three gates 1 2 3{ , , }G G G G  and five flight pairs 

{ , }, 1,2,...,5i iF a d i  . The blue line indicates the overall flow of 1G , which is first allo-
cated to the arrival flight 2a , and then serves the corresponding departure flight 2d . Due 
to the landing time of flight 4a  being greater than the departure time of flight 2d  and 
the service time of the 1G  satisfying the corresponding buffer time, 1G  is allocated to 
the arrival flight 4a  and the departure flight 4d  and then is in an idle state. The red line 
indicates the work process of the 2G , which is first assigned to the arrival flight 1a  and 
the departure flight 1d , and then to the arrival flight 3a  and the departure flight 3d  un-
der certain conditions. After the second process, it is found that 2G  can still be allocated 
to arrival flight 5a  and departure flight 5d . 2G  is not assigned again after serving three 
pairs of flights. The black line represents the state of 3G , which means that the gate has 
not been allocated and is always in an idle state. According to the modeling process de-
scribed above, some potential limitations can be found, such as the paired existence of 
flights (i.e., arrival and departure flights) and the first-come-first-served gate allocation 
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example of the allocation result with three gates and five flight pairs.

(1) Node: The node represents the static state in the gate allocation. The origin node O is
a virtual node, which is the starting point of the gate as the commodity. According to
the order of the aircraft on the surface, the gate is first allocated to the corresponding
arrival flight, that is, the gate flows from the unique origin node O to one of the flight
arrival nodes ai. Then, the gate is allocated to the corresponding departure flight, that
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is, the gate flows from the flight arrival node to the corresponding flight departure
node dj. When the gate is no longer occupied, it will eventually flow to the only
destination node D to be recycled, which is also a virtual node. The node set V can be
summarized as follows, where N is the number of flight pairs.

V =
{

O, ai, dj, D
}

, i, j ∈ [1, N] (1)

(2) Arc: An arc is a directed edge representing the dynamic trend of the gate. The entering

arc
_

OA is the direction from the origin node O to the flight arrival nodes ai, indicating
the allocation status of the corresponding gate designated for the arrival flight. Its

existence means that the corresponding gate is occupied. The holding arc
_

AB is the
direction from the arrival to the corresponding departure flight, indicating the gate’s
continuous occupancy status. That is, the related aircraft is receiving ground service.

The transferring arc
_

BA points to the direction of the next arrival flight to be allocated
from the departing flight that has been serviced, indicating the next flight served by
the designated gate. This type of arc exists if the landing time of the arrival flight
to be allocated is greater than the departure time of the last flight currently served
by the gate. A buffer time greater than a certain buffer time is required between the

two flights operated by the same gate. The leaving arc
_

BD is the gate recovery arc,
which flows from the corresponding flight departure node dj to the destination node

D, indicating that the gate is idle and is about to be recycled. The directing arc
_

OD
flows directly from the origin node O to the destination node D, indicating that the
gate is never occupied. The arc set can be concluded as follows:

E = {
_

OA,
_

AB,
_

BA,
_

BD,
_

OD}, ai ∈ A, dj ∈ B, i, j ∈ [1, N] (2)

The gate flows through the direction of the arc in the network as a commodity. It
starts from the origin node and flows through the intermediate nodes to the destination
node to form a complete commodity flow. The multi-commodity network flow model
is the interleaved network formed by multiple commodity flows. Figure 1b shows a
feasible allocation scheme for three gates G = {G1, G2, G3} and five flight pairs F = {ai, di},
i = 1, 2, . . . , 5. The blue line indicates the overall flow of G1, which is first allocated to the
arrival flight a2, and then serves the corresponding departure flight d2. Due to the landing
time of flight a4 being greater than the departure time of flight d2 and the service time of
the G1 satisfying the corresponding buffer time, G1 is allocated to the arrival flight a4 and
the departure flight d4 and then is in an idle state. The red line indicates the work process
of the G2, which is first assigned to the arrival flight a1 and the departure flight d1, and then
to the arrival flight a3 and the departure flight d3 under certain conditions. After the second
process, it is found that G2 can still be allocated to arrival flight a5 and departure flight
d5. G2 is not assigned again after serving three pairs of flights. The black line represents
the state of G3, which means that the gate has not been allocated and is always in an idle
state. According to the modeling process described above, some potential limitations can
be found, such as the paired existence of flights (i.e., arrival and departure flights) and
the first-come-first-served gate allocation strategy. In practice, most scenarios follow these
requirements, so these potential limitations are somewhat acceptable.

4. Modeling

The specific components of the multi-objective optimization problem proposed in this
paper are shown in Figure 2. Due to the correlation and contradiction of multiple interests,
the gate allocation must face the fact that resources are scarce and expensive and deal with
and balance the conflicting factors. Therefore, the problem of gate allocation is inherently
multi-objective. On the premise of avoiding deadlock at the planning level, optimization
strategies should also be designed at the operation level to avoid running conflicts. The
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importance of the factors needs to be adjusted to allocate gate resources reasonably. The
related decision variables are provided in Table 1.
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Table 1. Description of decision variables.

Decision Variable Explanation

xg
Oi

Binary decision variable, equal to 1 if flight i begins at gate g, that is, the

entering arc
_

OA from the origin node O to the flight arrival node ai exists;
otherwise, equal to 0.

xg
jD

Binary decision variable, equal to 1 if the last flight j flows through the gate

g, that is, the leaving arc
_

BD from the flight departure node dj to the
destination node D exists; otherwise, equal to 0.

xg
OD

Binary decision variable, equal to 1 if no flight flow through the gate g, that

is, the directing arc
_

OD from the origin node O to the destination node D
exists; otherwise, equal to 0.

xg
ji

Binary decision variable, equal to 1 if flight i uses the gate g after flight j,

that is, the transferring arc
_

BA from the flight departure node dj to the
flight arrival nodes ai exists; otherwise, equal to 0.

xg
ij

Binary decision variable, equal to 1 if flight i is serviced at the gate g, that

is, the holding arc
_

AB from the flight arrival nodes ai to the flight
departure node dj exists; otherwise, equal to 0.

In general, based on the multi-commodity network flow, the proposed multi-objective
model considers three perspectives, namely, passengers, airlines, and airports. In order
to characterize the respective interests, passenger walking distance, aircraft taxi-in and
taxi-out time, and gate resource allocation cost are defined as three objective functions.

(1) Minimize passenger walking distance. From the perspective of passengers, the
primary purpose of gate allocation is to improve passenger satisfaction. The number of
passengers departing and arriving on the flight is used as the weight to calculate the
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corresponding walking distance. The overall walking distance of passengers is taken as the
first optimization objective, as follows:

min f1 = min ∑
i∈Fa

∑
g∈G

na
i la

g(xg
Oi + ∑

j∈Fd

xg
ji) + ∑

j∈Fd

∑
g∈G

nd
j ld

g(xg
jD + ∑

i∈Fa

xg
ji) (3)

where Fa and Fd denote the set of arrival and departure flights, G is the set of gate resource,
na

i and nd
j are the number of passengers for arrival flight i and departure flight j, and la

g

and ld
g represent the corresponding walking distance between gate g and the terminal (i.e.,

baggage waiting for arrival and security check for departure).
(2) Minimize aircraft taxi-in and taxi-out time. In the taxiing phase, aircraft operating

costs such as fuel consumption are directly related to taxi time. Therefore, the taxi-in and
taxi-out time of the aircraft is also an important factor in choosing a suitable gate. The
second optimization objective is provided as follows:

min f2 = min ∑
i∈Fa

∑
g∈G

na
i tin

g (xg
Oi + ∑

j∈Fd

xg
ji) + ∑

j∈Fd

∑
g∈G

nd
j tout

g (xg
jD + ∑

i∈Fa

xg
ji) (4)

where tin
g and tout

g are the average taxi-in and taxi-out time of gate g. Since it is calculated
from historical operating data, it has potentially considered different taxiing paths, taxiing
conflicts, etc. Similar to objective 1, the number of passengers is also included as a weight
for the purpose of measuring the importance of taxi cost.

(3) Minimize gate resource allocation cost. To fully use the gate resource, the size of
the allocated gate needs to match the aircraft size. Therefore, the waste of surface resources
can be minimized only by allocating the most appropriate gate for the corresponding
aircraft and not allocating remote gates as far as possible. The third optimization objective
is provided as follows:

min f3 = min ∑
i∈Fa

∑
g∈G

Cig(xg
Oi + ∑

j∈Fd

xg
ji) + ∑

j∈Fd

∑
g∈G

Cjg(xg
jD + ∑

i∈Fa

xg
ji) (5)

where Cig is the cost of size mismatch between arrival flight i and gate g. As a rule of
thumb, different levels of penalty values are defined as shown in Equation (6). Sgate

g is

the size of gate g, and Sflight
i is the size of arrival flight i. Especially, we assign the largest

penalty to the remote gate, which is to minimize its frequency of use unless all contact gates
are occupied. Cjg is defined, likewise:

Cig =


0, Sgate

g = Sflight
i

0.2, Sgate
g = Sflight

i + 1

0.5, Sgate
g = Sflight

i + 2
1, gate g is a remote gate

(6)

In order to balance the interests of multiple parties, multiple optimization objectives
are integrated together through a linear weighting method, as follows:

min f = minα f1 + β f2 + γ f3 (7)

where α, β, and γ are weight coefficients for each objective, and α + β + γ = 1. To further
eliminate the adverse effect of scale on each objective function, a normalization technique
is applied to obtain the final function as shown in Equation (8).

min fnorm = minα
f1 − f min

1
f max
1 − f min

1
+ β

f2 − f min
2

f max
2 − f min

2
+ γ

f3 − f min
3

f max
3 − f min

3
(8)

where f max
1 , f max

2 , and f max
3 are the maximum values of each objective function and f min

1 ,
f min
2 , and f min

3 are the corresponding minimum values.
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Furthermore, to obtain a reliable gate allocation scheme for each flight, three types
of constraints are considered, namely multi-commodity network flow constraints, flight
exclusive constraint, and gate compatible constraint.

(1) Multi-commodity network flow constraints. Considering the complex interactions
between commodities (i.e., gates) and obtaining valid commodity flows, the following basic
constraints must be observed:

xg
OD + ∑

i∈Fa

xg
Oi = 1, ∀g ∈ G (9)

xg
OD + ∑

j∈Fd

xg
jD = 1, ∀g ∈ G (10)

xg
Oi + ∑

j′∈Fd

Ij′ ix
g
j′ i

= xg
ij, ∀g ∈ G, ∀i ∈ Fa, ∀j ∈ Fd, |i| = |j| (11)

xg
jD + ∑

i′∈Fa

Iji′ x
g
ji′

= xg
ij, ∀g ∈ G, ∀i ∈ Fa, ∀j ∈ Fd, |i| = |j| (12)

∑
g∈G

xg
ij = 1, ∀i ∈ Fa, ∀j ∈ Fd, |i| = |j| (13)

xg
Oi, xg

jD, xg
j′ i

, xg
ji′

, xg
ij, xg

OD ∈ {0, 1} (14)

Equation (9) describes the constraint of flow-in, indicating that each gate needs to
choose the entering arc or the directing arc (i.e., whether there is a flight using the gate).
Correspondingly, Equation (10) provides the constraint of flow-out. As for Equation (11),
it represents the flow balance constraint of the flight arrival nodes. Here, |i|=|j| means
arrival flight i and departure flight j form a flight pair. Similarly, Equation (12) presents the
flow balance constraint of the flight departure nodes. It should be noted that an indicator
function Iji is used to describe the temporal relationship between the departure flight j and
the arrival flight i, as follows:

Iji =

{
0, Ta

i − Td
j < Tbuffer

1, Ta
i − Td

j ≥ Tbuffer (15)

where Tbuffer is a preset buffer time, and when the time interval between arrival flight i
and departure flight j is greater than Tbuffer, Iji is equal to 1. Otherwise, Iji is equal to 0.
With Iji in mind, it can be determined whether two flights are allowed to use the same gate.
Equation (13) is the constraint of the transferring arc, which shows that only one gate can
flow through it. Equation (14) ensures that the above variables are 0–1 variables.

(2) Flight exclusive constraint. The flight exclusive constraint means that each flight
must be assigned a unique gate. It is formalized as follows:

∑
g∈G

(xg
Oi + ∑

j∈Fd

xg
ji) = 1, ∀i ∈ Fa (16)

where xg
Oi + ∑

j∈Fd

xg
ji is 0 or 1, indicating whether flight i is assigned to gate g.

(3) Gate compatible constraint. The gate compatible constraint describes the size
limitation between the gate and aircraft, which means that the size of the gate should be
sufficient to accommodate the size of the aircraft. It is formalized as follows:

Sflight
i ≤ Sgate

g + (1− xg
Oi − ∑

j∈Fd

xg
ji)M, ∀i ∈ Fa, ∀g ∈ G (17)

where M is an arbitrarily large integer. Note that when the value of xg
Oi + ∑

j∈Fd

xg
ji is 0, this

inequality always holds.
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5. Numerical Study
5.1. Experimental Data and Settings

In order to verify the proposed model in the problem of gate allocation, one of the
busiest hub airports in the world, Shanghai Pudong International Airport, is used as the
research object, where 20 representative gates in Terminal 1 are selected, as shown in
Figure 3. In addition to 18 contact gates, 2 remote gates are also considered to prevent
the absence of feasible solutions due to the accumulation of flights exceeding the inherent
capacity of contact gates at a specific time.
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Specifically, according to the size of aircraft wingspan that the gate can accommodate,
all these gates are divided into three categories, which are small gates (G1~G5), medium
gates (G6~G13), and large gates (G14~G20). Furthermore, based on historical operations,
we filtered flights for each gate and calculated the average taxi time as the taxi cost. The
walking distance of passengers related to each gate was also preliminarily estimated, and
the detailed information is presented in Table 2.

Table 2. Basic information of gate resources.

Gate ID Size *
Taxi Time (min) Walking Distance (m)

Gate ID Size *
Taxi Time (min) Walking Distance (m)

Taxi-In Taxi-Out Arrival Departure Taxi-In Taxi-Out Arrival Departure

1 S 9.8 11.5 402 453 11 M 15.5 17.2 144 239
2 S 11.4 12.3 581 643 12 M 8.5 10.4 267 360
3 S 16.0 16.5 724 769 13 M 13.4 15.8 423 558
4 S 15.4 16.7 757 814 14 L 9.3 11.4 553 678
5 S 14.5 15.9 639 696 15 L 12.9 14.7 688 814
6 M 10.5 11.1 451 522 16 L 13.6 15.5 724 830
7 M 14.8 15.0 325 415 17 L 12.7 13.3 641 758
8 M 16.3 17.8 146 287 18 L 14.3 15.8 497 616
9 M 17.3 18.3 129 212 19 L 23.2 23.7 964 1080
10 M 12.2 10.9 124 217 20 L 21.7 22.2 1088 1173

* The size of the gate depends on the aircraft wingspan it can accommodate. S: <52 m; M: 52~65 m; L: >65 m.

Meanwhile, this paper considers the actual operational data of the flight, which
involves a total of 88 pairs of flights in the time range of 08:00–20:00. All flights are also
divided into three categories based on the aircraft wingspan length, including 39 small
flights, 28 medium flights, and 21 large flights. As for the number of passengers, it is set to
the full capacity of each flight for simplicity. More detailed flight information is shown in
Table 3.

In the following experiments, the buffer time between two adjacent flights for each
gate is set to 30 min. All the models related to this paper are created on a Dell G15 laptop
consisting of an i7-11800H@2.30 GHz Intel Core and a 16 GB DDR3 RAM. With PyCharm
as the implementation platform, Gurobi Commercial Optimizer 9.5.2 and Python 3.9.9 are
used as core tools to solve the Binary Integer Linear Programming problem and obtain the
optimal results of gate allocation. Specifically, the branch-and-cut (B&C) [42] algorithm is
used to solve the integer programming problem, which is an exact algorithm composed
of a cutting plane method and a branch-and-bound algorithm. The parameter settings
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and branching strategies related to the algorithm are based on the default configuration
of the Gurobi solver. According to the operation results of the solver, the optimal values
for decision variables and objective functions are obtained, as well as the corresponding
running time.

Table 3. Basic information of flight data.

Flight ID Aircraft Size * Arrival Time
(HH/MM)

Departure Time
(HH/MM)

Occupancy Time
(min)

Number of
Passengers (Arr/Dep)

F1 L 0803 0848 45 316
F2 M 0816 0911 55 238
F3 M 0827 0924 57 224
F4 S 0832 0940 68 177
F5 L 0840 0935 55 243
F6 S 0852 1009 77 178
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

F86 M 1902 1958 56 248
F87 M 1907 2000 53 232
F88 S 1913 1957 44 158

* Aircraft size depends on the length of its wingspan. S: <52 m; M: 52~65 m; L: >65 m.

5.2. Results Analysis
5.2.1. Single Objective vs. Multi Objectives

To compare the performance differences between the single objective function and
the integrated multi-objective function, four optimization problems are presented and the
results are shown in Table 4. Problems 1–3 optimize their respective objective functions.
Problem 4 considers all objective functions with equal weights. It can be clearly seen
that there are conflicts and limitations between the various objective functions, and the
optimization of one objective is at the expense of the degradation of other objectives. For
example, when the goal is to minimize the allocation cost of the gate resource (i.e., min f3),
it achieves a minimum value of 4.0, but leads to a larger walking and taxi cost due to
the allocation process neglecting the location and the required taxi time of the gate. This
phenomenon is alleviated to a certain extent by using a linearly weighted objective function
to consider the interests of all parties. Moreover, regardless of the objective function, the
running time is within 1 min, so it can be easily extended to the pre-tactical and tactical
stages of the gate allocation problem.

Table 4. Performance comparison of four optimization problems.

Problem Objective Function Performance (*)

Walking Cost (m) Taxi Cost (min) Gate Cost Running Time (s)

Problem 1 f1 17,239,949 (0.00) 523,769.1 (0.83) 7.3 (0.94) 59.17
Problem 2 f2 20,580,812 (0.98) 489,939.3 (0.00) 7.0 (0.86) 51.68
Problem 3 f3 19,676,709 (0.71) 515,254.5 (0.62) 4.0 (0.00) 53.15
Problem 4 1/3 (f1_norm + f2_norm + f3_norm) 18,762,266 (0.44) 500,280.0 (0.25) 4.2 (0.06) 47.47

* Note that the values inside the parentheses are the corresponding normalized values.

5.2.2. Trade-Offs of Multiple Objectives

In order to further explore the influence of different weight combinations on the value
of each objective function, weight coefficients are set from 0.1 to 0.8 with a step size of
0.1 (e.g., α = 0.1, β = 0.1, γ = 0.8), forming a total of 36 weight combinations. With
these weight combinations in mind, firstly, the corresponding optimal solution of the
integrated objective function is found and the value of each individual objective function
is calculated. On this basis, the K-means clustering algorithm is used to perform cluster
analysis on 36 combinations, where the silhouette index is used to select the optimal
number of clusters. In this way, clusters with similar objective function values can be easily
found to help understand the differences and connections between weight combinations.
By providing K sets of weight combinations for decision makers, the problem of weight
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setting commonly existing in the linear weighting method is solved to a certain extent.
Overall, a total of 7 clusters are formed and the results are presented in Table 5. Specifically,
some interesting phenomena and conclusions can be found: (1) The first two clusters
contain 55.6% of the combinations, and both have a minimum gate cost. From the detailed
allocation results, it can be inferred that adjustments are made to the adjacent flights under
the premise of the same gate size to trade off the benefits of walking distance and taxi
time. Cluster 4 and cluster 5 are in a similar situation. (2) Cluster 3 and cluster 7 mainly
compromise the cost of taxi and gate, while 1 and 7 compromise the cost of walking and
gate. (3) Cluster 6 corresponds to the most extreme type of situation, which maximizes the
passenger satisfaction represented by the walking distance at the cost of taxiing time and
gate cost. (4) Regardless of the cluster, both remote gates (i.e., G19 and G20) are assigned
flights between 15:00 and 18:00. This is because during this time period, all the contact
gates are occupied due to the excessive flight volume, so the remote gates are forced to
be used.

Table 5. Cluster analysis results of different weight combinations.

Cluster ID
Centroid of Each Cluster (*) Number of Weight

CombinationsWalking Cost (m) Taxi Cost (min) Gate Cost

1 18,913,266 (0.49) 500,631.6 (0.26) 4.0 (0.00) 11
2 19,764,024 (0.74) 493,906.6 (0.10) 4.0 (0.00) 9
3 18,008,472 (0.22) 517,368.3 (0.67) 4.4 (0.11) 3
4 17,849,523 (0.18) 509,429.6 (0.48) 4.8 (0.23) 3
5 20,461,502 (0.94) 491,195.4 (0.03) 4.8 (0.23) 2
6 17,307,339 (0.02) 520,802.9 (0.76) 5.7 (0.49) 3
7 18,002,704 (0.22) 500,897.8 (0.27) 5.6 (0.46) 5

* Note that the values inside the parentheses are the corresponding normalized values.

Although cluster analysis can provide decision makers with initial insight into the
weight setting, the authors found that different combinations of weights within the same
cluster may correspond to the same objective function value. Moreover, further analysis
of allocation results reveals that even in the same cluster, its related performance still has
great uncertainty, especially the idle time of the gates. According to the relevant description
in the past literature [26], the idle time variance is calculated by ∑G

g=1 ∑F
j=1 S2

j,g, where Sj,g
refers to the last idle time at gate g until the arrival of the flight j. Figure 4 presents the
variance of idle time corresponding to each allocation under different clusters. It can be
clearly deduced that the variance of idle time can be large or small, which fluctuates in the
range of 2400–3300. In addition, the Pearson correlation coefficient between the variance of
idle time and the cluster ID is 0.11, indicating that there is no significant correlation. Since
the variance of idle time can reflect the sensitivity of gate allocation to variations in flight
schedule (that is, the robustness of gate allocation), this performance indicator has been
regarded as an important optimization objective in previous studies [24–26]. However,
this paper focuses on the three stakeholders of passengers, airlines, and airports, and it is
only used as an auxiliary performance metric for selecting weight combinations. When
the value of each objective function is the same, the allocation result with the smallest
variance of idle time is given priority to balance the idle time of each gate and alleviate the
adverse effects caused by flight delays in actual operations. In the following experiments,
the weight combination corresponding to the minimum idle time variance is selected, and
its optimal solution is taken as the final gate allocation result.
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5.2.3. Analyzing the Optimal Allocation of Gates

Based on the criterion of minimum idle time variance, the final weight combination is
set to α = 0.2, β = 0.6, γ = 0.2. Its optimized objective values for gate cost, taxi time, and
walking distance are 4.2, 494,155.2, and 19,500,658, respectively. As shown in Figure 5, the
gate allocation results are visualized using a Gantt diagram, where the dark blue represents
the occupied time of each flight, and light blue represents the buffer time. Correspondingly,
the distribution of the number of flights assigned to each gate is provided in Figure 6.
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Overall, all gates are fully utilized and there are no idle gates during the entire time
period. Although remote gates have the highest cost in terms of walking distance, taxi time,
and gate size, they still cannot avoid being used. In our final results, each of the two remote
gates (i.e., G19 and G20) served one flight. As mentioned earlier, during the time period
of 15:00–18:00, a large number of flights were piled up, resulting in all contact gates being
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occupied. This phenomenon can be clearly seen from Figure 5. Additionally, among all
contact gates, G1 has the most flights allocated, with a total of seven flights. This is because
it has absolute advantages in taxi time and walking distance among small-size gates. In
contrast, G16 and G18 are allocated the fewest flights due to their larger taxi time and the
larger proportion of taxi cost in this weight combination.
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In addition, we also counted the relative utilization rate and absolute utilization rate
of each gate, as shown in Figure 7. On the whole, the utilization rate of the contact gate
is relatively high, except for the remote gate. Additionally, the absolute utilization rate of
most of them is above 40%, while the relative utilization rate is above 55%. Similar to the
distribution of the number of flights, G1 has the highest absolute utilization and relative
utilization, while G16 and G18 have the lowest. From the above conclusions, it can be found
that the established multi-objective optimization model for gate allocation can effectively
balance the interests of multiple parties and obtain a higher utilization rate. On the premise
of ensuring relevant interests, by considering the robustness of the allocation results, the
number of flights and the idle time at each gate are also balanced, thereby reducing the
difficulty of airport management.
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6. Conclusions

The flight-to-gate allocation has always been one of the core issues for the operation
of airport surfaces. In order to generate an effective and efficient gate allocation scheme
and improve the operating efficiency of the airport surface, a multi-objective optimization
model for gate allocation was established based on the multi-commodity network flow,
which considers the multiple interests of passengers, airlines, and airports. To solve this
model, a linear weighting technique was applied, and its various weight combinations
were discussed using clustering algorithms. The variance of idle time was also introduced
to evaluate the pros and cons of different solutions. Experiments using actual operating
data show that the model can reasonably allocate gate resources with a high utilization and
robustness. The proposed model can be regarded as a powerful decision support tool for
air traffic controllers. According to the published flight plan, it can quickly generate a rea-
sonable gate allocation scheme to realize the airport resource scheduling and configuration
in the pre-tactical stage.

Future work will verify the generalizability of the proposed model in more diverse
operational data. In addition, how to combine other resources of the airport, such as
taxiways, runways, etc., to deeply examine the surface resource scheduling problem at the
micro level is also an interesting topic.
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