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Abstract: Generally, the results of imaging the limited view data in the inverse scattering problem
are relatively poor, compared to those of imaging the full view data. It is known that solving this
problem mathematically is very difficult. Therefore, the main purpose of this study is to solve the
inverse scattering problem in the limited view situation for some cases by using artificial intelligence.
Thus, we attempted to develop an artificial intelligence suitable for problem-solving for the cases
where the number of scatterers was 2 and 3, respectively, based on CNN (Convolutional Neural
Networks) and ANN (Artificial Neural Network) models. As a result, when the ReLU function was
used as the activation function and ANN consisted of four hidden layers, a learning model with a
small mean square error of the output data through the ground truth data and this learning model
could be developed. In order to verify the performance and overfitting of the developed learning
model, limited view data that were not used for learning were newly created. The mean square
error between output data obtained from this and ground truth data was also small, and the data
distributions between the two data were similar. In addition, the locations of scatterers by imaging
the out data with the subspace migration algorithm could be accurately found. To support this,
data related to artificial neural network learning and imaging results using the subspace migration
algorithm are attached.

Keywords: artificial neural network; inverse scattering problem; limited view; subspace migration
algorithm

1. Introduction

An inverse problem refers to any problem related to finding the desired information
using an indirect method such as observation when some information cannot be found
directly in the field of mathematics or science. In other words, it indicates all problems
related to obtaining the values of model parameters from observational data. This inverse
problem has been widely used and studied not only in radiology but also in fields closely
related to our lives, such as earth science, astronomy, engineering, and non-destructive
inspection. Related works can be found in [1–14] and references therein.

The inverse scattering problem, which is one of the inverse problems, happens when
electromagnetic waves whose information such as frequency or wavelength are known
emitted into a scatterer included in the arbitrary space. Then, the problem is to find out
the location, size, shape, and characteristics of the scatterers from the scattered waves.
Although this inverse scattering problem is a significant field for research, it is known to be
a difficult and complicated problem due to the fundamental nonlinearity and ill-posedness.
Thus, no particular solutions have been developed other than a numerical method based
on an iterative algorithm such as Newton’s method; refer to [15–22].
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It is well-known that these iterative methods may not converge or may converge to
a shape different from the ground truth unless a good initial value is given. In addition,
although it converges to the desired shape, it may take a very long time. Therefore, there is
a need for a non-iterative method that can directly obtain approximate information such as
shape, location, etc., of a scatterer from the collected scattering wave despite the absence
of an initial value. Motivated by this, various non-iterative methods have already been
developed for the inverse scattering problem. Recently, the linear sampling method (LSM),
which is based on the structure of the range of a self-adjoint operator, was developed
and applied for determining the locations and shapes of unknown scatterers [23–25].
However, the LSM requires a large number of directions of the incident and corresponding
scattered fields, and most of the research deals with the full-view inverse scattering problem.
MUltiple SIgnal Classification (MUSIC), which is a method of characterizing the range of
a self-adjoint operator (see [26] for instance), is also applied to various inverse scattering
problems and microwave imaging [27–29]. Let us mention that the location of small
scatterers can be identified clearly through the MUSIC in the full-view problem, but,
in the limited-view problem, incorrect locations are retrieved, refer to [30]. Moreover,
similar to the LSM, MUSIC requires a significant number of directions of the incident and
scattered field data. Direct and orthogonality sampling methods are fast, effective, and
robust techniques for retrieving small scatterers with single source [31–33], but the imaging
performance is significantly dependent on the location of source or direction of incident
field. Moreover, similar to the MUSIC, incorrect locations of small scatterers are retrieved
in a limited-view inverse scattering problem. Topological derivative (TD) based imaging
techniques have been successfully applied to various inverse scattering problems [34–36].
One of the advantages of the TD is that one can obtain good results even with a small
number of incident field data, but most of research is applied to the full-view inverse
scattering problem.

As shown above, the inverse scattering problem can be divided into a full-view
situation and a limited-view situation. We refer to Figure 1 for an illustration of the full-
and limited-view inverse scattering problems. In situation such as exploring the ground,
only limited-view data can be collected, so research on the limited-view situation is required.
In a limited-view situation, imaging is possible with the aforementioned algorithms, but the
imaging performance is very poor compared to when full-view data are given. Therefore,
research has been constantly conducted to solve this problem. Some research presented
mathematical analyses of non-repetitive imaging algorithms performed when limited-view
data are given (see [37–46] for instance). However, compared to the studies on the non-
iterative imaging techniques in the full-view situation, there have been few studies in the
limited-view situation.
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Figure 1. Schematic diagram of full- and limited-view inverse scattering problems. (a) Full-view
situation; (b) Limited-view situation.
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Therefore, in this study, in order to improve the imaging performance in the limited-
view problem, the artificial neural network model was developed that outputs the corre-
sponding full-view data when the limited-view data are input for the case of two and three
scatterers. For this purpose, the artificial neural network learned artificial neural network
in various ways using the data generated for each case. Consequently, a learning model in
which the mean square error between the output data from the artificial neural network
and the actual data are not large can be developed.

For the purpose of verifying the effectiveness of the output data drawn from the
artificial neural network, it was confirmed that the ground truth data and the imaging
result were very similar as a result of imaging the output data several times using the
subspace migration algorithm. In this way, it was confirmed that artificial neural networks
can be used importantly to solve the inverse scattering problem.

This paper is organized as follows. In Section 2, we briefly introduce the basic concept
of the two-dimensional direct scattering problems in the presence of small scatterers located
in a homogeneous space and subspace migration imaging technique from the generated
multi-static response (MSR) matrix whose elements are measured in the far-field pattern.
In Section 3, we design an adopted artificial neural network model for generating complete
elements of the MSR matrix and corresponding training results. The models developed
for the case of two scatterers and three scatterers are described respectively. In Section 4,
we exhibit various numerical simulation results to show the pros and cons of the designed
artificial neural network. Finally, a short conclusion including an outline of future work is
provided in Section 5.

2. Direct Scattering Problem and Subspace Migration
2.1. Two-Dimensional Direct Scattering Problem and Far-Field Pattern

Here, we briefly introduce a basic concept of the two-dimensional direct scattering
problem in the presence of a set of small scatterers and the imaging function of subspace
migration. Throughout this paper, we denote Γm, m = 1, 2, · · · , M, being a small scatterer
embedded in the two-dimensional homogeneous space Ω ⊂ R2 and Γ being the collection
of Γm. For this purpose, we assume that every Γm is a small ball with radius αm and
location ym.

Here, we assume that Γm and Ω are completely characterized by their dielectric
permittivity at a given angular frequency ω = 2π f , where f denotes the ordinary frequency.
Let 0 < εb < ∞ and 0 < εm < ∞ denote the permittivity of the Ω and Γm, respectively.
Correspondingly, we can introduce the following piecewise constant of permittivity

ε(x) =
{

εm for x ∈ Γm
εb for x ∈ Ω\Γ

With this, we denote k = ω
√

εbµb as the background wavenumber. Here, µb is the
value of magnetic permeability.

Here, we consider the plane-wave illumination: uinc(x, θ) = eikθ·x as the given incident
field with the propagation direction θ ∈ S1 that satisfies the following Helmholtz equation

∇ · ∇uinc(x, θ) + k2uinc(x, θ) = 0.

Here, Sd−1 denotes the unit circle centered at the origin in Rd. With this, we denote
u(x, θ) as the time-harmonic total field which satisfies the Helmholtz equation

1
µb
∇ · ∇u(x, θ) + ω2ε(x)u(x, θ) = 0

with transmission condition on the boundaries of Γm, m = 1, 2, · · · , M. Usually, the u(x, θ)
can be split into the incident field uinc(x, θ) and the scattered field uscat(x, θ), which satisfies
the Sommerfeld radiation condition
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lim
|x|→∞

√
|x|
(

∂uscat(x, θ)

∂|x| − ikuscat(x, θ)

)
= 0 uniformly in all directions ϑ =

x
|x| .

Let u∞(ϑ, θ) be the far-field pattern corresponding to the scattered field uscat(x, θ) with
observation direction ϑ = x/|x| ∈ S1 that satisfies

uscat(x, θ) =
eik|x|√
|x|

u∞(ϑ, θ) + O

(
1√
|x|

)
uniformly in all directions ϑ, |x| −→ ∞.

Based on [47], the far-field pattern u∞(ϑ, θ) can be represented as an asymptotic
expansion formula

u∞(ϑ, θ) ≈ k2π(1 + i)
4
√

kπ

M

∑
m=1

α2
m

(
εm − εb√

εbµb

)
e−ik(ϑ−θ)·ym . (1)

2.2. Subspace Migration Imaging Algorithm

Here, we apply the (1) to introduce the subspace migration algorithm for a direct
imaging of Γm from collected far-field pattern data

F =
{

u∞(ϑ j, θl) : j, l = 1, 2, · · · , N, ϑ j = −θj ∈ S1
SUB

}
,

where S1
SUB denotes a connected, proper subset of S1 (see Figure 1). With this, we generate

the following MSR matrix M ∈ CN×N such that

M =


∆S1,1 ∆S1,2 · · · ∆S1,N
∆S2,1 ∆S2,2 · · · ∆S2,N

...
...

. . .
...

∆SN,1 ∆SN,2 · · · ∆SN,N

, ∆Sj,l = u∞(ϑ j, θl).

Based on the (1), each element ∆Sj,l can be written as

∆Sj,l ≈
k2π(1 + i)

4
√

kπ

M

∑
m=1

α2
m

(
εm − εb√

εbµb

)
eik(θj+θl)·ym .

Based on the above representation, we introduce the following unit vector: for each
x ∈ Ω,

W(x) ≈ 1√
N

(
eikθ1·x, eikθ2·x, · · · , eikθN ·x

)T

.

Then, M can be decomposed as follows:

M =
k2π(1 + i)
4
√

kπεbµb

M

∑
m=1

W(x)


α2

1(ε1 − εb) 0 · · · 0
0 α2

2(ε2 − εb) · · · 0
...

...
. . .

...
0 0 · · · α2

M(εM − εb)

W(x).

The imaging function of the subspace migration can be introduced based on the above
decomposition. To this end, we perform the singular value decomposition of M:

M = UDV∗ =
N

∑
n=1

σnUnV∗n ≈
M

∑
n=1

σnUnV∗n,
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where σn denotes the nth singular value, Un and Vn are the nth left- and right-singular
vectors of M, respectively. Since the following relation already be examined in [48]

〈Un, W(x)〉 ≈ 1, 〈Vn, W(x)〉 ≈ 1 if x = ym,

0 < 〈Un, W(x)〉 < 1, 0 < 〈Vn, W(x)〉 < 1 if x 6= ym,

we can introduce the following imaging function: for each x ∈ Ω

FSUB(x) =

∣∣∣∣∣ M

∑
n=1
〈Un, W(x)〉〈Vn, W(x)〉

∣∣∣∣∣.
Here, 〈U, V〉 = U ·V. Then, FSUB(x) ≈ 1 when x = ym ∈ Γm and FSUB(x) < 1 when

x 6= Ω\Γ so that the location ym can be identified through the map of FSUB(x).
It is worth mentioning that subspace migration can be applied to the full- and limited-

view inverse scattering problems. However, one cannot retrieve good results in the limited-
view problem when total number N is small, while good results can be guaranteed in a
full-view problem. A theoretical reason is as follows. Refer to [43]:

Theorem 1. Let x − ym = |x − ym|(cos φm, sin φm) and θn = (cos θn, sin θn). Then, for
sufficiently large N and k, FSUB(x) can be represented as

FSUB(x) =

∣∣∣∣∣ M

∑
m=1

(
J0(k|x− ym|) +

D(x− ym)

θN − θ1

)∣∣∣∣∣,
where the term D(x− ym), which degrades the imaging performance, is given by

D(x− ym) = 4
∞

∑
s=1

is

s
Js(k|x− ym|) sin

s(θN − θ1)

2
cos

s(θN + θ1 − 2φm + 2π)

2
.

Notice that, in the full-view problem, the range of incident and observation directions
is θN − θ1 = 2π so that the term D(x− ym) can be removed. This means that the scatterers
Γm can be retrieved via the map of FSUB(x) in a full-view problem. Therefore, for a
proper identification of scatterers, it is natural to consider the generation of complete
elements of MSR matrix from limited-view data. Unfortunately, one needs prior information
of scatterers to generate missing elements so that direct generation of the elements is
very difficult.

Motivated by this difficulty, we consider the generation of the MSR matrix M in a
full-view configuration from the MSR matrix L in a limited-view configuration: for an even
number N, generate complete elements ∆Sj,l , j, l = 1, 2, · · · , N of M from the following
MSR matrix L ∈ CN/2×N/2:

L =


∆S1,1 ∆S1,2 · · · ∆S1,N/2
∆S2,1 ∆S2,2 · · · ∆S2,N/2

...
...

. . .
...

∆SN,1 ∆SN,2 · · · ∆SN/2,N/2

.

3. Artificial Neural Network Model and Training Results

It was thought that it would be difficult to train an artificial neural network when the
number of scatterers was varied, so two learning models were developed for each case of
two and three scatterers. For learning, we apply N = 16 incident θn and observation ϑn
directions for full-view data such that

θn =

(
cos

2(n− 1)π
N

, sin
2(n− 1)π

N

)
, n = 1, 2, · · · , N = 16.
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Throughout this paper, we assume that there exist 2 or 3 scatterers with the same
radii αm = 0.01 and permittivities εm = 5. For a limited-view situation, we apply first
N/2 = 8 incident θn and observation directions ϑn. With this setting, the far-field pattern
data ∆Sj,l = u∞(ϑ j, θl) of K at wavenumber k = 2π/0.4 was generated by solving the
Foldy–Lax formulation (see [49], for instance). Therefore, 16× 16 values of the MSR matrix
M of full-view data are partitioned into four 8× 8 data groups as shown in Figure 2, and
then data preprocessing is performed to convert group 1 data into input data.

Then, three training data sets were created using the data of groups 2, 3, and 4 as the
correct label, and then three artificial neural networks were trained using each data. That
is, in the first artificial neural network, the data of groups 1 and 2 are training data sets, in
the second artificial neural network, the data of groups 1 and 3 are training data sets, and
in the third artificial neural network, the data of groups 1 and 4 are used as training data
sets, which were applied to each artificial neural network as a training data set.

∆S1,1 · · · ∆S1,8 ∆S1,9 · · · ∆S1,16

... 1 ...
... 2 ...

∆S8,1 · · · ∆S8,8 ∆S8,9 · · · ∆S8,16

∆S9,1 · · · ∆S9,8 ∆S9,9 · · · ∆S9,16

... 3 ...
... 4 ...

∆S16,1 · · · ∆S16,8 ∆S16,9 · · · ∆S16,16




Figure 2. Partitioning of the MSR matrix.

In order to find a suitable learning model to solve the problem of constructing full
view data from limited view data, the number of layers and the number of nodes of hidden
layers were adjusted in CNN and ANN models, and experiments were conducted using
various activation functions. In the CNN model. a suitable model could not be found.
However, when the ReLU function was used as the activation function in the ANN model
and the number of hidden layers was 3, a learning model with a small mean square error
could be found. In order to solve the overfitting problem, which is the major problem of
ANN, we proceeded the learning. Even though the mean square error of the training data
decreased, the mean square error of the test data did not show increase or decrease. In this
case, we proceeded the learning process trying another model or increased the amount
of training data. In addition, in order to reduce the complexity of the model, the number
of hidden layers and the frequency of learning were adjusted to be as small as possible.
In order to increase the learning rate and apply the ReLU function, the data cleansing of
∆Sj,lS resulted in Aj,l . Then, the data output through the artificial neural network, Bj,l , was
converted to C− j, l by performing data preprocessing, and the final output was made.

The artificial neural network model was constructed to generate three 1× 64 data
using limited-view 8 × 8 data as shown in Figure 3, and the artificial neural network
consists of an input layer and three hidden layers and an output layer. Activation function
used ReLU, and optimization algorithm used Adam, and 8× 8 data were preprocessed into
1× 64 data, to be an input into the artificial neural network. and inputting three different
artificial neural networks, and made them learned [50–54]. By processing three 1× 64
output data drawn from each artificial neural network and using 8× 8 data used for input,
16× 16 data became a final output.
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Figure 3. Schematic diagram of an artificial neural network.

3.1. The Case of Having Two Scatterers

When the number of scatterers is 2, after generating 10,000 full-view data for artificial
neural network learning and testing, 9500 of them were divided into training data set and
500 are divided into test data set to proceed the learning. That is, the ratio of training data
and test data were set to 95:5. Each time the artificial neural network was trained five times,
the mean square error between the output data from each artificial neural network and the
ground truth data were measured and graphed as shown in Figure 4a–c In this case, the
x-axis is the number of learning, the red line is the mean square error for the validation
data, and the green line is the mean square error for the training data. As shown in the
figure, it can be seen that the mean square error measured using the training data and the
validation data are similar as the learning progressed in the three artificial neural networks.
As a result of calculating the mean square error with 500 test data after the learning was
finished, as shown in Figure 4d, about 88% is distributed between 0 and 0.02, and the error
is found to be very small because the maximum error is 0.07.

In addition, to identify the similarity between the ground truth data and the output
data obtained through the trained model, using the image map (imshow) function of
Python, output data were separated into the real-part and imaginary-part to be visualized,
respectively, like Figure 5. Looking at the figure, it can be seen that the distribution patterns
of the two data are similar to each other. That is, since the error between the ground truth
data and the output data through the learned model is small and the distribution pattern
is similar, it can be predicted that the results obtained by imaging using the two data will
be similar.
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(a) (b)

(c) (d)

Figure 4. Cases with two scatterers, Mean square error (a–c) for each group of test data and distribu-
tion of mean square error of test data (d).

(a) (b)

(c) (d)

Figure 5. Visualization of the real-part and imaginary-part of ground truth data and output data
when there are two scatterers. (a) ground truth data (real-part); (b) output data (real-part); (c) ground
truth data (imaginary-part); (d) output data (imaginary-part).
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3.2. The Case of Having Three Scatterers

In the case of three scatterers, 10,000 data were generated and learned in the same
way as in the case of two scatterers, but the results were not good. Thus, 110,000 data
were newly created, and the learning was performed again by using 99,500 training data,
500 validation data, and 10,000 test data set. That is, learning was carried out by dividing
the ratio of training data and test data by 10:1. As before, every time the artificial neural
network is trained five times, the mean square error of the output value from each artificial
neural network and the actual value is measured and graphed with each group, as shown
in Figure 6a–c. As shown in Figure 6, it can be seen that the mean square error measured
using the training data and the validation data are similar when learning is performed in
three artificial neural networks.

(a) (b)

(c) (d)

Figure 6. Cases with three scatterers, Mean square error (a–c) for each group of test data and
distribution of mean square error of test data (d).

Looking at this result alone, it can be seen that there is little error in the third artifi-
cial neural network, and the error in the first artificial neural network is relatively large.
Through this, it can be deduced that group 1 and group 4 may have a higher mathematical
correlation than other groups.

In order to more objectively check whether the learning was successfully carried out,
the mean square error between the output data and the ground truth data were calculated
using 10,000 test data that were not used for learning at all. As a result, as shown in
Figure 5d, the mean square error for more than 70% of the test data was less than 0.04, the
largest error was 0.166, and the smallest error was 0.01.

In addition, in order to understand the similarity between the ground truth data and
the output data through the trained model, as in the previous case, the real-part and the
imaginary-part were visualized for randomly generated data, respectively. As shown in
Figure 7, it can be seen that the distribution patterns of the two data are similar to each
other. That is, in this case as well, it can be predicted that the imaging results obtained by
using the two data will be similar.
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(a) (b)

(c) (d)

Figure 7. Visualization of real-part and imaginary-part of ground truth data and output data when
there are three scatterers. (a) ground truth data (real-part); (b) output data (real-part); (c) ground
truth data (imaginary-part); (d) output data (imaginary-part).

4. Results of Numerical Simulations and Conclusions

In order to check whether the learning of the artificial neural network was properly
carried out as desired, the MSR matrix was created with input data, output data, and
ground truth data. In addition, then using the subspace migration algorithm, imaging was
performed for two and three scatterers, respectively.

4.1. The Case of Having Two Scatterers

First, in the case of having two scatterers, the results of imaging with the subspace
migration algorithm using the output data by inputting the test data of No. 1, No. 400, and
No. 500 into the developed model and ground truth data are shown in Figure 8. The parts
highlighted in red in this figure are the locations of the scatterers. As a result of imaging
with ground truth data and learning data in all three cases, it can be seen that the locations
of the scatterers are the same.
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Figure 8. Imaging results for ground truth data and learning data with two scatterers. (a) true data
No. 1; (b) learning data No. 1; (c) true data No. 400; (d) learning data No. 400; (e) true data No. 500;
(f) learning data No. 500.

In addition, in order to check whether the learning was successfully performed, we
recreated the data. The imaging result of this recreated data using the subspace migration
algorithm and the imaging result of the output data obtained by inputting this data into
the learning model and the distributions of its singular values are shown in Figure 9. In
this figure, the results of imaging the ground truth data and the output data show that
there is little difference in the afterimages and the locations of the scatterers between two
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images. In addition, when (a) and (c) are compared, although the distributions of singular
values are somewhat different, there is no problem in finding the locations of the scatterers
because the two singular values are relatively large.
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Figure 9. Singular value distribution and imaging results for randomly generated scatter’s data.
(a) SVD with true data; (b) imaging result with true data; (c) SVD with learning data; (d) imaging
result with learning data.

In addition, referring to Figure 10, as shown in (a), the difference between singular
values is relatively small, so, as a result of imaging limited view data, it may not be possible
to locate the scatterers as in (b). When the singular value is calculated with the full view
data output by inputting this limited view data into the learning model, there are two
points with relatively large singular values as shown in (c). The locations of the scatterers
can be easily found as shown in the imaging result (d). To sum up, it can be seen that, if the
number of scatterers is two, the developed artificial neural network model constructs the
correct full view data from the limited view data well.
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Figure 10. Singular value distribution and imaging result of limited-view data (top) and output data
(bottom). (a) SVD with limited-view data; (b) imaging result with true data; (c) SVD with full-view
data; (d) imaging result with learning data.

4.2. The Case of Having Three Scatterers

In the case of three scatterers, as a result of learning 10,000 data, three high singular
values were found as shown in Figure 11, but it can be seen that it is difficult to specify the
location of the scatterers due to poor imaging results. Since further learning may lead to a
risk of overfitting, the amount of data used for learning was increased.
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Figure 11. Singular value distribution and imaging results for output data from a model learned with
10,000 data.
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Therefore, 100,000 data were newly created and learned again, and the previously
generated 10,000 data were not used for learning but used as test data. In order to confirm
that the learning progressed well, among the output full view data from the test data
input into the learning model, the cases with the largest and smallest mean square errors,
compared to the ground truth data, are imaged with the subspace migration algorithm in
Figure 12 and Figure 13, respectively. In both cases, when imaged with ground truth data
(Figures 12a and 13a) and data output through the learning model (Figures 12b and 13b),
it can be seen that the positions of the three scatterers highlighted in red are the same. In
addition, it can be seen that, when a singular value is calculated using this data, three
relatively large singular values are detected. Therefore, it can be considered that the full
view data are well constructed from the limited view data, unlike when the artificial neural
network is trained using 10,000 data.
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Figure 12. Singular value distribution and imaging results for the case with the largest mean square
error case among the test data. (a) SVD with true data; (b) imaging result with true data; (c) SVD
with learning data; (d) imaging result with learning data.
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Figure 13. Singular value distribution and imaging results for the case with the smallest mean square
error case among the test data. (a) SVD with true data; (b) imaging result with true data; (c) SVD
with learning data; (d) imaging result with learning data.

In addition, as in the case of two scatterers, the results of imaging the ground truth
data of randomly generated scatterers and the data output by inputting this data into the
learning model and the distribution of the singular value are shown in Figure 14. At this
time, there are three points with large singular values in (a), (c), and (e), but in the case
of limited view data, the three singular values are smaller than in other cases, so, when
imaging, the location of the scatterers could not be found as shown in (b). However, when
imaging with full view data output from the learning model, the locations of the scatterers
could be found as shown in (f), and it was similar to the imaging result with actual ground
truth data in (d). In other words, when arbitrary data that was not used at all for learning
was input and imaged as output data, the locations of the scatterers could be found well.
Therefore, even though the number of scatterers is three, it can be confirmed that the
developed artificial neural network model has been successfully trained to construct the
full-view data from the limited-view data input.
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Figure 14. Imaging result and singular value distribution for limited view data (top), ground truth
data (middle), output data (bottom). (a) SVD with limited-view data; (b) imaging result with limited
view data; (c) SVD with true data; (d) imaging result with true data; (e) SVD with learning data;
(f) imaging result with learning data.

The fundamental problem with the inverse scattering problem in limited view situa-
tions is that it is sometimes impossible to locate the scatterers when imaging with limited
view data due to insufficient data. Through previous experiments, it was found that this
problem can be solved to some extent using artificial intelligence. Based on this study, we
can draw the following conclusions.
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(i) For the cases of two and three scatterers, it is possible to develop a learning model
that constructs the full view data from the limited view data with a small mean
square error and similar data distribution compared to the ground truth data.
In addition, the distributions of singular values calculated from the data output
from the developed model or the results of imaging with the subspace migration
algorithm were similar to the ground truth data, so the locations of the scatterers
could be found.

(ii) Even if the location of the scatterers could not be found when imaging with
subspace migration algorithm using the limited view data, the location of the
scatterers could be found as a result of imaging using the full view data output
from the developed model (see Figures 10 and 14).

(iii) As shown in Figure 15, the error distribution of ground truth data and full view
data output from the developed model shows that the error between group 1 and
group 4 is relatively small. Since the full view data output from this learning model
is from the limited view data of group 1, it can be seen that the correlation between
the data of group 1 and the data of group 4 is high.

Figure 15. Error distribution between ground truth data and output data (the darker the color, the
greater the error).

(iv) Figures 5 and 7 show that the data distribution of the MSR matrix has some sym-
metry, and the full view data output from the artificial neural network maintains
its symmetry.

(v) Attempts to solve the inverse scattering problem using artificial intelligence mainly
used the image for training. However, this study shows that it can be efficient to
use data collected from transmission and receiving antennas directly for training
artificial intelligence.

5. Discussion

From the above conclusions, future research topics can be considered. First, in this
study, a learning model was developed separately for the cases of two and three scatterers,
but we plan to develop it as one model in the future. Furthermore, we try to develop a
model applicable to limited view data for an arbitrary number of scatterers. Second, it can
be expected that the phenomena of conclusions 4 and 5 can be analyzed mathematically.
Since mathematical analyses of several imaging functions have already been performed,
it can be said to be a highly feasible research topic [55,56]. Finally, the method of directly
using the data collected from the transmission and receiving antennas used in this study for
artificial intelligence training can be applied to a wider variety of inverse problems. In real
life, for example, data of diagonal components cannot be collected in the MSR matrix due
to the limitations of the technology. Therefore, in the past, diagonal components were often
set to 0 or 1, collectively. However, it is expected that the method used in this study will be
used to develop a learning model that provides more appropriate diagonal components.
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