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Abstract: With the rapid popularization of intelligent terminals and the explosive growth of wireless
communication service demand, future mobile communication technology will face many challenges.
Non-orthogonal multiple access (NOMA) technology for 5G can provide many connections and
effectively improve the frequency spectrum and energy efficiency compared to traditional orthogonal
multiple access technologies. Therefore, in recent years, NOMA technology has become one of the
research hotspots of numerous scholars. However, the resource allocation problem in the NOMA
system, as a high-dimensional nonlinear programming problem, has not been well studied. In
addition, the particle swarm optimization algorithm can also effectively find the optimal solution
for complex and constrained problems. Still, at the same time, it is easy to fall into local optimal
defects. In this context, we decouple the high-dimensional nonlinear programming problem to
maximize system energy efficiency into sub-problems: subchannel and power allocation. Firstly, a
low-complexity greedy algorithm based on the principle of worst-case subchannel priority matching
is proposed to solve the subchannel assignment problem. In addition, we further apply the modified
particle swarm optimization algorithm to allocate power to the NOMA downlink system, aiming to
improve the energy efficiency of the communication system as much as possible under the premise
of ensuring the quality of service (QoS). Simulation results show that our proposed scheme has low
complexity and can significantly improve the energy efficiency of the NOMA system and achieve
better user fairness.

Keywords: non-orthogonal multiple access; energy efficiency; greedy algorithm; particle swarm
optimization

1. Introduction
1.1. Preliminaries

With the continuous explosion of traffic and the increasing number of intelligent de-
vices, the 5th generation (5G) technology is being driven to develop at high speed [1–3]. The
first four generations of mobile communication systems adopted orthogonal multiple access
(OMA) technology to keep the receiving cost low and achieve good system throughput. The
interference between users in an orthogonal multiple access scheme is relatively small, and
user detection is convenient. However, different users need to have orthogonality when
sharing communication resources, which significantly restricts the number of users carried
by the system, resulting in low spectral efficiency. Compared with 4G, 5G will increase
spectrum efficiency by 100–1000 times, increase capacity by 10–100 times, and support
diverse QoS. To adapt to the requirements of 5G ultra-high spectrum efficiency and system
capacity, experts and scholars from various countries have actively studied advanced wire-
less communication technologies [4,5]. Among these technologies, non-orthogonal multiple
access (NOMA) technologies have become one of the candidates for the next-generation
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communication system due to their excellent performance [6–10]. The main idea of NOMA
technology is to use power multiplexing technology at the transmitter end and actively
introduce interference, multiplex superimposed signals for transmission. It eliminates the
multiple-access interference through the serial interference canceling (SIC) receiver [11],
thus achieving correct demodulation for multiple users. However, interference between
users in NOMA can significantly affect system performance. Based on ensuring user access
fairness, using reasonable user grouping and power allocation algorithm can improve the
total rate of the NOMA system [12,13]. Therefore, studying NOMA technology’s critical
technology and resource allocation algorithm can effectively enhance resource utilization
and system capacity, which has important significance and application value.

1.2. Related Work

Since 5G is committed to achieving communication with higher speed, larger ca-
pacity, and ultra-low delay, in previous studies, many scholars have devoted themselves
to studying how to improve the system rate. To further enhance the spectral efficiency,
the author in [14] combined multiple input multiple output (MIMO) technology with a
non-orthogonal multiple access system. Furthermore, they transformed the weighted sum
rate maximization problem, constructed auxiliary variables, and proposed an iterative
algorithm. Compared with the MIMO-NOMA system with an equal power allocation
algorithm, the MIMO-NOMA system with the proposed algorithm has a higher weighted
sum rate. The authors in [15] studied multi-user systems and rate maximization under
perfect CSI. Firstly, the author proposed a sub-optimal low complexity subchannel alloca-
tion scheme to allocate each user to the appropriate subchannel. Secondly, the fractional
transmit power allocation (FTPA) algorithm was used between subchannels, and the closed
form solution of power allocation of multiplexing users was obtained by constructing the
Lagrange function in subchannels. Aiming to maximize the weighted sum rate, some schol-
ars studied the subchannel and the power allocation of the multi-carrier non-orthogonal
multiple access (MC-NOMA) system in [16,17].

In recent years, the wireless network energy consumption has been enormous, and
effectively using resources to achieve green communication is imminent [18]. The author
of [19], taking into account the incomplete CSI, transformed the probability problem of
maximizing the energy efficiency of the downlink NOMA heterogeneous network into a
non-probability problem. They obtained the approximate solution of the power allocation
factor through the dichotomous search algorithm and convex sequence programming.
In [20], the authors proposed multi-objective joint optimization problems, such as improv-
ing spectral efficiency, meeting transmission power constraints, and improving energy
efficiency. In addition, the dual technique was used to solve the problem. However, when
evaluating the performance of this scheme, the authors only introduced the implementation
effect separately. There were no comparisons and explanations with other methods. Aiming
to maximize the energy efficiency of the NOMA system, the authors solved the non-convex
optimization problem by subchannel-user matching and power allocation step by step
in [21]. Based on the matching theory, this paper proposes a suboptimal sub-channels
bidirectional matching algorithm with users. The main idea of the algorithm is that the user,
according to the channel gain of each channel on the descending sequence to the highest
priority sub-channels, post-matches the request according to whether the current maximum
subchannels reject or accept based on the energy efficiency. Although the algorithm can
obtain good matching results, the user can only passively select the sub-channel with poor
channel quality at the later stage of the user and sub-channel assignment.

Due to the relatively high complexity and high computational overhead of previous
resource allocation schemes, many researchers have begun to apply heuristic algorithms
with increased flexibility and low complexity to the resource allocation problem [22–24].
Compared with exact algorithms, heuristic algorithms are not guaranteed to find the best
solution. However, they can discover near-optimal solutions with appropriate resources.
Among them, the particle swarm optimization algorithm (PSO), which was first proposed



Appl. Sci. 2022, 12, 9740 3 of 18

by Dr. Eberhart and Dr. Kennedy in the study of the flight foraging behavior of birds,
is a swarm intelligence optimization algorithm [25,26]. In [27], the authors proposed to
apply the particle swarm optimization algorithm to the orthogonal frequency division
multiplexing access (OFDMA) adaptive resource allocation problem. In addition, this
paper creatively presented a re-selection mechanism to solve the problem that PSO is
prone to fall into the local optimum so that the users with more significant channel gain
can match subchannels with greater probability. In [28], aiming at the device-to-device
(D2D) underlying cellular network, the author proposed a PSO algorithm to reasonably
allocate user power to ensure the minimum user rate. Compared with the random and
fixed power allocation algorithms, the proposed algorithm can maximize the throughput
of cellular networks. However, the application of this algorithm in multi-cell scenarios
remains to be studied. In [29], to ensure the system’s spectral efficiency and maximize
the system’s energy efficiency, the author combined the cycle strategy rotation with the
particle swarm optimization algorithm to allocate the downlink power of the NOMA
system. In [30], the authors studied how to distribute power to maximize the throughput
of a single input single output (SISO) NOMA system. In this paper, the authors proposed
a power allocation scheme that distributed power equally to the subchannels and used
a particle swarm optimization algorithm to allocate power to the subchannels. The two
methods significantly improve system throughput and fairness between users compared
to the water-filling-based method. Because the Doppler frequency shift easily exists in
the downlink MIMO-OFDM high-speed railway system, it is necessary to consider the
inter-carrier interference to maximize the system throughput under this background. For
this mixed integer nonlinear programming problem, the author in [31] proposed to use the
quantum-behaved particle swarm optimization (QPSO) algorithm to find the sub-optimal
solution. In [32], that particle swarm optimization algorithm was also applied to the power
allocation of uplink NOMA millimeter-wave (mmWave) communications. The NOMA
mmWave system of the proposed solution performs significantly better than OMA, but the
practical value of the approach is not high due to the two-user setup. In [33], the author
improved the particle swarm optimization algorithm by adding a genetic algorithm to the
particle swarm optimization algorithm and used it to solve the adaptive resource allocation
problem of the cognitive radio system. The simulation results show that this novel power
allocation algorithm has a better resource allocation effect and can adapt to the adaptive
task of cognitive radio in different communication scenarios.

1.3. Contributions and Structure of the Paper

Based on the above research, to ensure the quality of service of users and satisfy the
transmission power constraint, we propose a novel resource allocation scheme to maximize
the energy efficiency of the NOMA downlink system. First, to ensure users’ fairness and
improve the data rate of users with poor channel quality, we propose a low complexity
greedy algorithm to allocate subchannels. Secondly, given the problem that the existing
particle swarm optimization algorithm is prone to fall into local optimization and the later
search accuracy is not high, we modify the algorithm. Finally, we use the modified particle
swarm optimization algorithm to solve the power allocation problem between and within
subchannels.

The subsequent arrangement of the article is as follows. Section 2 introduces the
NOMA downlink system model and proposes the optimization problems we need to
solve. In Section 3, we first introduce our proposed low complexity subchannel allocation
algorithm. Then we explain the improvement measures of the particle swarm optimization
algorithm. Finally, we present how to use the improved particle swarm optimization
algorithm for power allocation. In Section 4, we analyze the simulation results of the
proposed scheme. Finally, Section 5 is the conclusion of this paper.



Appl. Sci. 2022, 12, 9740 4 of 18

2. System Model and Problem Formulation
2.1. System Model

We consider a single-cell multiuser NOMA downlink system in which the base station
is located in the center of the cell, and the users are distributed randomly. The system model
diagram is shown in Figure 1. In this system, M users are allocated to N subchannels,
and the maximum number of users multiplexed per subchannel is Mn = M/N. The
total bandwidth of the system is equally divided into orthogonal subchannels; that is, the
bandwidth of each subchannel is Bs = B/N. Additionally, the mth user is denoted as Um,
while the nth subchannel is denoted as SCn. Um,n represents the mth user on SCn. In this
NOMA system, we assume that the channel state information can be obtained by channel
estimation, and the superposition information sent to each subchannel is independent.
Then the transmitted superposed signal by the BS on SCn is

xn =
Mn

∑
m=1

√
pm,nxm,n (1)

where pm,n is the power allocated to Um,n, xm,n is the signal sent by user Um on SCn.

pn =
Mn
∑

m=1
pm,n indicates the transmit power on the subchannel n. When the superimposed

signal is transmitted to the receiving end through the channel, the received signal of Um,n
is given by

ym,n = hm,nxn + zm,n =
√

pm,nhm,nxm,n + hm,n

Mn

∑
i=1,i 6=m

√
pi,nxi,n + zm,n (2)

where hm,n is the channel gain from the base station to Um,n. The additive white Gaussian
noise (AWGN) is represented by zm,n with zero mean and σ2

n variance, that is, zm,n ∼
CN

(
0, σ2

n
)
.

Figure 1. Downlink multicarrier NOMA system model.

Since NOMA multiplexes several users on the same sub-channel, multiple users are
not orthogonal to each other. Therefore, co-channel interference between users is inevitable.
In this case, each user eliminates interference from other users’ signals through SIC at the
receiving end. Due to the users’ fairness, the base station allocates less power to users with
good channel conditions and more power to users with poor channel conditions. The SIC
performs data decisions on a plurality of users according to the user power in the received
signal. In this process, once the SIC demodulates a user, the interference caused by the
signal is subtracted. This operation is generally performed according to the increasing
order of channel response normalized by noise (CRNN). In this system, we assume that
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|H1,n| ≥ |H2,n| ≥ · · · ≥ |Hm,n| ≥ |Hm+1,n| ≥ · · · ≥ |HMn ,n| and Hm,n = |hm,n|2/σ2
n . After

SIC demodulation, in accordance with Shannon’s capacity law, the swallow volume of Um,n
can be written as

Rm,n = Bslog2

1 +
pm,n Hm,n

1 + Hm,n
m−1
∑

i=1
pi,n

 = Bslog2(1 + SINRm,n) (3)

Then, the sum rate of the SCn can be written as

Rn = Bs

Mn

∑
i=1

log2(1 + SINRi,n) (4)

2.2. Problem Formulation

For the downlink NOMA network, this paper considers the case that any subchannel
only allocates two users. Let the multiplexing user on SCn be U1,n with good channel
condition and U2,n with poor channel condition respectively, and |H1,n| ≥ |H2,n|. In this
case, the throughput of U1,n and U2,n can be expressed as

R1,n = Bs log2(1 + αn pn H1,n) (5)

R2,n = Bs log2

(
1 +

(1− αn)pn H2,n

1 + αn pn H2,n

)
= Bs log2

(
1 + pn H2,n

1 + αn pnH2,n

)
(6)

where αn ∈ (0, 1) is the power distribution scaling factor of U1,n. Then, the throughput of
subchannel SCn is expressed as

Rn = R1,n + R2,n (7)

Therefore, we formulate the energy efficiency optimization problem of the NOMA
downlink system as follows:

η : max
pn>0

N

∑
n=1

(
R1,n + R2,n

pn + pc

)
(8)

s.t. C1 : Rm,n ≥ Rmin, ∀m ∈ Mn, n ∈ N

C2 :
N
∑

n=1
pn ≤ Ptot, ∀n ∈ N

(9)

Among them, pc represents the power loss of the subchannel, and Ptot represents the
total transmit power of the base station. The constraint C1 indicates the minimum data
rate for each user to meet the quality of service (QoS) requirements, and C2 guarantees the
maximum transmission power limit of the base station. It can be seen that the problem is
non-convex and NP-hard, so it is difficult to find the optimal global solution directly. In
order to solve this problem efficiently, we decouple it into two subproblems: subchannel
allocation and power allocation. We use a stepwise approach to find the suboptimal
solution of the problem.

3. Proposed Algorithm
3.1. Subchannel Assignment Algorithm (SAA)

The exhaustive search algorithm, as everyone knows, is the best performance for con-
fident channel assignment. However, it needs to traverse all users; that is, the complexity
increases exponentially with the increase in the number of users and the number of subchan-
nels. High complexity in exchange for performance optimization is not desirable in practical
applications. Inspired by [34], to reasonably allocate users and subchannels, we propose
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a low-complexity greedy algorithm that can not only maximize the energy efficiency of
subchannels, but also improve the data rate of weak users and ensure user fairness.

To simplify the calculation, we assume that the initial power of all subchannels is
equal, and the fractional power allocation algorithm is used to allocate power among
the multiplexed users on each subchannel. When allocating subchannels, we propose an
algorithm that first sorts the subchannels in ascending order according to the magnitude of
the user’s worst channel gain on each subchannel and then arranges the matching order of
subchannels. When a subchannel matches, it matches the user with the most substantial
channel gain on the local channel. In the following matching process, the matched users
are excluded from consideration in the matching process. According to the sorting of
subchannels, the next subchannel selects only the user with the best channel quality on
this channel among the unmatched users. Based on the above matching principle, the
remaining users will perform the next round of matching with the subchannel when all
the subchannels have reached a user. This subchannel allocation algorithm ensures that
the channel gain of the two matched users is as high as possible, thus helping to improve
user fairness and reduce the probability of disruption. The detailed flow of the proposed
subchannel allocation algorithm is shown in Algorithm 1.

Algorithm 1 Proposed Subchannel Allocation Algorithm.

1: Construct a channel gain matrix with M users m ∈ {1, 2, · · · , M} and N subchannels
n ∈ {1, 2, · · · , N}.

2: Construct the set Uunmatch to record unmatched users.
3: while {Uunmatch} is not empty do
4: for n = 1 to N do
5: To compare the channel gain of users on each sub-channel and to select the worst

channel gain.
6: Sort the matching order of each subchannel and the ascending order is based on

the N worst channel gains selected.
7: end for
8: if then|Uunmatch| > M/2
9: for Sorted n subchannel do

10: Match the sorted subchannels to the user with the best channel quality on
the subchannel.

11: Remove the matched users from Uunmatch
12: end for
13: end if
14: if then|Uunmatch| ≤ M/2
15: for Sorted n subchannel do
16: Match the sorted subchannels to the the remained user of Uunmatch with the

best channel quality on the subchannel.
17: Remove the matched users from Uunmatch
18: end for
19: end if
20: end while

In addition, to clarify the subchannel assignment algorithm in detail, we take the
NOMA system with four subchannels and two users for each subchannel as an example.
Assume that the channel gain matrix of four subchannels and eight users is

H4×8 =


1.32 5.78 0.67 1.21 1.06 4.37 2.15 2.23
0.07 3.21 0.87 3.54 1.12 5.01 1.87 4.33
2.38 1.33 4.20 2.68 0.84 1.93 1.70 1.39
1.55 1.96 5.84 1.02 3.21 2.10 1.46 2.79

 (10)
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where we take SCn ∈ {SC1, SC2, SC3, SC4} as the subchannel, that is, each row of the
channel gain matrix. Um ∈ {U1, U2, . . . , U8} is expressed as the user, that is, each column
of the channel gain matrix. The subchannel matching process is as follows:

Step 1: The channel gain of users in SC1 is compared. The user with the worst channel
gain is U3, whose channel gain is 0.67. Similarly, the user with the worst channel gain in
SC2 is U1, and the channel gain is 0.07. In SC3, the user with the worst channel gain is
U5, with a channel gain of 0.84. In SC4, the user with the worst channel gain is U4, and
the channel gain is 1.02. After the channel gain matrix has gone through the operational
process in step 1, we note it as H1, as shown below. Similarly, after steps 2, 3 and 4, the
channel gain matrix is denoted as H2, H3 and H4, respectively.

H1 =


1.32 5.78 0.67 1.21 1.06 4.37 2.15 2.23
0.07 3.21 0.87 3.54 1.12 5.01 1.87 4.33
2.38 1.33 4.20 2.68 0.84 1.93 1.70 1.39
1.55 1.96 5.84 1.02 3.21 2.10 1.46 2.79

 (11)

Step 2: According to the ascending order of channel gain, the order of matching users
of each subchannel is sorted. The matching sequence is SC2, SC1, SC3, and SC4. This gives
the following results.

H2 =


0.07 3.21 0.87 3.54 1.12 5.01 1.87 4.33
1.32 5.78 0.67 1.21 1.06 4.37 2.15 2.23
2.38 1.33 4.20 2.68 0.84 1.93 1.70 1.39
1.55 1.96 5.84 1.02 3.21 2.10 1.46 2.79

 (12)

Step 3: Each subchannel matches the user with the best channel quality in the sub-
channel according to the sorting order as the strong user. SC2 takes the lead in selecting
user U8 with the strongest gain on the local channel. Since U8 has been chosen as a strong
user on SC2, we exclude U8 before matching the user to the next subchannel. Next, select
U2 for SC1, U3 for SC3, and U5 for SC4. At this point, a strong user has been matched on all
subchannels. The matching results are shown below.

H3 =


0.07 3.21 0.87 3.54 1.12 5.01 1.87 4.33
1.32 5.78 0.67 1.21 1.06 4.37 2.15 2.23
2.38 1.33 4.20 2.68 0.84 1.93 1.70 1.39
1.55 1.96 5.84 1.02 3.21 2.10 1.46 2.79

 (13)

Step 4: The four users that have already been matched are excluded. In the order of
sub-channel matching, the remaining users are again matched to the sub-channel with the
highest channel gain. Finally, SC1 multiplexes U2 and U7, SC2 multiplexes U6 and U8, SC3
multiplexes U3 and U4, and SC4 multiplexes U1 and U5. The result after matching two
users per sub-channel is as follows.

H4 =


0.07 3.21 0.87 3.54 1.12 5.01 1.87 4.33
1.32 5.78 0.67 1.21 1.06 4.37 2.15 2.23
2.38 1.33 4.20 2.68 0.84 1.93 1.70 1.39
1.55 1.96 5.84 1.02 3.21 2.10 1.46 2.79

 (14)

To illustrate the complexity of the algorithm, we take the NOMA downlink system
with M users and N subchannels (M = 2N) as the background. In order to complete the
subchannel allocation, the exhaustive search algorithm needs to perform (2N)!

2N operations

with complexity ofO
(
(2N)!

2N

)
. In our proposed algorithm, the subchannel needs ∑N

n=1(M−
1) = N(M− 1) operations to find the user with the worst gain. Next, sorting all subchannels
according to the selected channel gain ascending order requires 2NlnN operations. The
subchannel needs

(
2 ∗∑N

n=1
(M−1)

2 = N(M− 1)
)

operations to match two users. That is,
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the algorithm needs a total of (2N ln N + 2N(M− 1)) operations to complete subchannel
allocation, and the complexity is O

(
N2). From the above analysis, we can see that the

proposed subchannel allocation algorithm has low complexity and can greatly shorten the
operation time.

3.2. Power Allocation Algorithm

In this section, we first introduce the basic particle swarm. Subsequently, we modify
the particle swarm optimization algorithm. Our work is mainly reflected in the following
aspects. We add random adjustment numbers that follow beta distribution to inertial
weights. Then, we introduce mutation and crossover operations in differential evolution
to update the position of particles. Finally, the suboptimal solution of power allocation is
obtained by iterative search.

3.2.1. Particle Swarm Optimization (PSO)

We suppose the particle swarm is D dimensional and the number of particles is
K. The position of the particles i during the ith iteration can be represented by vector
Xi(t) =

[
x1

i (t), x2
i (t), . . . , xD

i (t)
]T . We can express the velocity of the particle i during the

ith iteration in terms of vector Vi(t) =
[
v1

i (t), v2
i (t), . . . , vD

i (t)
]T . When particle i reaches

the historical optimum position in the iterative process, the particle is called the individual
optimum particle, which can be expressed as

Pbesti(t) =
[

pbest1
i (t), pbest2

i (t), . . . , pbestD
i (t)

]T
(15)

Similarly, the global optimal position of all particles in the particle swarm traversing,
namely the global optimum value, is expressed as

Gbest(t) =
[

gbest1(t), gbest2(t), . . . , gbestD(t)
]T

(16)

The iterative formulas for updating the moving speed and position of each particle
are as follows:

vj
i(t + 1) = ω · vj

i(t) + c1 · r1 ·
(

pbestj
i(t)− xj

i(t)
)
+ c2 · r2 ·

(
gbestj(t)− xj

i(t)
)

(17)

xj
i(t + 1) = xj

i(t) + vj
i(t + 1) (18)

where ω is the inertia weight coefficient, and c1 and c2 are both acceleration coefficients,
which usually take a constant. r1 and r2 are random variables uniformly distributed on the
interval (0, 1). The specific flow of particle swarm optimization is shown in Figure 2 below.

3.2.2. Modified Particle Swarm Optimization (MPSO)

Firstly, for the basic particle swarm, we improve the inertia weight.
In the basic particle swarm optimization algorithm, the inertia weight ω is a fixed

constant. However, the value of fixed inertia weight ω has certain limitations on the
optimization ability of the algorithm [35]. At the beginning of the iteration, the global
search speed of the algorithm needs to be accelerated, so the large inertia weight needs to
be used. In addition, at the end of the iteration, particle swarm optimization usually needs
to use a small inertia weight to enhance the local search ability. Through this strategy, the
coordination between global search and local optimal search can be enhanced. For this
reason, we propose a strategy of dynamic adjustment of inertia weight. The improved
inertia weight parameter is modified as

ω = ωmin + (ωmax −ωmin) ∗ e−
t

tmax/10 + σ ∗ B(p, q) (19)
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where ωmax and ωmin are the maximum and minimum values of inertia weight, respectively.
t represents the current number of iteration. In this equation, ωmin + (ωmax −ωmin) ∗
e−

t
tmax/10 are changed by the exponential function e−

t
tmax/10 . By adding this item, the inertia

weight of the early stage can be made larger. With the continuous iteration of particle
swarm, the inertia weight can be reduced nonlinearly. In the third term, B is a random
number generator in MATLAB, which can generate random numbers in accordance with
beta distribution and p = 1, q = 3. The beta distribution can be used to adjust the overall
value distribution of ω. δ is the inertia adjustment factor, which is added to control the
deviation degree of inertia weight.

Figure 2. Flow chart of particle swarm optimization.

Secondly, we no longer use a fixed constant for the acceleration coefficient.
It must be mentioned that in the initial stage of particle search, the ideal particle

state should be traversed in the solution space as far as possible to obtain the diversity of
particles. At the end of the search, the particle should maintain a constant velocity to avoid
the interference of the local extremum. In order to obtain better algorithm performance,
this chapter will adopt the time-varying acceleration coefficient (TVAC) [36].

c1 = (cmax − cmin)×
t

tmax
+ cmin (20)

c2 = (cmin − cmax)×
t

tmax
+ cmax (21)
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In the process of the acceleration factor change, cmax and cmin are used in the initial
search, which makes the particles less affected by other particles in the population and
enhances the global search ability. With the progress of iteration, the decrease in cmax and
the increase in cmin are more conducive to the optimal solution.

Thirdly, we combine the advantages of differential evolution algorithm to introduce
mutation and crossover operation.

Particle swarm optimization is prone to decreasing population diversity and falling
into the local optimization in the late iteration. Considering that the differential evolution
algorithm has the advantages of tracking and adjusting the search in time, in order to
increase the diversity of the population, we combine it with particle swarm optimization
algorithm to achieve co evolution. Mutation and crossover operations are added to update
the position of particles, and the position update expression is

ui,j =

{
xr1,j + F

(
xr2,j − xr3,j

)
rand < CR

xr1,j rand > CR
(22)

where xr1 , xr2 , xr3 are random individuals and r1 6= r2 6= r3 6= i ∈ [1 . . . M]. F is a
scalar value, and we take F = 0.5. rand can generate random numbers in the range [0, 1].
CR ∈ [0, 1] is the crossover probability. When the random number is less than the crossover
probability, the mutation operation is used to update the particle position. When the
random number is greater than the crossover probability, it remains constant.

3.3. Power Allocation Problem Based on MPSO

On the premise of obtaining the subchannel allocation, in this section, we use the MPSO
algorithm to solve the optimization problem of power allocation between subchannels and
user power allocation within subchannels. Since our objective function is a constrained
nonlinear programming problem, we introduce a penalty function to transform the original
problem into an unconstrained optimization problem. Then according to the constraint
conditions of the original objective function, the penalty function can be obtained as

φ =

(
max

(
N

∑
n=1

pn − Ptot, 0

))2

+ (max(Rmin − Rm,n, 0))2 (23)

Then, the fitness function of MPSO can be expressed as

f = −
N

∑
n=1

Bs log2(1 + αn pn H1,n) + Bs log2

(
1+pn H2,n

1+αn pn H2,n

)
pn + pc

+ φ (24)

In addition, we set the particle dimension to 2D. The first D-dimensional particle
represents the power value allocated to the subchannel, and the second D-dimensional
particle represents the power allocation factor of the secondary user in the channel. The
optimal solution is determined by the iterative results of MPSO algorithm, which can be
recorded as vector Ψ = (p1, p2, · · · , pN , α1 , α2, · · · , αN). The detailed process of power
allocation strategy can be referred to in Algorithm 2.

In MPSO, we improve the calculation method of the inertia weight and acceleration
coefficient but do not increase the algorithm time. In addition, when the crossover operator
is used to update the particle position, we only add a linear step of computation in the inner
loop. Therefore, for the convenience of calculation, we assume that the total number of PSO
is K, the particle dimension is D, and the number of iterations is T. Through the description
of the optimization process and improvement measures of particle swarm optimization
algorithm, we know that the time complexity of the basic PSO algorithm is O(K ∗ D ∗ T),
and the time complexity of the MPSO algorithm is also O(K ∗ D ∗ T).
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Algorithm 2 Power Allocation using MPSO

1: for i = 1 to K do
2: initialize the position xi(t) and the velocity vi(t) within the search range randomly;
3: end for
4: Evaluate each particle
5: Set the best position of the current particle (pbest) to its initial position
6: Set the current best position of the entire population (gbest) to its initial position
7: while t ≤ tmax do
8: Update ω, c1 and c2 by (19), (20), (21) respectively
9: for i = 1 to K do

10: Update the velocity vi(t + 1) by (17)
11: Generate a random number rand in [0,1]
12: if rand <CR then
13: Update the position xi(t + 1) by (22)
14: end if
15: if rand ≥ CR then
16: Update the position xi(t + 1) by (18)
17: end if
18: Evaluation fitness of particle xi(t + 1)
19: if f (xi(t + 1)) > f (pbesti) then
20: Set pbesti=xi(t + 1)
21: end if
22: if f (pbesti)> f (gbest) then
23: Set gbest=pbesti
24: end if
25: end for
26: end while

4. Simulation Results

In this section, we use MATLAB to simulate the performance of the above power
distribution strategy. We assume that the channel states are known and the channels are
independently uniformly distributed Rayleigh fading channels. The radius of the cell is
500 m. The base station is located in the center of the cell. We set the minimum distance
between users, and the base station is 50 m. The bandwidth of the NOMA systems is
5 MHz. The circuit power consumption is pc = 27 dBm. For the MPSO algorithm, we set
the population size of K = 100 particles. The specific simulation parameters can be detailed
in Table 1.

To further evaluate the system performance of our proposed scheme (SSA-MPSO), we
compare it with a scheme using the combination of the subchannel allocation algorithm
in [34] and the power allocation algorithm proposed in this paper (SOMSA-MPSO), as well
as a scheme combining our proposed subchannel allocation algorithm and the fractional
transmission power allocation [37] (SSA-EPA-FTPA), a method combining the random
matching algorithm and the the fractional transmission power allocation (Random-EPA-
FTPA), and an OFDMA-based scheme. In addition, when allocating power, the FTPA
algorithm must vary the power allocation factor to adjust the given power for each user,
considering the different channel conditions. When the power allocation factor is zero, all
users on the subchannel will receive equal power. As the power allocation factor increases,
users with low channel gain will receive more power. For this reason, a power allocation
factor of 0.2 is taken as a reference value for the initial allocation.
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Table 1. Simulation parameters for downlink NOMA systems.

Parameter Value

Maximum number of users 40
Number of subchannels 20

System bandwidth 5 MHZ
BS maximum transmission power 40 dBm

Cell radius 500 m
Min distance between user and BS 50 m

Circuit power consumption 27 dBm
AWGN power density −174 dBm/Hz

Rayleigh fading coefficient 1
PSO population size 100

PSO maximum iterations 100
Inertia weight ωmax = 0.9, ωmin = 0.4

Inertia adjustment factor 0.1
Acceleration coefficient cmax = 2.5, cmin = 0.5
Crossover probability 1

Figure 3 shows the system’s energy efficiency versus the number of iterations. We
take the base station’s transmit power to be 40 dBm and the number of users to be 20.
It can be observed that the energy efficiency of the system keeps increasing with the
number of iterations. Although the convergence speed is slower with the improved particle
swarm algorithm, the power allocation algorithm based on the enhanced particle swarm
algorithm is simple compared to the traditional power allocation algorithm on the one
hand. Moreover, the modified PSO algorithm has a higher global search capability due to
the differential evolution operation we introduce.

Figure 3. System energy efficiency versus the number of iterations.

For Ptot = 40 dBm, with a fixed total transmit power of d base stations, we can see
in Figure 4 that the system’s energy efficiency gradually increases with the increasing
number of users. Although the overall trend is the same, the NOMA system with all four
resource allocation schemes outperforms the conventional OFDMA system due to the
higher diversity gain achieved by NOMA compared to conventional OFDMA. In addition,
the modified particle swarm algorithm for inter- and intra-subchannel power allocation
schemes is more global than the ETP-FTPA algorithm, resulting in a more energy efficient
NOMA system. Further, the performance of the NOMA system using the SSA-MPSO
scheme is slightly better than that using the SOMSA-MPSO strategy. This is because the
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subchannel allocation algorithm proposed in this paper ensures that the subchannels are
not matched to users with poor channel gain and that the channel gain of the paired users
is as high as possible, which can help to increase the system rate.

Figure 4. Energy efficiency versus the number of users.

We took 10 users randomly distributed in the cell. Figure 5 shows the system energy
efficiency trend as the base station’s total transmission power increases. We can clearly
see that the system energy efficiency increases in the early stage as the power of the base
station increases. However, the system energy efficiency is most excellent when the base
station’s total transmission reaches 33 dBm. After that, even if the transmitting power of
the base station is increased, the system’s energy efficiency no longer grows and tends
to decrease gradually. This is because the total transmission power of the base station
puts a significant constraint on the system’s energy efficiency at the beginning. Still, the
base station consumes more power as the available power increases. This phenomenon
shows that increasing the available power does not guarantee an increase in system energy
efficiency; on the contrary, it may lead to a waste of resources.

To assess the fairness of our proposed SSA-MPSO scheme and other NOMA schemes
and OFDMA allocation among users, we introduce Jain’s fairness index F from [38] to
characterize the fairness per pair of users.

F =

(
∑N

n=1 Rn

)2

N ∑N
n=1 R2

n
(25)

In Figure 6, we first observe that the system’s fairness becomes progressively smaller
as the number of users increases, both with the NOMA system scheme and OFDMA. In
particular, due to subchannels being assigned to only one user, OFDMA-based systems
lose access to many subchannels. Therefore, all NOMA system solutions are higher than
OFDMA solutions. In addition, the SOMSA-MPSO scheme selects the user with the best
channel conditions at each step of the sub-channel matching process. It ensures that the
user with the best channel gain matches the subchannel. However, users in the later
matching order tend to lose the right to choose, which may result in the combination of the
user with the worst channel gain and the subchannel. On the other hand, our proposed



Appl. Sci. 2022, 12, 9740 14 of 18

subchannel assignment algorithm avoids matching the worst subchannel to a user with
low channel gain.

Figure 5. Energy efficiency versus maximum transmission power of BS.

Figure 6. The fairness index versus SNR.

Figure 7 shows the probability of interruption versus SNR for a user count of 36. It is
known that the lower the interruption probability, the better the system performance. From
Figure 7, we can observe that the outage probability of applying our proposed sub-channel
assignment algorithm is better than that of the random matching algorithm and OFDMA.
This is because, when matching subchannels to users, we prioritize the worst subchannel
to avoid reaching the worst subchannel to a user with low channel gain and check the
user with high channel gain on the current subchannel. This operation helps to increase
the data rate of the paired users. In addition, by looking at Figure 8, we can see that our
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proposed SSA-MPSO scheme has the best BER performance. The BER performance of the
Random-EPA-FTPA scheme is slightly better than that of the OFDMA but much worse than
the BER performance of our proposed method. This is because the Random-EPA-FTPA
scheme may result in some users with close channel gains being assigned to the same
subchannel. This will make it more difficult for the receiver to decode.

Figure 7. Outage probability versus SNR.

Figure 8. Bit error rate versus SNR.

Figure 9 illustrates the decreasing energy efficiency of the system as the user minimum
data rate gradually increases, regardless of the resource allocation scheme adopted. In par-
ticular, we can see that our proposed SSA-MPSO scheme achieves a higher energy efficiency
compared to Random-EPA-FTPA, SOMSA-MPSO, and SSA-EPA-FTPA. In addition, all
NOMA schemes can still meet the user requirements at a minimum data rate of 0.5 Mbps,
but OFDMA cannot continue to work.
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Figure 9. Energy efficiency versus minimum data transmission rate requirements.

5. Conclusions

This paper investigates the allocation of downlink resources in a multi-user NOMA
system based on base station power transmission and minimum user rate constraints, in-
tending to maximize energy efficiency. The NOMA system transmits signals from multiple
users superimposed on the same subchannel, so the user grouping scheme will signifi-
cantly impact the system performance. We consider that the optimal user grouping scheme
obtained by exhaustive enumeration has high algorithmic complexity and is unsuitable
for practical applications. In this paper, a low-complexity greedy algorithm based on the
principle of worst-case subchannel priority matching is proposed to solve the subchannel
assignment problem. In addition, we propose a power allocation strategy based on a modi-
fied particle swarm optimization algorithm that combines subchannel power allocation
and inter-user power allocation for a joint optimization solution. Meanwhile, we add a beta
distribution to the inertia weights to address the problem that particle swarm optimization
tends to fall into local optimization and poor search accuracy. This improvement allows the
algorithm to be dynamically tuned and gives the algorithm good global convergence capa-
bility. In addition, we use variation and crossover operations in the differential evolution
algorithm to update the particles’ positions, increasing the population’s diversity. Finally,
the simulation results show that our proposed scheme not only significantly improves the
energy efficiency of the NOMA system, but also ensures the high fairness of the fire usage.
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