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Abstract: The efficiency of sampling is a critical concern in Monte Carlo analysis, which is frequently
used to assess the effect of the uncertainty of the input variables on the uncertainty of the model
outputs. The projection pursuit multivariate transform is proposed as an easily applicable tool for
improving the efficiency and quality of a sampling design in Monte Carlo analysis. The superiority
of the projection pursuit multivariate transform, as a sampling technique, is demonstrated in two
synthetic case studies, where the random variables are considered to be uncorrelated and correlated in
low (bivariate) and high (five-variate) dimensional sampling spaces. Five sampling techniques includ-
ing Monte Carlo simulation, classic Latin hypercube sampling, maximin Latin hypercube sampling,
Latin hypercube sampling with multidimensional uniformity, and projection pursuit multivariate
transform are employed in the simulation studies, considering cases where the sample sizes (n) are
small (i.e., 10 ≤ n ≤ 100), medium (i.e., 100 < n ≤ 1000), and large (i.e., 1000 < n ≤ 10,000). The
results of the case studies show that the projection pursuit multivariate transform appears to yield
the fewest sampling errors and the best sampling space coverage (or multidimensional uniformity),
and that a significant amount of computer effort could be saved by using this technique.

Keywords: Monte Carlo analysis; Latin hypercube sampling; projection pursuit multivariate transform;
multidimensional uniformity

1. Introduction

Mathematical models are frequently used in many disciplines (i.e., natural sciences,
social sciences, engineering) in order to realistically estimate the physical processes in
question. To construct such models (or outputs), in most cases, one must use a number of
input variables. For example, to calculate the original oil in place (OOIP) for a reservoir,
five input variables including the thickness of the deposit, deposit area, net oil to gross
volume, net porosity, and water saturation should be considered [1]. However, due to
the physical and financial constraints related to the sampling scheme, there are generally
a limited number of measurements (or observations) of the input variables available for
modeling. Therefore, it is imperative that the effect of uncertainty associated with the input
variables of the model output be taken into account [2].

There are many sampling techniques that are used to assess the uncertainty associated
with the parameters of the models. For example, Monte Carlo simulation (MCS), which
relies on a repeated random sampling and statistical analysis, is generally used for this
purpose [3,4]. In MCS, the population is assumed to be independent and identically dis-
tributed, and the realizations of a sample are randomly chosen from the population with an
equal probability. A pseudo-random number generator, which satisfies a series of statistical
tests for randomness [5,6], is used to generate a sequence of independent numbers (or
random variates) from a uniform distribution U(0, 1) [7]. A major drawback of MCS is
that the realizations that are chosen completely at random tend to form clusters, which
leaves gaps that are not investigated in the sampling space. If one takes a large sample
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of realizations, the accuracy of the predicted model output increases and the sampling
errors become negligible. However, this is only achievable provided that the run time of
MCS is reasonably short. If the MCS run is computationally expensive, then the sampling
techniques with better sampling efficiency such as Latin hypercube sampling (LHS) (or
stratified random sampling) [8,9] and its variants should be employed.

The original and most simple form of LHS is referred to as classic Latin hypercube
sampling (CLHS). In CLHS, the population is divided into a number of non-overlapping
strata and MCS is used to generate a realization from each stratum. Because the population
is stratified, the heterogeneity in each stratum becomes less, which results in realizations
that are more uniform and representative. The stratification is maximized when the number
of strata n is equal to the sample size (n), i.e., [0, 1/n], [1/n, 2/n], . . . , [(n− 1)/n, 1] [10]. In
CLHS, as mentioned earlier, the population is marginally stratified, that is, it accounts for
only the univariate uniformity of the realizations and does not enforce any multivariate
uniformity. To improve the space-filling properties of CLHS designs, many studies in the
literature make use of mainly two performance criteria: (1) minimizing the pairwise corre-
lation between the realizations, and (2) maximizing the minimum distance between the
realizations [11–16]. Considering the correlated (or dependent) random variables, several
studies [17–20] propose various methodologies to generate a sample whose correlation
matrix is approximately equal to the given (or target) correlation matrix, that is, the joint
distribution is reproduced.

The two important variants of LHS that can be used to generate realizations that
have improved space-filling characteristics are (1) maximin Latin hypercube sampling
(maximin LHS) [21] and (2) Latin hypercube sampling with multidimensional uniformity
(LHSMDU) [1]. In the former approach, the aim is to generate a sample that maximizes
the minimum Euclidean distance between any pair of realizations, which is achieved by
generating a large number (i.e., thousands) of sampling designs and choosing the one that
has a maximized distance between any pair of realizations. Due to the maximization of the
distance between any pair, the realizations of the sample tend to spread out across the sam-
pling space, resulting in a better multidimensional uniformity. The latter approach expands
the univariate uniformity obtained by CLHS to the multivariate context. The algorithm
first generates more realizations than are required, and the realizations that are close to
each other (or redundant realizations) are sequentially eliminated in the multidimensional
space. The post-processing of the realizations is then carried out to enforce the uniformity
in the high-dimensional space.

Considering both maximin LHS and LHSMDU, it is important to note two things:
(1) the realizations generated by both techniques are still based on CLHS, and (2) both
techniques initially require a large number of sampling designs to be generated, which
significantly increases the central processing unit (CPU) run time. A better approach
for enforcing the sparsity in the sampling designs, however, would be to use projection
pursuit [22,23] iterations. The idea of projection pursuit is that the projected data is expected
to have a univariate Gaussian distribution if the original data is multivariate Gaussian. The
original data is, therefore, generally first transformed to normal scores and then sphered so
that the projection index only measures the deviation of the distribution of any projected
data from the standard Gaussian distribution N(0, 1). The projection pursuit multivariate
transform (PPMT) proposed by [24] makes use of this idea and applies a normal score
transformation along a projection vector in an iterative fashion so that the original data will
be eventually transformed to the uncorrelated and multivariate Gaussian scores. In fact,
this amounts to saying that the multidimensional uniformity of the sampling design can be
ensured through this technique.

We demonstrate the applicability of PPMT as an efficient sampling technique in two
synthetic case studies using the low (bivariate) and high (five-variate) dimensional sam-
pling spaces. The results of the simulation studies indicate that considering the various
sample sizes, PPMT yields much fewer sampling errors and exhibits better space-filling
characteristics than the other sampling techniques.
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2. Sampling Techniques
2.1. Monte Carlo Simulation

MCS (or simple random sampling) is a technique through which a sample of the pop-
ulation is constructed using a random sequence of numbers. The deterministic parameters
of the population can then be estimated from each sample [25]. The inverse transform
method (or inversion sampling) is used to generate a realization through MCS [4]. Let Z be
a random variable whose cumulative distribution function (CDF), which is monotonically
non-decreasing, is denoted by {F(z), a ≤ z ≤ b}, and the inverse CDF (or a quantile
function) of Z is defined by F−1(u) = inf{z ∈ [a, b] : F(z) ≥ u}, 0 < u < 1. Considering
that U ∼ U(0, 1) is also a random variable that has a standard uniform distribution, then
z = F−1(u), which can also be observed from Pr(Z ≤ z) = Pr(F−1(u) ≤ z) = Pr(u ≤
F(z)) = F(z).

For example, consider that n = 5 is the required number of realizations and k = 2
is the number of independent Gaussian random variables, X1 ⊥ X2 ∼ N(0, 1), that is,
the sampling space is two-dimensional and orthogonal. Independent random numbers
from a uniform distribution U(0, 1) (i.e., the pairs exhibit a uniform distribution in the unit
square, and similarly, the triplets also have a uniform distribution in the unit cube) are
generated, that is, pi = [p1i p2i . . . pni]

T , i = 1, . . . , k = 2 and n = 5. These numbers are
then established in a matrix P where (pij) ∈ R5x2:

P =


0.06 0.09
0.93 0.51
0.82 0.66
0.99 0.40
0.14 0.76


Each element of the matrix P is mapped according to a target CDF, which yields the

independent realizations in the Gaussian unit xi = [x1i x2i . . . xni]
T , i = 1, . . . , k = 2 and

n = 5. For instance, considering a probability of p42 = 0.40 associated with the variable X2,
the corresponding realization can be obtained as x42 = F−1(0.40) = −0.24, where F−1(·)
denotes the inverse of the Gaussian CDF for the variable X2. The MCS sampling design
indicating the realizations given in matrix P and mapping these probabilities according to
the given CDF are presented in Figure 1a,b, respectively.

Figure 1. (a) A sampling design with n = 5 realizations generated by MCS in a two-dimensional
sampling space where the random variables are independent, (b) Mapping the quantiles according to
the standard Gaussian distribution using the inverse transform method.
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The matrix X, (xij) ∈ R5x2 whose elements are the realizations of X1 and X2 is then
defined by

X =


−1.54 −1.32
1.44 0.03
0.90 0.41
2.31 −0.24
−1.08 0.72


In the case where X1 and X2 are correlated according to a given target correlation

matrix C where (cij) ∈ R2x2, the linear dependency between X1 and X2, can be added via
Cholesky decompsition [26,27] of C, that is,

C = L · LT , (1)

where L is the lower triangular matrix and LT (where the superscript T denotes transposi-
tion) is the upper triangular matrix. The correlated realizations of X1 and X2 are computed
by multiplying the matrix L by the matrix XT :

X∗ = L · XT , (2)

The resulting matrix X∗ where (x∗ij) ∈ R2x5 contains the realizations of X1 and X2 that
have a correlation matrix, which is close to the target correlation matrix C. The correspond-
ing dependent quantiles (or probabilities) 0 ≤ pij ≤ 1; i = 1, . . . , n = 5 and j = 1, . . . ,
k = 2 can be drawn from the standard Gaussian CDF as pij = F(x∗ij).

2.2. Latin Hypercube Sampling

CLHS, which was proposed by McKay et al. [8], partitions each CDF of the sample of
size (n) from k variables into n contiguous intervals. An independent random number from
the uniform distribution pi ∈ [0, 1], i = 1, . . . , n is then selected from each interval, resulting
in n random numbers for each of the k variables. The aforementioned n random numbers
are then randomly combined without replacements to generate the ordered quantiles.

For example, consider that the sampling space is two-dimensional (k = 2) and the
required number of realizations is five (n = 5). The elements of the following matrix P
consist of the random numbers [0, 1] selected from each interval of the CDFs of two random
variables. The matrix R contains the random permutations.

P =


0.53 0.53
0.51 0.71
0.26 0.75
0.88 0.15
0.67 0.64

 R =


4 5
2 4
3 1
5 2
1 3


The ordered quantiles are then generated by

H =
1
n
(R− P), (3)

The pairwise elements of the following matrix H indicate a stratigraphic sampling
design, that is, one realization from each row and each column is generated from the
sampling space, as shown in Figure 2a.

H =


0.69 0.89
0.30 0.66
0.55 0.05
0.82 0.37
0.06 0.47
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Each element of the matrix H can then be mapped according to a target CDF as
xij = F−1(hij); i = 1, . . . , n = 5 and j = 1, . . . , k = 2, as shown in Figure 2b.

Figure 2. (a) A sampling design with n = 5 realizations generated by CLHS in a two-dimensional
sampling space where the random variables are independent, (b) Mapping the quantiles according to
the standard Gaussian distribution using the inverse transform method.

In the case of correlated random variables, the linear dependency can be added to the
realizations using the Cholesky decomposition (Equation (1)).

As for maximin LHS, which is based on the distance-based criterion proposed by
Johnson et al. [21], the realizations are generated by CLHS so that the minimum Euclidean
distance between all of the realizations is maximized. Let w be the variable indicating the
minimum distance between all of the realizations. The optimization problem can then be
defined by

maximize w

subject to w ≤
∥∥hi − hj

∥∥, (i, j) ∈ J
hi ∈ F , i = 1, . . . , n,

(4)

where J = {(i, j) | 1 ≤ i < j ≤ n}, h = (hT
1 , . . . , hT

n ) and hi is the vector of coordinates
for realization i in Rd with d = 2. Considering a large number of iterations, the realizations
tend to be separated from each other, allowing for a more uniform space coverage. The
algorithm steps of the maximin LHS are given as follows:

1. Set the initial value of the minimum Euclidean distance to zero, winitial = 0.
2. Generate a sampling design Dl , l = 1, . . . , L using CLHS.
3. Calculate the minimum Euclidean distance wl from the CLHS design Dl generated in

step 2.
4. If wl > winitial , with l = 1, . . . , L, set the new initial minimum Euclidean distance

value as wl , that is, winitial = wl .
5. Return to step 2 and repeat the steps L times.
6. End.

The algorithm steps given above are used to generate a maximin LHS design which
takes into account a multidimensional uniformity through the maximization of the mini-
mum Euclidean distance calculated from the predefined number of CLHS designs. In step
1, the initial value of the minimum Euclidean distance is equal to zero. In step 2, a CLHS
design is generated. In step 3, the minimum Euclidean distance is calculated from that
CLHS design, and step 4 checks if the minimum Euclidean distance calculated from the
CLHS design is greater than the initial value of the Euclidean distance, which is zero. If so,
the calculated minimum Euclidean distance is set as the new initial value. In step 5, the
iteration is carried out a predefined number of times, and in step 6, the algorithm completes
all of the iterations. A maximin LHS design where the minimum Euclidean distance is
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maximized considering 1000 iterations is shown in Figure 3a.
The LHSMDU algorithm proposed by Deutsch and Deutsch [1] combines CLHS with a

realization elimination algorithm [28] in order to increase the multidimensional uniformity
of the sampling matrix. Consider that n = 5 represents the required number of realizations
and k = 2 is the number of random variables that are uncorrelated (or orthogonal to one
another). A sampling design is generated by LHSMDU using the following steps for the
algorithms:

1. Generate k · (m · n) random numbers from a uniform distribution U(0, 1), where m is
an integer greater than one and the common value of m is 5 (readers are referred to
Section 3 in [1] on how an appropriate m value is selected.).

2. For each realization i = 1, . . . , (m · n), calculate the Euclidean distance to other real-
izations and average the two smallest calculated distances.

3. For the realization i, save the average distance and return step 2 until all of the average
distances are calculated for all of the realizations i = 1, . . . , (m · n).

4. Remove the realization (m · n) = (m · n)− 1 for which the smallest Euclidean distance
is calculated in step 2.

5. Return to step 2 and repeat the steps until the remaining number of realizations is
equal to the number of realizations n that is selected initially, that is, (m · n) = n.

6. For variable j, j = 1, . . . , k, rank the n realizations and use these rankings as random
permutations (or a stratum).

7. Generate random numbers U(0, 1) for the n number of strata.
8. Sample the CDF of the variable j using the random numbers generated in step 7.
9. Increment j, (j = j + 1) and return to step 6 until the ranking and sampling are carried

out for all k variables.
10. End.

In the case of correlated random variables, the linear dependency can be added to
the realizations using the Cholesky decomposition (Equation (1)). A sampling design
generated by LHSMDU with the m value equal to 5 is shown in Figure 3b.

Figure 3. A sampling design with n = 5 realizations generated by (a) maximin LHS and (b) LHSMDU
in a two-dimensional sampling space where the random variables are independent.

2.3. Projection Pursuit Multivariate Transform

Considering a two-dimensional sampling space (Rd where d = 2), a pattern (or a
structure), such as clusters, outliers, and skewness, can be instantaneously discovered by
simply observing the scatterplot. However, it is not possible to detect the aforementioned
patterns when the sampling space is greater than three (Rd where d > 3). Projection
pursuit, which was first proposed by [22] and first implemented by [23], can be used to
detect these structures in the datasets defined in a high-dimensional sampling space. It
makes use of a projection index I(u, v) that measures the degree of ‘interestingness’ of the
data projected onto the plane spanned by the orthogonal vectors (u, v). The plane that
maximizes the projection index is determined by numerical optimization. The dataset is
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generally transformed to normal scores and sphered in advance, that is, the transformed
data has a mean of zero, a variance of one, and an identity correlation matrix. The projection
index then measures the discrepancy between the distribution of the projected data and the
standard Gaussian distribution N(0, 1).

For example, if the data is multivariate Gaussian, all of the projections are expected to
be Gaussian and no ‘interestingness’ will be found. Also, as proved by [29], most projections
of the multivariate data appear to be approximately Gaussian under appropriate conditions.
If one considers that I(u, v) = 0 is the perfectly Gaussian case, any projected data that
has a non-Gaussian distribution will increase the value of I(u, v), which indicates the
‘interestingness’ (or non-Gaussianity). One can also consider many other projection indices
that measure the deviation from the standard Gaussian distribution [30–32]. We use the
Fortran program called PPMT.EXE, which was proposed by [24] and is publicly available
through the link http://www.ccgalberta.com/resources/select-software/, accessed on 20
September 2022, in order to demonstrate the generation of a sampling design by the PPMT
technique. Let us consider again that the sampling space is two-dimensional, that is, k = 2
represents the number of random variables, and n = 5 is the number of realizations. The
steps of the PPMT procedure for generating the required number of realizations (k · n) are
summarized as follows:

1. Generate (k · n) random numbers from a uniform distribution U(0, 1) using MCS and
establish these random numbers in a (5× 2) matrix P.

2. Transform the elements of matrix P to the standard Gaussian values, that is, Y =

G−1[F(P)], where G−1[F(·)] is the normal score transform.
3. Compute the variance–covariance matrix of Y, that is, ΣΣΣ = (1/n)[YYT ].
4. Diagonalize ΣΣΣ, that is, ΣΣΣ = Q1 ∧∧∧ 1QT

1 , where Q1 denotes an orthogonal matrix of the
eigenvectors and ∧∧∧1 denotes the diagonal matrix of the eigenvalues.

5. Sphere the elements of matrix Y; that is, Y′ = S−1/2Y, where S−1/2 = Q1 ∧∧∧ −1/2
1 QT

1 .
6. Project Y′ onto k-dimensional unit length vector θθθ, that is, p = θθθY′.
7. Determine θθθ maximizing the projection index I(θθθ) that measures the univariate non-

Gaussianity.
8. Transform Y′ to the standard Gaussian values Ŷ so that the projection p̂ = θθθŶ is

univariate Gaussian. The steps for Gaussian transformation along a projection vector
of Y′ can be found in Barnett et al. [33].

9. Return to step 7 until the projection index I(θθθ) reaches convergence. The stopping
criteria for the optimization can be found in [24].

10. Establish the final PPMT scores as a matrix Ŷ where (ŷij) ∈ R5x2.
11. Draw the probabilities from the standard Gaussian distribution and establish them

in a matrix D = F−1[G(Ŷ)], where (dij) ∈ R5x2, where D indicates a PPMT sampling
design.

12. End.

The steps given above generate a sampling design through the projection pursuit
iterations. In step 1, the random realizations are generated using MCS. In steps 2–4, the
realizations are transformed into the standard Gaussian values and its variance–covariance
matrix is diagonalized. In step 5, the normalized realizations are sphered. The projection
pursuit iterations are carried out in steps 6–9. In step 10, the final PPMT scores are generated,
and in step 11, the probabilities pi ∈ [0, 1], i = 1, . . . , n are drawn from the standard
Gaussian distribution. The Cholesky decomposition (Equation (1)) can be used to impose
the linear correlations (or target correlation matrix) among the independent variables. A
flowchart indicating the steps of the aforementioned algorithm is presented in Figure 4.

http://www.ccgalberta.com/resources/select-software/
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Figure 4. A flowchart indicating the steps for generating a sampling design using PPMT.

Considering the two-dimensional sampling space (k = 2) and (n = 5) realizations,
a sampling design generated by PPMT mapping the probabilities according to the given
CDF are shown in Figure 5a,b, respectively.

Figure 5. (a) A sampling design with n = 5 realizations generated by PPMT in a two-dimensional
sampling space where the random variables are independent, (b) Mapping the quantiles according to
the standard Gaussian distribution using the inverse transform method.
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3. Case Studies
3.1. Synthetic Bivariate Case

In the first case study, we consider that the sampling space is two-dimensional (k = 2)
and that 20 realizations (n = 20) of each random variable are generated using MCS,
CLHS, maximin LHS, LHSMDU, and PPMT, considering the cases where the random
variables are uncorrelated and correlated. It is noted that the values of the realizations
that are generated are only in the range of [0, 1], that is, [0, 1] bounds are interpreted as the
probability. To stabilize the distance measures between all of the realizations, 500 sets of
the sample of n = 20 are generated using each sampling technique. To assess the quality
of the sampling designs yielded by each technique, we use the Wraparound L2 (WL2)
statistics [34] that measure the discrepancy between the number of design realizations per
subvolume in comparison to the same number of uniformly distributed realizations across
the sampling space.

WL2 = −
(

4
3

)p

+
1
n2

n

∑
i=1

n

∑
j=1

p

∏
k=1

(
3
2
−
∣∣∣zk

i − zk
j

∣∣∣(1−
∣∣∣zk

i − zk
j

∣∣∣)), (5)

where zk
i and zk

j are the elements of the vectors z1, . . . , zn; i, j = 1, . . . , n denotes the number
of realizations, and k = 1, . . . , p denotes the number of random variables.

We first consider the case where the two random variables are uncorrelated. The
realizations are straightforwardly generated by MCS and CLHS. Considering maximin
LHS and LHSMDU, the additional parameters required by the procedures include the
number of iterations in maximin LHS and m value in LHSMDU, as explained in Section 2.2.
We select the number of iterations as 1000 in the maximin LHS procedure and consider the
m value to be equal to 5 in the LHSMDU procedure. As for PPMT, the entire procedure,
as explained in Section 2.3, consists of generating realizations by MCS, mapping these
realizations according to a standard Gaussian CDF, using these realizations to generate
PPMT scores, and back-transforming the PPMT scores to the uniform distribution. Figure 6
shows four sets of sample with n = 20 realizations generated by MCS, CLHS, maximin
LHS, LHSMDU, and PPMT.

The contours shown in Figure 6 are the probability contours of the multivariate Gaus-
sian distribution. Because the random variables are independent, their covariance matrix is
an identity matrix. Therefore, the probability contours, as shown in Figure 6, represent a
circle shape.

We now consider the case where the random variables are positively correlated ac-
cording to the following covariance matrix C:

C =

[
1 0.85

0.85 1

]
As can be seen from the elements of the matrix C, the variances of both random

variables are one and the strength of the linear relation between the random variables, as
determined by the covariance (or correlation coefficient), is 0.85. The target correlation is
imposed to the realizations of the independent random variables through the Cholesky
decomposition (Equation (1)). Figure 7 shows the four sets of samples with n = 20
correlated realizations generated by each sampling technique.
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Figure 6. Four sets of samples with n = 20 realizations generated by each sampling technique in a
two-dimensional sampling space where the random variables are independent.

The contours shown in Figure 7 represent the probability contours of the multivariate
Gaussian distribution. Considering the target correlation matrix C, the probability contours
exhibit an elliptical shape.

3.2. Synthetic Five-Variate Case

To further investigate the efficiency of each sampling technique, we present another
case study where the sampling space is considered to be five-dimensional. We use the
petroleum reservoir’s OOIP as a variable to be sampled. The formula for calculating the
OOIP is given as follows:

OOIP = CAT ·NTG · φnet(1− Sw), (6)

where C is the constant that accounts for units and is considered to be one; A represents
the area of the deposit; T is the thickness of the deposit; NTG is the net oil to gross volume;
φnet is the net porosity and Sw is the water saturation. As given in Equation (6), the
value of OOIP is calculated as a function of five variables. To assess the quality of the
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sampling designs generated by each technique, the underlying (or truth) distribution of
each OOIP variable is simulated using 10 million realizations generated by MCS. The
selected distributions and their parameters for each variable are contained in Table 1.

Figure 7. Four sets of samples with n = 20 realizations generated by each sampling technique in a
two-dimensional sampling space where the random variables are positively correlated.

Table 1. The parametric distributions and their parameters used for each OOIP variable.

Variable Distribution Parameters

A Triangular a = 2, b = 4, c = 6
T Gaussian m = 10, σ = 1

NTG Uniform a = 0.6, b = 0.8
φnet Triangular a = 0.15, b = 0.25, c = 0.35
Sw Triangular a = 0.15, b = 0.2, c = 0.3

To make the results comparable to the ones shown in the study presented by Deutsch
and Deutsch [1], we use the same distribution types and their parameters given in that
paper. In the first part of this case study, we consider that all of the OOIP variables are
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uncorrelated. Given the nature of sampling, it is clear that if one takes a larger sample
of realizations, the accuracy of the parameter estimation will increase. Therefore, we
consider several scenarios where the sample sizes (n) are relatively small (10 ≤ n ≤ 100),
medium (100 < n ≤ 1000), and large (1000 < n ≤ 10,000). For each case, 100 sets of the
predetermined sample size are generated using MCS, CLHS, maximin LHS, LHSMDU,
and PPMT, that is, each of the OOIP variables is sampled from their underlying CDFs and
the empirical OOIP CDF is then constructed for every sample size and every sampling
technique. The efficiency of the sampling designs generated by each technique is assessed
based on a criterion that is similar to the Kolmogorov–Smirnov D statistics [35], which is
given as follows:

e = max|F−1
re f (p)− F−1

emp(p)|, (7)

where e is the error value indicating the maximum discrepancy between the empirical
CDF generated by the particular sampling technique and the underlying CDF; F−1

re f (p);

p = 0.1, 0.2, . . . , 0.9 are the quantile values read from the underlying CDF; and F−1
emp(p);

p = 0.1, 0.2, . . . , 0.9 are the quantile values read from the empirical CDF. Figure 8 shows the
underlying OOIP CDF and the randomly selected empirical CDFs of the OOIP generated
by each sampling technique.

Figure 8. The underlying CDF of the OOIP in the case where the OOIP variables are uncorrelated and
the empirical CDFs are generated by each sampling technique considering the small sample sizes.

It can be seen in Figure 8 that only the empirical CDFs of the OOIP generated based
on the small sample sizes are shown; this is because the greatest discrepancy between
the sampling techniques should be observed in cases where the sample size is small. As
the sample size increases, one should expect that the average e values calculated for each
sampling technique tend to get close to one another, which can be observed in Figure 9.
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Figure 9. The averages of the e values versus the number of realizations generated by each sampling
technique considering that the OOIP variables are uncorrelated.

The power law functions can be seen in Figure 9, which are in the form of the following
equation:

emean = a · Lb, (8)

(where L denotes the number of realizations) are fitted to the pairwise points of the average
e values and the number of realizations. It is noted that the logarithmic scale is used for the
x-axis shown in Figure 9. The coefficients (a and b) of the power law functions, which are
contained in Table 2, are calculated through the ordinary least squares regression.

Table 2. The coefficients of the power law functions in the case where the OOIP variables
are uncorrelated.

Coefficients MCS CLHS Maximin LHS LHSMDU PPMT

a 1.267 1.056 0.980 0.803 0.717
b −0.488 −0.504 −0.484 −0.449 −0.477

It can be seen in Table 2 that the value of the coefficient b is approximately equal to
−0.5 for all of the sampling techniques, the largest value of the coefficient a is obtained from
the model fitted to the MCS case, and the smallest value of the coefficient a is computed
from the model fitted to the PPMT case.

In the second part of this case study, we consider that the OOIP variables are somewhat
correlated with one another through the following target correlation matrix C:

C =


1 0 0 0 0
0 1 0.3 0.25 −0.4
0 0.3 1 0.4 −0.5
0 0.25 0.4 1 −0.6
0 −0.4 −0.5 −0.6 1


It is clear from the elements of the matrix C that the first variable (thickness, T) does

not have any linear correlations with any of the remaining OOIP variables. The rest of
the variables appear to be either positively or negatively correlated with one another. The
Cholesky decomposition of the target correlation matrix C is carried out, and the indepen-
dent realizations of the OOIP variables are correlated. Figure 10 shows the underlying
OOIP CDF and the randomly selected empirical CDFs of the OOIP generated by each
sampling technique.
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Figure 10. The underlying CDF of the OOIP in the case where the OOIP variables are correlated and
the empirical CDFs are generated by each sampling technique considering the small sample sizes.

The quality of the sampling designs generated by each technique is again assessed
according to the criterion given in Equation (7). Figure 11 shows the plot of the averages of
the e values versus the number of realizations along with the fitted power law functions.

Figure 11. The averages of the e values versus the number of realizations generated by each sampling
technique considering that the OOIP variables are correlated.

The coefficients of the fitted models for each sampling technique are given in Table 3.

Table 3. The coefficients of the power law functions in the case where the OOIP variables are correlated.

Coefficients MCS CLHS Maximin LHS LHSMDU PPMT

a 1.577 1.297 1.244 1.118 1.028
b −0.504 −0.492 −0.513 −0.466 −0.497
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One can see in Table 3 that the values of the coefficient b are approximately equal to
−0.5 for all sampling techniques, and the values of the coefficient a appear to be systemati-
cally higher than those estimated for the uncorrelated case shown in Table 2.

3.3. Quality Assessments of Sampling Designs

The quality of each design generated by the sampling techniques is visually inspected
and numerically assessed according to the magnitude of the values of each criterion given
in Equations (5) and (7). Considering the first case study where the sampling space is two-
dimensional, one can see in Figures 6 and 7 that given the realizations generated by MCS, a
large area of the sampling space is not investigated. This is mainly because MCS generates
realizations completely at random; therefore, it is expected that a cluster of realizations
is formed in the sampling space. The sampling designs generated by CLHS appear to
be better than the ones generated by MCS. This is due to the fact that CLHS enforces
the univariate uniformity of the realizations, that is, the realizations are drawn from each
stratum, which guarantees that there is only one realization from each row and each column
of the sampling space. However, no multidimensional uniformity is considered in CLHS.
As for maximin LHS, LHSMDU, and PPMT through which one can take into account
the multidimensional uniformity, the sampling designs shown in Figures 6 and 7 clearly
indicate significant improvements in terms of the space-filling properties of the realizations.

In addition to the visual inspection of the designs, we also numerically assess the
quality of each sampling design using WL2 statistics (Equation (5)). The box plots indicating
the distribution of the aforementioned statistic considering the cases where the random
variables are uncorrelated and correlated are presented in Figure 12.

Figure 12. The box plots of the WL2 statistics: (a) uncorrelated case, and (b) correlated case.

It can clearly be seen in Figure 12a,b that MCS yields the largest discrepancy values
according to the WL2 statistic, and PPMT, on the other hand, appears to outperform CLHS,
maximin LHS, and LHSMDU. This is mainly due to the fact that the sampling designs
generated by PPMT have no restrictions due to the Latin hypercube design. The median
value of the discrepancy generated by MCS is approximately twice as much as the those
generated by CLHS and its variants. The medians of the discrepancy values generated



Appl. Sci. 2022, 12, 9668 16 of 18

by maximin LHS and LHSMDU are rather close and slightly lower than that generated
by CLHS.

Considering the second case study, one can see in Figures 8 and 10 that the empirical
CDFs of the samples of varying sizes generated by PPMT appear to be closer to the
underlying OOIP CDF than those generated by the other sampling techniques. It is again
clear in the same figures that the most noticeable discrepancy between the empirical CDFs
and the underlying OOIP CDF is in the MCS case. Similarly, Figures 9 and 11 clearly show
that the fewest errors indicating the discrepancy between each empirical OOIP CDF and
the underlying OOIP CDF are generated by PPMT. Considering the case where the random
variables are correlated, the magnitudes of the error values appear to be greater for all of
the sampling techniques than the uncorrelated case; however, PPMT outperforms the other
sampling techniques in the correlated case as well.

In addition to the aforementioned comparisons, one should also know how many
realizations should be generated by MCS to ensure a specified statistical accuracy. This
can be calculated using the error values generated by each sampling technique in the
power law function (Equation (8)) that is fitted to the MCS error values versus the number
of realizations. Table 4 contains the approximate number of realizations that should be
generated by MCS to ensure the same statistical accuracy achieved by the other sampling
techniques.

Table 4. The equivalent number of realizations to be generated by MCS ensuring the specified
sampling accuracy.

MCS Equivalent Number of Realizations

Reals # CLHS Maximin LHS LHSMDU PPMT

10 20 24 22 25 26 30 30 32
100 195 200 199 204 202 208 281 312

1000 1631 1657 1690 1703 1699 1715 3398 3401
10,000 15,948 16,144 17,055 17,899 17,064 17,956 21,034 21,945

The approximate number of realizations that should be generated by MCS is calculated
using the coefficients (Tables 2 and 3) of the power law functions fitted to the MCS case
considering the cases where the random variables are deemed to be uncorrelated and
correlated. For example, considering the uncorrelated case, the estimated coefficients
(a = 1.267 and b ≈ −0.5) of the power law function fitted to the MCS case are used along
with the error value yielded by each sampling technique for each sample size. In other
words, if we want to generate 10 realizations using CLHS, the corresponding error value
is used in the power law function with the coefficients estimated for the MCS case and
the equivalent number of realizations to be generated by MCS is calculated. The columns
where the number of realizations are given in bold in Table 4 represent the case where the
random variables are correlated. For example, considering 100 realizations, in order to
maintain the same statistical accuracy observed in the PPMT case, one should generate 281
and 312 realizations using MCS in the uncorrelated and correlated cases, respectively.

4. Conclusions

The main objective of this paper was to introduce PPMT as an efficient and easily
applicable tool for the assessment of parameter uncertainty of the models defined in the
multidimensional sampling spaces. The study considered four other sampling techniques
for comparison including MCS, which is a general technique for random sampling from a
given distribution, CLHS, which is a stratified random sampling technique, and two vari-
ants, the (maximin LHS and LHSMDU) of the LHS technique. Two synthetic case studies
where various sample sizes (ranging from n = 10 to n = 10,000) were used considering
two- and five-dimensional sampling spaces were conducted in order to assess the sampling
performance of PPMT.
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In the first case study, the sampling space was considered to be two-dimensional
and n = 20 realizations of two random variables were generated 500 times. The visual
and numerical results shown in Figures 6, 7, and 12 clearly indicated that in comparison
to the other sampling techniques, PPMT appeared to be the best technique that enforces
the multidimensional uniformity among the realizations defined in a two-dimensional
sampling space. When the two random variables were correlated according to the target
correlation matrix, PPMT again outperformed the other sampling techniques by yielding
the fewest discrepancy values.

As for the second case study where the sampling space was considered to be five-
dimensional, the results of the simulation study presented in Figures 8–11 clearly indicated
that PPMT yielded the fewest sampling errors in comparison to all other sampling tech-
niques in question and generated realizations whose empirical CDFs were rather close to
the underlying CDF of the variable of interest (OOIP). The other important outcome of
the simulation study, which is worth mentioning, is that the CPU capacity (or run time)
required for the PPMT procedure was a lot less than those required for maximin LHS and
LHSMDU. Therefore, PPMT can be considered an easily applicable technique that can be
used for random sampling in Monte Carlo analysis. The Python code demonstrating the
implementation of the PPMT as a sampling technique in the case of correlated random vari-
ables is available through https://github.com/Oktay-Erten/ppmt_parameter_uncertainty,
accessed on 20 September 2022.
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Abbreviations

CDF cumulative distribution function
CLHS classic Latin hypercube sampling
CPU central processing unit
LHS Latin hypercube sampling
LHSMDU Latin hypercube sampling with multidimensional uniformity
Maximin LHS maximin Latin hypercube sampling
MCS Monte Carlo simulation
OOIP original oil in place
PPMT projection pursuit multivariate transform
WL2 Wraparound L2
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