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Featured Application: Experimental results show that for the test dataset composed of A-class in-
sulation board production line sensor data, the proposed method achieves better estimation results
compared with a basic LSTM algorithm; its performance in each evaluation index is better.

Abstract: To detect the running state of an A-class thermal insulation board production line in real
time, conveniently and accurately, a fault diagnosis method based on multi-sensor data fusion was
proposed. The proposed algorithm integrates the ideas of Convolutional Neural Network (CNN),
Long Short-Term Memory (LSTM) and Attention Mechanism, and combines a Dilated Convolution
Module (DCM) with LSTM to recognize complex signals of multiple sensors. By introducing an
attention mechanism, the recognition performance of the network was improved. Finally, the real-time
status information of the production line was obtained by integrating attention weight. Experimental
results show that for the custom multi-sensor dataset of A-class insulation board production line,
the proposed CNN-LSTM fault diagnosis method achieved 98.97% accuracy. Compared with other
popular algorithms, the performance of the proposed CNN-LSTM model performed excellently in
each evaluation index is better.

Keywords: A-class thermal insulation panel production line; fault diagnosis; deep learning; long
short-term memory; attention mechanism

1. Introduction

A-class insulation boards as one of the main materials of green environmental protec-
tion building insulation, are widely used in the construction industry because of their good
thermal insulation properties. However, the manufacturing process of composite insulation
board is very complex. A conventional insulation board production line consists of a rolling
machine, molding machine, high pressure foaming machine, laminating machine, cutting
machine and palletizing machines [1,2]. If one of the pieces of equipment fails, it affects
the operation of the whole production line and results in the discontinuity of the process
as well as other problems and various defects of the product. Therefore, effective fault
diagnosis of the equipment can ensure the safe and stable operation of the insulation board
production line.

The existing fault diagnosis methods for complex dynamic industrial systems include
analytical methods, statistical methods and intelligent methods [3,4], and the technologies
of distributed control systems, data storage, transmission have been widely used. However,
in the face of massive data and control variables of production processes and equipment
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operation state, traditional analysis methods it has been difficult to fully extract the fault
symptoms and causal logic relationship of data [5]. At the same time, complex systems
contain the characteristics of dynamic randomness, multi-source uncertainty, high coupling
and strong interference. Hence, it is difficult to establish accurate mathematical models and
a complete or perfect expert knowledge system. The data-driven intelligent fault diagnosis
method is more applicable because of data computational and modeling complexity in the
era of big data [6]. Intelligent fault diagnosis methods have the advantages of direct and
effective statistical analysis and information extraction of massive, multi-source and high-
dimensional data. Based on the collected monitoring data of different sources and different
types, intelligent fault diagnosis methods make use of various data mining techniques to
obtain useful hidden information and achieve the purpose of detection and diagnosis [7].

An intelligent production line consists of multiple professional and automatic pro-
duction lines and deploys a large number of intelligent sensors and components to the
key link of product processing. Intelligent production lines are developing to provide
high automation and integration. As the complexity of the production line increases, the
possibility of module failures in the whole system increases [8,9]. Traditionally, this relies
mainly on experienced workers to judge the running status of equipment. These methods
make judgments on the state of equipment in the future based on general information
recorded by the history of equipment maintenance, and may be limited due to the lack
of complete analysis of equipment status and the influence of environmental factors [10].
In addition, the scheduled maintenance mode leads to insufficient or excessive mainte-
nance and other problems. Compared with a traditional production line, an intelligent
production line can monitor the running process and identify the running state of each
component in the production process. Therefore, effective prediction of potential failures
in the production line is essential to reduce maintenance and operation costs, and improve
the overall performance of the production line.

Current production line fault diagnosis methods based on machine learning have
problems of low prediction accuracy, slow response and high false alarm rate. Therefore,
in view of the above problems, we propose a fault diagnosis method based on a recurrent
neural network to accurately predict all kinds of faults that may occur in the production
process of an A-class thermal insulation board production line.

A novel fault diagnosis method for an A-class thermal insulation panel production line
based on deep learning is proposed. The main contributions of this paper are as follows:

(1) Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) are
integrated in the proposed fault diagnosis method;

(2) Am attention mechanism is introduced to obtain special data and mask useless
information, which improves the feature extraction ability of the proposed model;

(3) A Dilated Convolution Module (DCM) with LSTM is proposed in the CNN-LSTM
model, which reduces the number of parameters while maintaining the ability of model
feature extraction.

The rest of the paper is organized as follows. Section 2 introduces related work con-
cerning fault diagnosis methods and the background of deep learning methods based
on data fusion and LSTM. The proposed fault diagnosis method of an A-class thermal
insulation panel production line is demonstrated in Section 3, and experiments and corre-
sponding results are presented in Section 4. Finally, Section 5 shows the application of the
detection system, and Section 6 concludes this paper and discusses future work.

2. Related Work

Fault diagnosis is an essential technique in reliability analysis of production equip-
ment [11,12]. At present, fault diagnosis methods can be divided into three categories:
model-based fault diagnosis methods, signal processing-based fault diagnosis methods
and artificial intelligence-based fault diagnosis methods [13,14].
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2.1. Fault Diagnosis Methods

Model-based fault diagnosis [15–18] methods need to establish accurate mathematical
models for monitoring objects, such as differential equations, and diagnose faults by resid-
ual errors between model inputs and outputs [19]. Traditional fault diagnosis methods can
be divided into three categories: analytical model-based approaches, qualitative empirical
knowledge-based approaches, and data-driven approaches [20]. Xu [21] et al. combined
improved composite multiscale fuzzy entropy and support vector machine (SVM) with
particle swarm optimization (PSO) to diagnose rolling bearing faults. The disadvantage of
this method is that it is very complicated and time-consuming to establish the model, and
the accuracy of the model directly affects the performance of fault detection and diagnosis.
A fault diagnosis method based on signal processing collects the sensor signals in the
operation of the device, then extracts the features by observing and analyzing the hidden
information in the sequence. Velasco-Gallego [22] proposed a fault diagnosis approach to
identify the faults and malfunctions existing in marine systems. Zhao [23] et al. proposed
a quality testing approach for the quality of transformer insulating oil based on fluores-
cent bicolor ratio and extraction of fluorescence characteristics of dual band information.
The running transformer fault diagnosis model was established, through a custom filter
and visible photoelectric detector, and allowed online real-time monitoring. However,
this method can only analyze the characteristics of the signal itself, and is unable to dig
deeper for hidden information. Fault diagnosis methods based on artificial intelligence
using machine learning and deep neural networks can extract hidden features from a large
number of datasets; the trained models are used to realize fault diagnosis, which achieves
excellent results. A real-time anomaly detection intelligent system [24] was proposed to
address the current gaps identified within the maritime industry. Zhang [25] et al. pro-
posed a new intelligent defect detection framework based on time-frequency transform that
trained sparse filtering model using the speed samples of agricultural machinery. Residual
samples at different speeds were used to test its validity. This method can adaptively
extract the existing fault features, which is an effective intelligent method for agricultural
equipment fault detection. The performance of fault detection verifies that this method
not only has strong fault classification ability at different speeds, but also has higher iden-
tification accuracy compared with other methods. Approaches based on Convolutional
Neural Networks [26] or graph networks [27] have also been proposed to address the
problem of fault diagnosis in industrial scenarios. Du [28] et al. proposed a fault diagnosis
strategy based on Long Short-Term Memory to classify and determine different fault types
for time-series data sequences. The method is useful to guarantee the operational safety of
equipment, and can be used as a reference for fault detection.

2.2. Multi-Source Data Fusion Methods

In recent years, the demand for multi-source information fusion [29–31] in various ap-
plications has increased, and data fusion technology has been widely researched. The goal
of data fusion is to alleviate the problem of weak recognition of single sensors and to obtain
more accurate detection results. At the same time, deep learning has become a very attrac-
tive data processing method that can find higher-order abstract features that are difficult to
be found by traditional feature extraction methods. Hence, it is widely used in massive
multi-source data processing. Weiss S [32] et al. used extended Kalman filter (EKF) to fuse
the camera information and IMU information. Pre-integration and visual information were
used for state prediction and update. Li [33] et al. proposed a new integrated method based
on convolutional neural network (CNN), a transfer learning method and support vector
machine (SVM) to automatically identify flotation conditions. Compared with the existing
recognition methods, the CNN-SVM model could automatically retrieve features from the
original images and perform high-precision fault detection. Gu [34] et al. proposed a trend
prediction method for large axial flow fans based on vibration signal-power information
fusion to solve the problem of the insensitivity of measured signals to internal faults, poor
timeliness and low sensitivity of online intelligent fault diagnosis. Extracted feature vectors
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were used as the input of particle swarm optimization and cross-validation optimized
support vector machine to predict the operation trend of axial flow fan. Experimental
results showed that the performance of this method was better than that of the benchmark
method. Zhang [35] et al. proposed a reliability prediction method for satellite lithium
battery. Bayesian model integrating binary performance degradation data and life data
were used to predict the remaining life of satellite lithium battery. The results showed
that the prediction accuracy of remaining life could be effectively improved by integrating
binary performance degradation data and life data. Che et al. [36] proposed an aeroengine
fault diagnosis fusion model based on deep learning that achieved high fault diagnosis
accuracy under the influence of measurement error interference. Sun et al. [37] used a
three-dimensional laser radar to obtain point cloud data of corn plants and the image data
collected by the camera, automatically obtained a green feature binary image by using a
super greening algorithm and the maximum interclass variance method, and then projected
the point cloud data after clustering analysis onto the target edge frame of the image to
build a multi-sensor data fusion support model for feature recognition. Sun et al. [38]
proposed a mobile node location method of an underwater sensor array network based on
multi-information fusion. The simulation results showed that the location performance of
the fused location method was significantly improved.

2.3. Discussion

The models established by traditional fault diagnosis methods based on machine
learning have been studied for many years. Since these methods are based on some
assumptions, their classification accuracy still has the potential to be improved. Traditional
fault diagnosis methods are not suitable in the case of multi-sensor fusion in this paper.
The fault diagnosis methods based on data fusion make little use of multi-source data, which
lead to insufficient feature extraction ability. Therefore, to address the above problems,
a fault diagnosis method for an A-class thermal insulation board production line based
on multi-sensor fusion is proposed, which can fully extract the useful information from
multi-source sensor data and accurately classify the faults of an A-level thermal insulation
board production line.

3. Fault Diagnosis Method Based on LSTM and Multi-Sensor Data Fusion
3.1. The Network Architecture of LSTM Based on Multi-Sensor Data Fusion

The architecture of a LSTM network is one kind of Recurrent Neural Network (RNN)
network. Compared with basic version of RNN, LSTM can address the problem of ex-
ploding gradients and gradient vanishing and deal with relatively long-term data. The
network architecture of LSTM is more complicated than of RNN, and the internal frame-
work of LSTM adds three gated activation functions, i.e., input gate it, forgetting gate ft
and output gate ot. The gated mechanism alleviates the problems of vanishing gradient and
exploding gradient of RNN and solves the problem of long-term dependence relationship.
The essential updating of LSTM can be described as follows:

it = σ(Wi·[ht−1, xt] + bi) (1)

ft = σ
(

W f ·[ht−1, xt] + b f

)
(2)

ot = σ(Wo·[ht−1, xt] + bo) (3)

where, it, ft and ot denote input gate, forget gate and output gate, respectively, ht−1 denotes
last time output, W∗ denotes the weight coefficient matrix, and b∗ represents the offset
vector. The network architecture of a basic LSTM block is displayed in Figure 1. According
to characteristics of time sequence data and multi-factor correlation, a fault diagnosis
method of an A-class thermal insulation panel production line is proposed based on LSTM
and multi-sensor feature fusion. The detailed network architecture is shown in Figure 2.
The outputs of LSTM block are concatenated along channels, which satisfy the requirements



Appl. Sci. 2022, 12, 9642 5 of 15

for subsequent attention and dilated convolution modules. Because of the implementation
of a ResNet block, and attention and dilated Convolution modules, the proposed model
can merge the outputs of the LSTM block and predict the state of the production line.
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The basic LSTM block has three main stages:

• Forget stage. This phase is mainly about selectively forgetting the input passed in
by the previous node. That is, the network determines whether the intermediate
information should be forgotten or remembered. Specifically, it controls information
flow from the previous state, which needs to be retained or forgotten, by calculating
the value of the forgetting gate.

• Memory stage. This stage is to decide what new information should be kept in the cell
state. A sigmoid layer as the input gate layer decides which values should be updated.
A tanh layer creates a vector of new candidate values, then combines above values to
create an update to the state;

• Output stage. This is the final stage to decide which information is outputted. This
output of the proposed CNN-LSTM contains prediction of each sensor deployed on
equipment. Then, the network output is fed into the k-NN algorithm to obtain the
final prediction.

The network output shown in Figure 2 is a ten-dimension tensor in which each
dimension corresponds to the state of each sensor deployed in the A-class thermal insulation
panel production line. Therefore, the output of the proposed CNN-LSTM model is a
prediction of the current state of the production line. Finally, the fault diagnosis result is
predicted by the k-NN algorithm, as further discussed in Section 4.

The proposed network structure of LSTM based on hierarchical residual connection is
divided into three parts: the LSTM block, the ResNet module and the attention module.
To enhance the feature expression ability of the current hidden layer state, the output of
LSTM block is stacked by four residual connections and a LeakyReLU activation function.
Then, the feature extraction capability of the network is improved by the attention module
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and the dilated convolution module. Finally, the predicted results are obtained by the
Softmax function.

3.2. Dilated Convolution Module

Dilated convolution is proposed to solve some problems in image segmentation.
For the task of image segmentation, the image fed into the convolutional network is filtered
by convolutional layer before pooling layer. Image size can be reduced while the receptive
field can be increased. Finally, the image size can be restored by up-sampling. However,
in the process of downsampling or upsampling of the image, internal features and spatial
hierarchical information are usually lost. Dilated convolution is proposed to alleviate
the above problem. The dilated convolution module is shown in Figure 3, and can be
described as:

r = ∑
i

di(si − 1) (4)

where, r is the receptive field, di represents dilation rate and si denotes filter size.
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The advantage is that the receptive field of the dilated convolution module is increased
while losing hardly any detail information. The original 3 × 3 convolution kernel has a
5 × 5 (dilated rate = 2) or larger receptive field with the same number of parameters
and computation cost of a normal convolutional module. For LSTM network, dilated
convolution can fuse feature information of different scales and establish the dependence
between features of different time series, which improves the recognition ability of the
LSTM network.

3.3. Attention Mechanism

For different types of input data, the feature extraction ability of the LSTM network is
different. In other words, some components of the input data may dominate the network
data. With the attention mechanism introduced, the proposed network can focus on
essential hidden features. Therefore, the outputs from different depths of the residual
module are fed into the attention layer, which extracts multiscale features and enhances
the proposed network prediction accuracy efficiently. The details of the attention block are
displayed in Figure 4.

After full feature extraction from CNN-LSTM module, the characteristics of multi-
sensor information acquired are sent to the proposed attention mechanism to optimize
feature extraction. In addition to improving the depth of feature extraction, the proposed
model can effectively identify specific information and adaptively adjust channel charac-
teristics, which independently learn the critical information of various sensor features in
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the fault diagnosis of an A-class insulation panel production line. Hence, the proposed
attention block effectively enhances the feature extraction ability.
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4. Experiments
4.1. Data Preprocessing

Data fill and timing alignment. Multiple sensors are installed in the fault diagnosis
system of an A-class insulation panel production line for the mixing equipment, crawler
Laminator and cutting equipment. Each sensor measures the corresponding key parameters,
e.g., voltage, current or vibration signals, which are recorded in the form of time series.
However, due to various reasons, the data collected by various sensors are missing on a
small scale. In addition, because of different sensors, the data collected by different types
of sensors has the problem of time inconsistency. Data loss and data synchronization affect
the data quality, leading to a decrease in accuracy of prediction analysis. Therefore, it is
necessary to perform the processing of data filling and time scale alignment for the collected
original data. Data preprocessing is shown in Figure 5.
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To solve the problem of missing data values, when the missing data is small, the
historical data of the previous moment (or the next moment) of the missing data can be
used to make up the missing data by a filling or interpolation method. A data completion
method based on quadratic interpolation can be introduced, since the missing data are few.
A fitting curve by quadratic interpolation can estimate the overall trend of a small data gap.
When there is a large amount of missing data, the above method is no longer applicable, so
it is necessary to compare the data measured by sensors of adjacent measuring points or
other relevant measuring points, and fill the missing data according to the data correlation.
The preferred method is to find similar data at a similar time by data similarity analysis.
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Principal component analysis (PCA) was used to perform data dimensionality reduction.
The adjacent data whose similarity reached the threshold were used for data completion.
If no similar data could be found, the entire segment of data with missing data were
discarded. To solve the problem of time inconsistency of data collected by various sensors,
it is necessary to transform the data. According to a uniform time interval, the mean value
of all data values in the corresponding time period was taken to ensure the consistency of
data collection frequency.

Time series data selection. In this paper, the data measured by a variety of sensors on
the production line of an A-class insulation board were predicted and studied. According
to a large number of relevant works, the data obtained from the actual measurement
of A-class insulation board were selected. The signals of the LSTM-based multi-feature
fusion prediction model adopted in this paper consisted of five parts, i.e., voltage, current,
vibration, rotation and pressure, as listed in Table 1.

Table 1. Specification of different sensors installed on the production line.

Number Device Sampling Rate Node Count Range

1 Voltage sensors 600 Hz 3 0–450 V
2 Current sensors 450 Hz 2 0–300 A
3 Vibration 500 Hz 2 0–100 mm/s
4 Rotating 2 kHz 1 0–20 kHz
5 Pressure 2400 Hz 2 0–100 MPa

K-Nearest Neighbor algorithm. The output of the proposed CNN-LSTM model is a
10-dimension tensor, which can perform fault diagnosis by cascading a certain classification
algorithm. Hence, K-Nearest Neighbor (K-NN) was introduced as the final classifier
because of high accuracy and flexibility. The capacity of the custom multiple-sensor dataset
is enormous, so, labeling the custom dataset is time-consuming and tedious. Therefore,
the k-means algorithm was introduced to preprocess the custom dataset, and labeling and
double-checking each cluster by experienced experts. The well-prepared custom dataset by
k-means algorithm can be used as training dataset for the proposed CNN-LSTM model.

4.2. Experiments and Evaluation Method

Preparation. After the preprocessing of the data collected by various sensors in an
A-class insulation panel production line, a complete time sequence signal dataset was
established for training the CNN-LSTM network. Custom training and testing datasets
acquired by above sensors are listed in Table 2. The running data of an A-class insulation
panel production line at an average 16 h per day for 20 days were collected and preprocessed
by a data filling algorithm. Data sampling rate was fixed at 1 kHz, and the mean of every
250 points was considered as a sample point. Therefore, the length of each sample in the
custom multi-sensors dataset was 0.25 s, i.e., four samples per second.

Table 2. Detailed description of the custom dataset.

Length of Each Sample Proportion Number of Samples

Train
0.25 s

70% 3225.6 k
Validation 20% 921.6 k

Test 10% 460.8 k
All - - 4608 k

The collected dataset of the operation status of an A-class insulation board production
line includes the normal operation status of the production line and five failure states: ab-
normal pressure of air compressor, failure or abnormality of cutting equipment, abnormal
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state of raw material mixing equipment, main motor failure, and spindle failure of stirring
kettle, as listed in Table 3. Since serious data imbalance existed in the custom multiple-
sensor dataset, data augmentation was applied to alleviate the influence of data imbalance.
The data augmentation algorithm was mainly implemented by randomly cropping and
inserting. Target data segment, i.e., data of abnormal state were randomly cropped and
inserted into data of normal state. An abnormal pressure of the air compressor may lead
to serious production accidents, and was one of the key monitoring nodes. Failure or
abnormality of other equipment may cause serious quality problems of A-class thermal
insulation boards. Therefore, a data augmentation algorithm was mainly applied at the
time periods when abnormal appearance was observed. The ratio of normal to abnor-
mal (air compressor, cutting equipment, mixing equipment and stirring kettle) state was
65.4:34.6 (8:9.3:8.3:9), which is close to 65:35. The original data captured from each sensor
is displayed in Figure 6. These abnormal data were caused by electromagnetic interference,
load change or other reasons, and may revert to normal in a short time, and should not be
treated as faults. Hence, the original data should be preprocessed. Part of the preprocessed
training data is shown in Figure 7. Considering the high-sensitivity of deployed sensors,
the average value and overall trend of each sensor are helpful to train the proposed model
and predict the state of the production line. To give a rough impression, subplots (a) and
(b) refer to the starting moment, and subplots (c) to (f) reflect the normal running state of
corresponding equipment.

As can be seen from the figure, the preprocessed data have the same sampling fre-
quency, which can effectively represent the operating status of each device.

Table 3. The possible state of each device in A-class insulation panel production line (Original dataset).

Device Running State Proportion

All devices Normal 68.7%

Air compressor Abnormal (pressure) 1.8%

Cutting equipment Abnormal (voltage and current) 8.4%

Mixing equipment Abnormal (rotation) 9.3%

Stirring kettle Abnormal or breakdown (vibration) 11.8%Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 15 
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current, rotation, vibration-x, vibration-y and pressure, respectively. Subplots (a,b) refer to the
starting moment, and subplots (c–f) reflect the normal running state of corresponding equipment.

Training. Adam was selected as the optimizer with a momentum of β1 = 0.95,
β2 = 0.997 in the training process. Batch size was fixed to 128, and the learning rate was
0.0002 at the beginning. The decay ratio of learning rate was 0.98 per five epochs; hence,
the final learning rate was 2e−4 × 0.9840 ≈ 8.9e−5. In the training process, the changes
of mean square error (MSE) loss of the training and testing set are shown in Figure 8.
In the first 30 epochs of training, the mean square error loss of the training set and test set
showed a rapid decreasing trend, but after epoch 160, the decreasing trend became slower.
As can be seen from Figure 8, in the training and testing set, MSE loss after training of
epoch 180 are both minimum values. To select the model with the best performance, the
model parameters after epoch 190 of training were selected as the final CNN-LSTM model
parameters. At this time, the MSE loss of the training and testing set were about 0.4227 and
0.4213, respectively.
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Testing. To verify the feasibility and effectiveness of the proposed CNN-LSTM model
for the fault diagnosis method of an A-class thermal insulation board production line, four
evaluation indexes, i.e., accuracy, precision, recall and F1-sore, were adopted to evaluate
the prediction of the model and compare these with other algorithms, e.g., RNN [39],
LSTM [40], SVM [33] and 1D-CNN [41]. In the same dataset, the proposed LSTM fault
diagnosis model was used to train the multi-sensor dataset of an A-class insulation panel
production line. The comparison is shown in Table 4, and the formulations can be described
as follows:

Precision = TP/(TP + FP) (5)

Recall = TP/(TP + FN) (6)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (7)

F1 = 2·(Precision·Recall)/(Precision + Recall) (8)

where, TP, FP, TN and FN denote True Positive, False Positive, True Negative and False
Negative. All algorithms involved in the comparison were slightly modified to fit the task,
which was to predict the state of the production line in the next 10 s by the data of the last
100 s. Time consumption refers to the cost of time per prediction. The confusion matrix
is shown in Figure 9 to provide further insights. The essential problem is how to predict
if the production line is running properly or not. Although the output of the proposed
CNN-LSTM model is multi-classification, false classifications among abnormal states of
different equipment are not concerned. In other words, the multi-classification can be
regarded as binary classification. Therefore, the left multi-classification confusion matrix in
Figure 9 can be converted to a right matrix, which simplifies the fault diagnosis problem,
in which 0 and 1 represent the normal and abnormal states, respectively.

Table 4. Comparison of results between the proposed network and other algorithms.

Algorithm Accuracy Precision Recall F1-Score Time Consumption (s)

Proposed 98.97% 98.95% 99.47% 99.21% 0.437
RNN 71.58% 81.29% 73.16% 77.01% 0.583
LSTM 83.56% 88.48% 86.67% 87.56% 0.519
SVM 69.21% 72.77% 77.22% 74.93% 1.748

1D-CNN 78.07% 85.12% 81.38% 83.21% 0.364
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In terms of fault diagnosis performance, the proposed CNN-LSTM model was ob-
viously superior to other network based on RNN and SVM-based methods. Compared
with typical deep RNN model and LSTM models applied in recent years, the proposed
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CNN-LSTM model is better by all criteria, reaching 98% on average and meeting the needs
of fault diagnosis in actual production.

5. Application

The proposed fault diagnosis system was applied in an actual production environment.
The A-class insulation board production line consists of mixing equipment, a caterpillar
laminating machine and cutting equipment. It is essential to keep each piece of equipment
of an A-class insulation board production line normal and efficient in operation. Therefore,
the voltage and current data of key nodes, vessel pressure and vibration signals of key
motors of mixing equipment, crawler laminator and cutting equipment were sampled and
monitored in real time. The production line of an A-class insulation board production line
and its various sensors for key nodes are shown in Figure 10, and the specifications of
deployed sensors are listed in Table 5. Data were acquired and sent to a computer by a PLC.
All kinds of collected signals were preprocessed to ensure the integrity and credibility for
each key node. Detailed procedures of signal preprocessing are described in Section 4. The
training and testing datasets consisted of preprocessed multi-sensor data and were fed into
the proposed CNN-LSTM network. The proposed CNN-LSTM network and datasets were
sent to the server for training to obtain well-trained predictable models. The configuration
of the high-performance server used for training is shown in Table 6.
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Table 5. Specifications of different sensors deployed in the production line.

Sensor Input Voltage Output Resolution Range

Voltage -
RS485

600 0–450 V
Current - 450 0–300 A

Vibration 12 or 24 V 4–20 mA 0.1 mm 0–100 mm/s
Rotation 24 V 0–10 V 0.3% 20–10,000 Hz
Pressure 12–36 V 4–20 mA 0.06 MPa 0.1–60 MPa

Table 6. Specification of the high-performance server.

No. Device Name Type

1 CPU I9-10900kf
2 RAM 64G DDR4
3 Hard driver 512G SSD
4 GPU RTX 2080s × 2
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Data collected by each sensor were processed by a computer and fed into the proposed
CNN-LSTM model. The output of the network contained the prediction of the next 10 s
states of each piece of equipment, and was classified by the k-NN algorithm to obtain the
final diagnosis. Days of industrial testing proved the prediction accuracy and stability of
the proposed model. Prediction accuracy over 10 s reached 98.7%, and decreased by 6%
when the prediction duration was increased to 15%. In general, a timely response, i.e.,
load reduction or shutdown, could be made with accurate prediction within 10 s. Hence,
the proposed CNN-LSTM model satisfied the requirement of industrial production.

6. Conclusions and Future Works

In this paper, a fault diagnosis method for an A-class insulation panel production
line based on multi-sensor fusion is proposed. A CNN-LSTM-based network, combined
with an attention mechanism, improved hidden features extraction. Real-time data of
an A-class insulation panel production line were collected by placing multiple sensors
at key nodes. A well-trained model based on CNN-LSTM was validated by multiple
sets of experiments. The experimental results showed that the prediction precision of the
proposed fault diagnosis method reached 98.7%, could accurately predict different types of
faults for an A-class insulation panel production line, and fully met the needs of industrial
production. In future work, research on production line state prediction method for an
A-class insulation board will be carried out to predict the production line state in real time
and to improve production efficiency.
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