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Abstract: Accurate wind speed prediction is of importance for long-span cross-sea bridges. To this
end, data decomposition techniques are usually employed to promote accuracy of the prediction
model. Since wind speed data come sequentially, real-time decomposition should be adopted. How-
ever, real-time decomposition may degrade the accuracy due to the end effect. In this paper, a novel
scheme of real-time decomposition that is a combination of truncated real-time decomposition and
multi-resolution data is developed. Specifically, truncated real-time decomposition firstly denoises
the data and eliminates the end effect; high-resolution data are then introduced to compensate for
the information loss. Further, a novel wind speed prediction model that consists of the proposed
scheme and neural networks is proposed. Specifically, two gated recurrent unit neural networks are
employed to extract features from the obtained original-resolution and high-resolution data, respec-
tively, and a multi-layer perceptron is adopted to utilize extracted features and make predictions. The
proposed model is validated on the monitoring wind speed data of two long-span cross-sea bridges.
Specifically, the mean absolute error and the root of mean square error of the proposed model on the
two datasets are 0.334, 0.445 and 0.233 and 0.316 m/s, which are smaller than benchmark models and
demonstrate superiority of the proposed model.

Keywords: wind speed prediction; data decomposition; multi-resolution data; machine learning;
long-span bridge

1. Introduction

Cross-sea bridges that connect different regions are becoming a more and more impor-
tant part of the modern transportation network. With cross-sea bridges being longer and
lighter, they are more susceptible to wind load. Under strong winds, the serviceability of a
long-span cross-sea bridge can be influenced, and there may even be traffic accidents [1–3].
Therefore, there is an urgent need to establish a reliable wind speed prediction model to
predict wind speed near the bridge and then aid in the management of the bridge.

A wind speed prediction model can be mainly classified into physics-driven models
and data-driven models. Physics-driven models collect related meteorological parameters
and employ numeric weather prediction (NWP) models to make wind speed predictions,
which require many computing resources and are more suitable for long-term predictions.
In addition, post-processing techniques are usually needed for physics-driven models to
make wind speed predictions for a specific location [4–6]. Data-driven models predict
wind speed by modeling evolutionary mechanisms of wind speed embedded in historical
data. As a comparison, data-driven models require fewer computing resources and are
more suitable for short-term wind speed prediction for a specific location. According to the
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aforementioned comparison, data-driven models are more suitable for short-term wind
speed prediction for long-span cross-sea bridges.

Traditional data-driven models are time series models, such as the autoregressive
moving average (ARMA) model [7] and fractional autoregressive integrated moving av-
erage (f-ARIMA) model [8]. Time series models mainly focus on linear characteristics in
the historical wind speed data. In order to take nonlinear characteristics into consideration
more efficiently, machine learning models such as support vector machine [9], multi-layer
perceptron [10] and extreme leaning machine [11] were adopted. With the increase in the
volume of data and the development of data mining techniques, deep learning models
were also applied to predicting wind speed, which can extract multi-level features more
efficiently than shallow models. Typical examples are the long short-term memory (LSTM)
neural network [12], convolutional neural network (CNN) [13] and deep reinforcement
learning model [14].

The accuracy of a data-driven model is easily influenced by the unpredictable noise
contained in the historical data. To alleviate the degradation of accuracy caused by the
noise, researchers proposed to combine the data decomposition technique with the predic-
tion model. The basic idea is as follows. The raw wind speed series is firstly decomposed
into several subseries that are easier to predict. Then, the prediction model is established
for each subseries, and the final prediction is made by aggregating the predictions for
each subseries. For example, Liu et al. [15] proposed a prediction model with empiri-
cal mode decomposition (EMD) and ARIMA. Yu et al. [16] came up with a prediction
model with wavelet packet decomposition (WPD) and the Elman neural network (ENN).
Liu et al. [17] used singular spectrum analysis (SSA) to decompose the wind speed data
and adopted a convolutional neural network gated recurrent unit (CNNGRU) and support
vector regression (SVR) to predict the trend and detail components, respectively. Other
signal processing techniques such as wavelet transform (WT) [18] and variational mode
decomposition (VMD) [19] were also employed. To further enhance the predictability of a
subseries, a secondary decomposition is needed. Qu et al. [20] firstly used complete ensem-
ble empirical mode decomposition with adaptive noise (CEEMDAN) to decompose the raw
series and then used empirical wavelet transform (EWT) to decompose a subseries of high
frequency. Zhang et al. [21] employed VMD to decompose the raw series and then applied
WT to denoise each subseries. To decrease computing resources demanded by building a
prediction model for each series, researchers proposed several approaches. One approach
is to assemble a subseries according to sample entropy [22] or the Spearman correlation
coefficient [23]. Another approach is to predict the trend only [24–26]. Researchers also
employed a scheme of weighted sums to tackle the problem of error accumulation that
occurs when aggregating predictions of each subseries [27,28].

It is effective to combine the signal processing technique and the prediction model to
improve accuracy. However, in most related research studies, the signal decomposition
was performed at once, which is called one-time decomposition [29] and is based on
the assumption that all data are known. However, in practice, wind speed data come
sequentially, which indicate the impracticability of one-time decomposition and require
real-time decomposition. Real-time decomposition means that data decomposition is
performed every time new data come in. The main problem of real-time decomposition
is the end effect. The end effect is manifested as the difference between the end region of
decomposition results of the initial series and that of the series updated with new wind
speed data. The end effect is caused by the difference between endpoint values of these
two series. The influence of the end effect on the prediction model is illustrated as follows.
For example, a prediction of the trend of wind speed is needed, and trends obtained by
decomposition of the updated series r1, . . . , rN+1 and the initial series r1, . . . , rN are denoted
as tu

1 , . . . , tu
N+1 and ti

1, . . . , ti
N , respectively. The ideal input should be tu

1 , . . . , tu
N that is more

consistent with the target tu
N+1, but the available input is ti

1, . . . , ti
N . There is a difference

between the ideal and the available input due to the end effect, which can be interpreted as
the introduction of a kind of noise that is caused by the end effect. As a consequence, the
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end effect can degrade the improvement of accuracy by data decomposition techniques.
The accuracy of the prediction model with this basic real-time decomposition can even be
worse than that of the prediction model without signal processing techniques [30,31]. It
was suggested to adopt data decomposition techniques as tools of denoising [31], by which
only insignificant changes in the raw series are made, and the end effect can be mitigated.
How to further reduce the influence of the end effect has become an important topic.

A possible solution is to adopt a new scheme of real-time decomposition that can
mitigate end effect. Deng et al. [32] proposed a new scheme of real-time decomposition
that is called quasi real-time decomposition, and the scheme is explained as follow. An
initial prediction of the raw series is firstly made and supplemented to the raw series, and
the updated series is then decomposed to obtain a corresponding subseries, by which the
end effect can be mitigated. However, the effectiveness of quasi real-time decomposition
depends on the accuracy of the initial prediction. Liu and wang [33] proposed a scheme
of real-time decomposition to eliminate the influence of the end effect by discarding the
influenced part of the result of decomposition and using the rest as input, which can be
regarded as truncated real-time decomposition. Compared to basic real-time decomposition
and quasi real-time decomposition, truncated real-time decomposition can eliminate the
influence of the end effect explicitly, but it can lose information significantly and transform
a single-step prediction problem into a multi-step prediction problem. Thus, the scheme of
truncated real-time decomposition requires auxiliary measures.

Recently, researchers studied the possibility of applying multi-resolution data to wind
speed prediction. Wang et al. [34] used low-resolution and high-resolution data as the input
of the functional regression model to enhance its ability to capture patterns of different
time scales. Wang et al. [35] applied the kernel-based ELM (KELM) to combine predictions
by a model trained using low-resolution data and by a model trained using high-resolution
data. In the aforementioned studies, the introduction of high-resolution data can provide
details of wind speed series and improve the accuracy. Therefore, it is possible to combine
truncated real-time decomposition and multi-resolution data to mitigate the influence of
end effect without losing information significantly.

In this paper, we propose multi-resolution real-time decomposition, which is a new
scheme of real-time decomposition that combines truncated real-time decomposition and
multi-resolution data. Furthermore, we propose a wind speed prediction model with the
proposed scheme and GRU neural networks and term the proposed model as SSA-TRTD-
MR-GRU. Specifically, the proposed scheme consists of two parts. One is to denoise the
original series with the scheme of truncated real-time decomposition. The other is to collect
the high-resolution data to compensate for the information loss caused by truncated real-
time decomposition. The proposed model is composed of two GRU neural networks and
one MLP. In the proposed model, two GRU neural networks are used to extract features
from the original-resolution input and the high-resolution input, respectively, and the
MLP is used to take extracted features as input and make the prediction. The comparison
of the proposed model with relevant research studies is summarized in Table 1. The
proposed model is validated with monitoring wind speed data in the site of two long-span
cross-sea bridges.

The proposed scheme connects truncated real-time decomposition with multi-resolution
data, which extend real-time decomposition techniques. Furthermore, the proposed model
connects the proposed scheme with deep learning techniques, which can make more ac-
curate predictions. The remainder of this paper is as follows. In Section 2, the theoretical
background of the SSA and GRU neural network, schemes of real-time decomposition are
introduced, and the details of the proposed scheme and model are given. Section 3 intro-
duces the data description and the parameter setting of SSA. Analyses of the experimental
results and the conclusion are provided in Sections 4 and 5, respectively.
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Table 1. The comparison of the proposed model with relevant research studies.

Ref Method Real-Time Decomposition Multi-Resolution Data

[15] EMD + ARIMA No No
[16] WPD + ENN No No
[17] SSA + CNNGRU + SVR No No
[20] CEEMDAN + EWT + NN No No
[21] VMD + WT + RBF No No
[24] MCEEMDAN + QRNN No No
[25] CEEMD + ARMA + BPNN No No
[26] WTD + GRU No No
[27] VMD + SVM + LSTM No No
[28] VMD + RBF No No
[31] EMD + SVM Basic real-time decomposition No
[32] EWT + ENN Quasi real-time decomposition No
[33] SSA + BiLSTM Truncated real-time decomposition No
[34] Functional regression No Yes
[35] ICEEMDAN No Yes

Proposed SSA + GRU Truncated real-time decomposition Yes

2. Methodology
2.1. SSA

Singular spectrum analysis (SSA) is a non-parametric method that is usually used
to extract trends from nonlinear and noisy time series [36,37]. SSA has the advantage
that only a small part of the extracted trend is significantly influenced by the end effects.
Furthermore, the length of the influenced part is fixed and closely relevant to the window
length of SSA [33]. To this end, SSA is selected as the data decomposition technique in
this paper.

Given the wind speed series xi = (x1, · · · , xN) of length N, window length L,
K = N − L + 1 and grouping parameter r, the main procedure of SSA to denoise the
series is as follows [38]. SSA consists of the decomposition stage and the reconstruction
stage. In the decomposition stage, the original series is firstly transformed into the trajectory
matrix X by embedding, which is shown in Equations (1) and (2):

X =
[
x1 · · · xK

]
=

x1 · · · xk
...

. . .
...

xL · · · xN

 (1)

xi = (xi, · · · , xi+L−1)
T (2)

in which xi is called the lagged vector. The trajectory is then decomposed by the sin-
gular value decomposition (SVD). With the obtained eigen-triples

(√
λi, ui, vi

)
(
√

λi is
the singular value of the ith eigen-triple, ui denotes the corresponding eigenvector and
vi = XTui/

√
λi) of the SVD, the trajectory matrix can be rewritten as follow:

X = X1 + · · ·+ Xd (3)

where Xi =
√

λiuivT
i is called the elementary matrix, and d is the number of eigen-triples.

In the reconstruction stage, eigen-triple grouping is firstly performed to select eigen-triples
and their corresponding elementary matrices, which is to choose r eigen-triples of all d
eigen-triples and construct the trajectory matrix of the trend by these elementary matrices.
The grouping can be expressed as:

Xtrend = X1 + · · ·+ Xr (4)
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where Xtrend is the trajectory matrix of the trend of the original series. Finally, the diagonal
averaging is performed to transform Xtrend to the trend xtrend of the original series. The
diagonal averaging is given as follows (Y is used to denote Xtrend for simplicity):

yj =



1
j

j

∑
i=1

Yi,j−i+1, 1 ≤ j < L

1
L

L

∑
i=1

Yi,j−i+1, L ≤ j < K

1
N − j + 1

N−K+1

∑
i=j−K+1

Yi,j−i+1, K ≤ j ≤ N

(5)

in which yj is jth element of xtrend.
The performance of SSA is controlled by the window length and the grouping param-

eter r. The grouping parameter can be selected by inspecting the eigenvalue spectrum, and
the window length can be selected by comparing results of denoising [39].

2.2. GRU

Recurrent neural network (RNN) is popular in wind speed prediction for its capacity
of extracting features from sequences. Gated recurrent unit (GRU) is a modification of
the naïve RNN cell, which introduces the update gate and the reset gate to control the
information flow and then tackle the problem of gradient vanishing [40–43]. Therefore,
GRU is chosen to be the model to extract features of wind speed series. The typical GRU
neural network for wind speed prediction is shown in Figure 1a, where xi, hi, GRU and FC
denote ith input, ith hidden state, GRU cell and fully connected layer (single-hidden-layer
neural network), respectively. As shown in Figure 1a, the GRU cell is used to process the
input sequence and store extracted features in the final hidden state, which is the input of a
fully connected layer to make the prediction.
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The structure of the GRU cell is shown in Figure 1b, where ri, zi,
~
hi, ⊗, tan h, σ denote

reset gate, update gate, candidate hidden state, element-wise multiplication, hyperbolic
tangent function, and sigmoid function, respectively. The information flow inside the cell
can be written as follows [40]:

ri = σ(Wrhhi−1 + Wrxxi + br) (6)

zi = σ(Wzhhi−1 + Wzxxi + bz) (7)
~
hi = tanh(Whh(ri ⊗ hi−1) + Whxxi + bh) (8)

hi = zi ⊗
~
hi + (1− zi)⊗ hi−1 (9)

in which Wrh, Wrx, Wzh, Wzx, Whh, Whx are the weights and br, bz, bh are the biases.

2.3. Schemes of Real-Time Decomposition

Due to the fact that wind speed data come sequentially, real-time decomposition is
more suitable than one-time decomposition. There are three schemes of real-time decom-
position in the literature, which are basic real-time decomposition [31], quasi real-time
decomposition [32] and truncated real-time decomposition [33]. Diagrams of these three
schemes are shown in Figure 2, where data in the blue cube denote the data influenced by
the end effect (the length of the influenced part is set to be 2 presumably).

As shown in Figure 2a, the trend t1, · · · , tN is obtained by denoising the existing series
r1, · · · , rN using SSA, and it is used as direct input in the scheme of basic real-time decom-
position. The scheme of quasi real-time decomposition is shown in Figure 2b. The initial
prediction r̃N+1 is made for the existing series to obtain an extended series r1, · · · , rN , r̃N+1.
Then, SSA is performed on the extended series to obtain the trend t1, · · · , t̃N , t̃N+1, and
the trend is truncated to avoid the introduction of error caused by the initial prediction.
Finally, the truncated trend t1, · · · , t̃N is taken as input. In the scheme of truncated real-time
decomposition, as shown in Figure 2c, the existing series is processed by SSA to obtain
the trend, and the trend is truncated to discard the data influenced by the end effect. The
truncated trend t1, · · · , tN−2 is then used as input.

Both the input obtained using basic real-time decomposition and quasi real-time
decomposition are influenced by the end effect. Quasi real-time decomposition can mitigate
the end effect by making the obtained trend closer to the ideal trend that is obtained by
processing the series that is updated with true oncoming wind speed data. However, the
effectiveness of quasi real-time real data relies on the accuracy of the initial prediction.

Furthermore, truncated real-time decomposition eliminates the influenced data ex-
plicitly. However, truncated real-time decomposition also eliminates the latest data that
contain the most recent information, which can transform a single-step prediction problem
into a multi-step prediction problem and thus decrease the accuracy.

2.4. SSA-TRTD-MR-GRU

The proposed scheme of real-time decomposition and the proposed model of wind
speed prediction are shown in Figure 3.
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As shown in Figure 3a, the proposed scheme consists of two parts. In the first part,
truncated real-time decomposition is performed to obtain the truncated trend as the input of
original resolution. In the second part, the corresponding high-resolution data are collected
as the input of high resolution to compensate for the information loss during performing
truncated real-time decomposition. To illustrate, time intervals of the original-resolution
and the high-resolution data are set to 10 and 1 min, respectively, and lengths of the trend
(without truncated) and its influenced part are set to 12 and 2, respectively. After the first
part, the truncated trend t1, · · · , tN−2 is used as the input of original resolution with the loss
of the information at about tN−1, tN . To compensate for the information loss of the trend
of the most recent 20 min, the corresponding high-resolution data h1, · · · , h20 that have
time resolution of 1 min are used as the input of high resolution. The proposed scheme
is a combination of truncated real-time decomposition and multi-resolution data. With
the aid of truncated real-time decomposition, the real-time denoised input can be obtain
without introducing the error caused by the end effect. Furthermore, with the aid of the
corresponding high-resolution data, the information loss caused by truncated real-time
decomposition can be compensated.

As shown in Figure 3b, the proposed model consists of three sub-neural networks.
Two GRU networks are used to extract features from the original-resolution input and the
high-resolution input, respectively. One MLP is adopted to utilize the extracted features
to make a prediction. Specifically, the proposed model is explained as follows. GRU_R
denotes the GRU neural network that takes the original-resolution data xr

1, . . . , xr
N−2 as

input and the extracted features stored in hr
N−2. GRU_H denotes the GRU neural network

that takes the high-resolution data xh
1 , . . . , xh

M as input and extract features stored in hh
M.

An MLP that consists of two fully connected layers (FC_1 and FC_2) output the prediction
xr

N+1 by utilizing the hidden state that is concatenated by hr
N−2 and hh

M. The proposed
model is a combination of the proposed scheme of real-time decomposition and neural
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networks. With the aid of the proposed scheme of real-time decomposition, both the trend
and the detail series can be obtained and used as input. With the aid of neural networks,
high-level features embedded in the original-resolution and the high-resolution data can
be extracted and utilized.

3. Data Description and Decomposition
3.1. Data Description

The proposed scheme and the proposed model are validated on the monitoring wind
speed data of two long-span cross-sea bridges. The investigated Bridge A is a cable-stayed
bridge with a main span of 392 m, and the investigated Bridge B is a cable-stayed bridge
with a main span of 428 m. Both the investigated Bridge A and Bridge B are in Zhejiang
province, China, and the locations of these two bridges are shown in Figure 4. Wind speed
data of both the investigated Bridge A and Bridge B are measured by three-dimensional
ultrasonic anemometers, whose sample frequency are 10 Hz. Data of good integrity and
quality are selected for model validation. Specifically, monitoring wind speed data from
1 January to 30 April 2018 are selected for the investigated Bridge A and are denoted as
A2018, while monitoring wind speed data from 1 January to 30 April 2019 are selected
for the investigated Bridge B and are denoted as B2019. The raw monitoring wind speed
is transformed into the 10 min average wind speed data (original-resolution data) and
the 1 min average wind speed data (high-resolution data) for both bridges. Time history
plots of 10 min average wind speed data of A2018 and B2019 are shown in Figure 5, and
corresponding descriptive statistics are summarized in Table 2.
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Table 2. Descriptive statistics of 10 min average wind speed data of the A2018 and B2019.

Dataset Maximum
(m/s)

Mean
(m/s)

Minimum
(m/s)

Standard Deviation
(m/s) Skewness Kurtosis

A2018 18.04 5.21 0.38 3.21 2.96 0.70
B2019 12.14 3.38 0.27 2.12 3.47 0.95

As shown in Figure 5, both A2018 and B2019 contain significant fluctuations. As
shown in Table 2, A2018 and B2019 are of different characteristics. The maximum 10 min
average wind speed of A2018 is 18.04 m/s and that of B2019 is 12.14 m/s, which are both
above 10 m/s and can influence the serviceability of bridges. Both the maximum and mean
wind speed of A2018 are larger than those of B2019. The standard deviation of A2018
is 3.21 m/s, which is also larger than that of B2019 and indicates fluctuations of A2018
are more significant. In addition, skewness and kurtosis of A2018 and B2019 indicate
that distributions of 10 min average wind speed of A2018 and B2019 are deviated from
Gaussian distribution.

3.2. Data Decomposition

SSA is adopted to perform real-time decomposition, and the parameter settings of SSA
of A2018 are presented as an example and are as follows. The parameters of SSA are the
window length L and the grouping parameter r. In this paper, the grouping parameter is
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determined by comparing eigenvalue spectra, and the window length is determined by
comparing results of denoising and influences of the end effect.

The grouping parameter needs to be determined firstly for subsequent analysis, and
eigenvalue spectra of different window lengths are shown in Figure 6. As shown in Figure 6,
the first eigenvalue plays a dominant role in all the eigenvalue spectra, and the remaining
eigenvalues are similarly small. This phenomenon indicates that the first eigen-triplet
corresponds to the trend of the series and the remaining eigen-triplets correspond to noises
for all the eigenvalue spectra, according to the assumption that the trend is the main
component of the series, and the relative contribution to the series can be assessed by the
relative value of the eigenvalue. As a consequence, the grouping parameter r is set to 1.
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Figure 6. Eigenvalue spectra of different window lengths: (a) L = 2; (b) L = 3; (c) L = 4; (d) L = 6;
(e) L = 8; (f) L = 10.

The results of denoising of different window length are then compared, and the results
are shown in Figure 7. As shown in Figure 7, SSA of different window lengths can denoise
the raw series to varying degrees with the grouping parameter being 1, and the SSA of
window lengths larger than 6 produces similar denoised trends. SSA of small window
lengths, such as 2, tends to preserve more fluctuations, which can still contain unpredictable
noise. Furthermore, SSA of large a window length, such as 8, tends to extract a smoother
trend, which is easier to predict.

The choice of window length also needs to take the end effect into consideration, and
the end effects of different window length are shown in Figure 8. As shown in Figure 8,
the influence range of the end effect increases with the increase in window length. To
avoid the large computation caused by the introduction of long high-resolution series to
compensate for the information loss, the influence range of the end effect should be kept at
a small length. As a consequence, window length should be as small as possible. There
exists a trade-off between the denoising performance and the influencing range of the end
effect. The window length is set to 3 to obtain a satisfactory denoising performance with a
small influence range of the end effect. In summary, the window length is set to 3 and the
grouping parameter is set to 1, and the length of the corresponding range of the end effect
is 2. The same conclusion can be drawn for B2019.
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Figure 7. Results of denoising of different window lengths: (a) L = 2; (b) L = 3; (c) L = 4; (d) L = 6;
(e) L = 8; (f) L = 10.
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Figure 8. End effects of different window lengths: (a) L = 2; (b) L = 3; (c) L = 4; (d) L = 6; (e) L = 8;
(f) L = 10.

4. Experimental Results and Analysis

An experiment is designed to illustrate the superiority of the proposed model, and
two kinds of models are included. The first kind of model utilizes the raw existing data to
predict the raw wind speed in the future, and the included models are the persistence model
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(a naïve model that uses the latest observation as the prediction), ARIMA, extreme learning
machine [44–46], CNN [47,48] and GRU neural networks. The second kind of models are
GRU neural networks combined with different schemes of real-time decomposition to
obtain the denoised input and to predict the trend of the wind speed in the future. The
aforementioned models are summarized in Table 3.

Table 3. The summary of models.

Model Definition

PM Persistence model
ARIMA Autoregression integrated moving average model

ELM Extreme learning machine
CNN Convolution neural network
GRU Gated recurrent unit neural network

SSA-BRTD-GRU GRU with basic real-time decomposition
SSA-QRTD-GRU GRU with quasi real-time decomposition
SSA-TRTD-GRU GRU with truncated real-time decomposition

SSA-TRTD-MR-GRU The proposed model: GRU with real-time
decomposition and multi-resolution data

The first four-fifths of the dataset is used to train the models and the remaining
one-fifth is used to test the models for both A2018 and B2019. Single-step prediction is
performed as an example for all the models to reveal their effectiveness. Specifically, the
twelve latest 10 min average wind speed data are used to predict the next 10 min average
wind speed data for the first kind of models, and the extracted trend of the twelve latest
10 min average wind speed data by different schemes of real-time decomposition is used to
predict the next wind speed data of the trend. As for truncated real-time decomposition
and the high-resolution data, the latest two wind speed data of the extracted trend are
discarded, and the corresponding twenty latest 1 min average wind speed data are used as
the compensating high-resolution data.

4.1. Evaluation Metrics

The mean absolute error (MAE) and the root square mean error (RMSE) that can reflect
the difference in the actual value and the prediction value are adopted to evaluate the
performance of the prediction model. The formulas of the MAE and RMSE are shown in
Equations (10) and (11).

MAE =
1
N

N

∑
i=1
|zi − ẑi| (10)

RMSE =

√√√√√√ 1
N

N

∑
i=1

(zi − ẑi)
2 (11)

where zi is ith actual value and ẑi is ith prediction, and N is the number of predictions.
The mean absolute percentage error (MAPE) is not adopted because a large proportion
of the wind speed data is small, and small absolute error of the prediction can lead to
large an absolute percentage error, which can hinder the analysis of the performance of the
prediction model.

4.2. Experimental Results

Typical predictions of the proposed model are shown in Figure 9, and the performance
of the aforementioned models on the testing set of A2018 and B2019 are summarized in
Table 4. As shown in Figure 9, the proposed model can make satisfactory predictions of
the trend of wind speed. As shown in Table 4, the proposed model achieved the highest
accuracy on both the testing sets of A2018 and B2019, which indicates superiority of the
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proposed method. To illustrate, the MAE and RMSE of the proposed model on the testing
set of A2018 are significantly smaller than those of other models. Two detailed analyses
are conducted to reveal the effectiveness of the proposed model, which are presented in
Sections 4.3 and 4.4.
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Figure 9. Typical prediction of testing sets of A2018 and B2019 by the proposed model: (a) A2018;
(b) B2019.

Table 4. The summary of prediction accuracies of models.

A2018 B2019
MAE
(m/s)

RMSE
(m/s)

MAE
(m/s)

RMSE
(m/s)

PM 0.503 0.676 0.310 0.434
ARIMA 0.501 0.670 0.308 0.429

ELM 0.501 0.669 0.309 0.431
CNN 0.499 0.669 0.309 0.429
GRU 0.499 0.667 0.307 0.428

SSA-BRTD-GRU 0.391 0.518 0.270 0.364
SSA-QRTD-GRU 0.372 0.494 0.261 0.353
SSA-TRTD-GRU 0.431 0.567 0.306 0.413

SSA-TRTD-MR-GRU 0.334 0.445 0.233 0.316

4.3. Analysis I: The Performance of Data Decomposition

A comparison between the models without data composition and the proposed model
is conducted to analyze the effectiveness of the data composition. The comparison is shown
in Figure 10, and several discoveries can be made as follows.



Appl. Sci. 2022, 12, 9610 15 of 19Appl. Sci. 2022, 12, 9610 17 of 21 
 

  
(a) (b) 

Figure 10. The comparison between the models without data composition and the proposed model: 
(a) MAE; (b) RMSE. 

4.4. Analysis II: The Performance of the Proposed Scheme of Real-Time Decomposition 
A comparison between the models with different schemes of real-time decomposi-

tion is conducted to analyze the effectiveness of the proposed scheme. The comparison is 
shown in Figure 11, and several discoveries can be made as follows. 

Firstly, it can be seen that SSA-QRTD-GRU has higher accuracy than SSA-BRTD-
GRU. For example, the MAE and RMSE of SSA-QRTD-GRU on the testing set of A2018 
are 0.372 and 0.494 m/s, respectively, while those of SSA-BRTD-GRU are 0.391 and 0.518 
m/s. The reason behind this phenomenon is that the scheme of quasi real-time decompo-
sition can produce an input that is less influenced by the end effect. Secondly, the accura-
cies of SSA-BRTD-GRU and SSA-QRTD-GRU are higher than that of SSA-TRTD-GRU. For 
instance, the MAE and RMSE of SSA-TRTD-GRU on the testing set of A2018 are 0.431 and 
0.567 m/s, respectively, which is caused by the information loss during the truncation of 
the extracted trend and indicates the need of supplemental information. 

Thirdly, the proposed model has the highest accuracy among the models with differ-
ent schemes of real-time decomposition. The reason behind this phenomenon is as fol-
lows. The proposed scheme can eliminate the influenced part of input and avoid the noise 
caused by the end effect, which is superior to basic real-time decomposition and quasi 
real-time decomposition. Furthermore, the proposed scheme introduces the supple-
mented high-resolution data to effectively compensate for the information loss, which is 
superior to truncated real-time decomposition. The aforementioned discoveries can be 
summarized as follows. The proposed model with the proposed scheme of real-time de-
composition can predict the wind speed data more accurately than models with other 
schemes of real-time decomposition, and the proposed scheme is more effective than other 
schemes. Compared with the other three schemes of real-time decomposition, the pro-
posed scheme can eliminate the influenced part of the extracted trend explicitly without 
information loss. 

M
A

E 
(m

/s)

RM
SE

 (m
/s)

Figure 10. The comparison between the models without data composition and the proposed model:
(a) MAE; (b) RMSE.

Firstly, as shown in Figure 10 and Table 4, the PM model has the worst accuracy and
the GRU model has the best accuracy among the models without data decomposition.
However, differences between their accuracies are insignificant. To illustrate, the MAE
and RMSE of PM that has the worst accuracy on the testing set of A2018 are 0.503 and
0.676 m/s, respectively, while those of GRU are 0.499 and 0.667 m/s. The accuracy of
GRU is not significantly higher than that of PM. The reason behind this is the phenomenon
of unpredictable noise embedding in the raw wind speed series, which can mask the
characteristics of wind speed and then prevent the models from learning evolution patterns
of wind speed. As a consequence of this discovery, PM is used to make initial predictions
in the scheme of quasi real-time decomposition for its simplicity.

Secondly, the proposed model with the help of data decomposition can achieve a
significantly higher accuracy than the models without data decomposition. For example,
the MAE and RMSE of SSA-TRTD-MR-GRU on the testing set of A2018 are 0.334 and
0.445 m/s, respectively, which are significantly smaller than those of GRU. The reason
behind this superior performance is that data decomposition can extract the trend of the
raw wind speed series and eliminate the unpredictable noise effectively, which makes it
easier for the prediction model to learn latent mechanisms. In effect, all the models with
data decomposition can have higher accuracy than the models without data decomposition.
The aforementioned discoveries can be summarized as follows. GRU can predict the wind
speed data more accurately than other models, and data decomposition can promote the
accuracy of models.

4.4. Analysis II: The Performance of the Proposed Scheme of Real-Time Decomposition

A comparison between the models with different schemes of real-time decomposition
is conducted to analyze the effectiveness of the proposed scheme. The comparison is shown
in Figure 11, and several discoveries can be made as follows.

Firstly, it can be seen that SSA-QRTD-GRU has higher accuracy than SSA-BRTD-GRU.
For example, the MAE and RMSE of SSA-QRTD-GRU on the testing set of A2018 are 0.372
and 0.494 m/s, respectively, while those of SSA-BRTD-GRU are 0.391 and 0.518 m/s. The
reason behind this phenomenon is that the scheme of quasi real-time decomposition can
produce an input that is less influenced by the end effect. Secondly, the accuracies of SSA-
BRTD-GRU and SSA-QRTD-GRU are higher than that of SSA-TRTD-GRU. For instance, the
MAE and RMSE of SSA-TRTD-GRU on the testing set of A2018 are 0.431 and 0.567 m/s,
respectively, which is caused by the information loss during the truncation of the extracted
trend and indicates the need of supplemental information.
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Thirdly, the proposed model has the highest accuracy among the models with different
schemes of real-time decomposition. The reason behind this phenomenon is as follows.
The proposed scheme can eliminate the influenced part of input and avoid the noise caused
by the end effect, which is superior to basic real-time decomposition and quasi real-time
decomposition. Furthermore, the proposed scheme introduces the supplemented high-
resolution data to effectively compensate for the information loss, which is superior to
truncated real-time decomposition. The aforementioned discoveries can be summarized
as follows. The proposed model with the proposed scheme of real-time decomposition
can predict the wind speed data more accurately than models with other schemes of
real-time decomposition, and the proposed scheme is more effective than other schemes.
Compared with the other three schemes of real-time decomposition, the proposed scheme
can eliminate the influenced part of the extracted trend explicitly without information loss.

5. Conclusions

In this paper, a new wind speed prediction model with a new scheme of real-time
decomposition is proposed to predict wind speed near cross-sea bridges. Specifically, a
scheme of real-time decomposition that combines truncated real-time decomposition and
multi-resolution is proposed, which discards the part of input influenced by the end effect
and collects corresponding high-resolution data to compensate for the information loss.
Further, a prediction model that combines the proposed scheme of real-time decomposition
and neural networks is proposed, where two gated recurrent unit (GRU) neural networks
are used to extract features from multi-resolution data, and a multi-layer perceptron (MLP)
is employed to utilize extracted features to make predictions. The proposed model is
validated on the monitoring wind speed data of two long-span cross-sea bridges, and the
superiority of the model is illustrated through comparisons. The reason for the superiority
of the proposed model is as follows. Firstly, the GRU neural network is more suitable for
extracting features from time series than from convolutional neural networks (CNN) and
shallow models, such as extreme learning machine (ELM). Secondly, data decomposition
can enhance the predictability of wind speed by effectively eliminating the unpredictable
noise. Thirdly, the proposed scheme is superior to existing schemes of real-time decom-
position for its ability to discard the influenced part of input and compensating relevant
information. In summary, the proposed scheme provides a new approach to conduct
real-time decomposition, and the proposed model can utilize the proposed scheme to make
wind speed predictions with higher accuracy.

The major limitation of the proposed model is that only the trend of wind speed
is predicted and the uncertainty of wind speed is not considered. The uncertainty of
wind speed is mainly reflected in the unpredictable noise, which is eliminated by data
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decomposition to promote the prediction accuracy of the model. The quantification of the
uncertainty of wind speed by interval prediction or distribution prediction can enhance
the reliability of the prediction of the trend. To this end, future work should extend the
proposed model to probabilistic prediction and solve this major limitation.
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