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Abstract: Aiming at the problems of frequent identity switches (IDs) and trajectory interruption of
multi-pedestrian tracking algorithms in dense scenes, this paper proposes a multi-pedestrian tracking
algorithm based on an attention mechanism and dual data association. First, the FairMOT algorithm
is used as a baseline to introduce the feature pyramid network in the CenterNet detection network
and up-sampling the output multi-scale fused feature maps, effectively reducing the rate of missed
detection of small-sized and obscured pedestrians. The improved channel attention mechanism
module is embedded in the CenterNet’s backbone network to improve detection accuracy. Then, a
re-identification (RelD) branch is embedded in the head of the detection network, and the two sub-
tasks of pedestrian detection and pedestrian apparent feature extraction are combined in a multi-task
joint learning approach to output the pedestrian apparent feature vectors while detecting pedestrians,
which improves the computational efficiency and localization accuracy of the algorithm. Finally, we
propose a dual data association tracking model that tracks by associating almost every detection box
instead of only the high-scoring ones. For low-scoring detection boxes, we utilize their similarities
with trajectories to recover obscured pedestrians. The experiment using the MOT17 dataset shows
that the tracking accuracy is improved by 0.6% compared with the baseline FairMOT algorithm, and
the number of switches decreases from 3303 to 2056, which indicates that the proposed algorithm can
effectively reduce the number of trajectory interruptions and identity switching.

Keywords: multi-pedestrian tracking; attention mechanism; dual data association; FairMOT

1. Introduction

In recent years, the multi-object tracking (MOT) algorithm has been a research hotspot
in the field of computer vision, and it is widely used in intelligent transportation [1,2], auto-
matic driving, surveillance, smart cities [3], and motion recognition [4]. Multi-pedestrian
tracking [5-13], which is one of the most difficult and significant parts of MOT field research,
has important application value for crowd congestion, safety hazards, and pedestrian flow
statistics in traffic hubs, shopping malls, and other public places.

Object detection is one of the most active topics in computer vision and the basis of
MOT. The continuous development of deep learning techniques has greatly improved the
performance of MOT algorithms [14,15] and has made the tracking-by-detection (TBD)
two-stage pedestrian tracking algorithms [16,17] the current mainstream framework. The
TBD algorithm first detects the current frame image through the object detection net-
work [17-22] and obtains multiple pedestrian detection boxes, and then correlates them
with the pedestrian trajectories already established in the previous sequence of video
frames by the Kalman filter and Hungarian algorithm. The DeepSORT algorithm is a
classical TBD algorithm that was proposed by Wojke et al. [23] It uses YOLOV3 [24] as the
pedestrian detection network and extracts pedestrian apparent features via a pedestrian
re-identification module, but because pedestrian detection and apparent feature extraction
are performed in two steps, there are many redundant calculations. Track-RCNN [25]
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algorithm has difficulty meeting real-time requirements in pedestrian-dense scenarios, as
it adds an RelD head on top of the Mask RCNN [26] and regresses a bounding box and
RelD feature for each proposal. With the development of multi-task learning algorithms,
one-shot pedestrian tracking algorithms with shared feature layers for pedestrian detection
and apparent feature extraction have attracted the attention of scholars.

Wang et al. [27] proposed the first one-shot multi-pedestrian tracking algorithm, joint
detecting embedding (JDE), which detects pedestrians while extracting their apparent
features. Thanks to the high efficiency of one-stage object detection networks and the
sharing of underlying features by multi-task joint networks, such algorithms can achieve
near real-time tracking speeds. However, the YOLOv3 detection network JDEuse is anchor-
based; it is very sensitive to hyperparameters and requires a lot of time for tuning, and
the positive and negative samples are unbalanced during the training process. Therefore,
in 2020, Zhang proposed the FairMOT multi-object tracking algorithm [28] based on
the CenterNet [29] anchor-free detection network, which effectively makes up for the
shortcomings of JDE. Because the pedestrian tracking algorithm requires extensive spatial
location information, the detection network in current tracking algorithms undergoes
multilayer down-sampling and convolution; a large amount of spatial location information
is lost in the shallow pedestrian network, resulting in insufficient tracking accuracy and
frequent IDs. Moreover, the data association method of the commonly used multi-object
tracking algorithm only associates detection boxes that have scores higher than a certain
threshold with the trajectories, ignoring the fact that those scores are lower than the
threshold when the pedestrian is obscured, which leads to non-negligible true missing
objects and fragmented trajectories. This is insufficient for depicting the pedestrian motion
state and easily causes interrupted trajectories and IDs.

To solve this problem, we propose a simple and effective multi-pedestrian tracking
algorithm, the attention mechanism and dual data association tracking, (AMDDATrack)
algorithm, which enhances network recognition of obscured pedestrians by introducing
feature pyramids networks (FPNs) [30] and high-resolution feature maps (HRs) into the
neck part of the network, and an improved spatial attention mechanism module to improve
the accuracy of the model in spatial location of pedestrians. Finally, we propose a dual
data association method that associates almost every detection box instead of only the
high-scoring ones:

(1) The two branches of pedestrian detection and apparent feature extraction are inte-
grated and trained by multi-task learning, so that they can output pedestrian de-
tection results and corresponding pedestrian apparent feature vectors at the same
time, reducing redundant computations and improving the overall speed of the
tracking algorithm.

(2) CenterNet uses multiple deformable convolutional and deconvolutional u-sampling
of only one-quarter the size of the input image for prediction and does not fuse
multi-layer pedestrian features, so the tracking network has a poor tracking effect
for obscured pedestrians. Therefore, the FPN is introduced, and the obtained feature
maps are up-sampled to obtain high-resolution feature maps after multi-layer fea-
tures are fused, which effectively improves the stability of the network for tracking
obscured pedestrians.

(3) Animproved attention mechanism module is introduced in the backbone network of
CenterNet to enhance its ability to extract spatial location information and apparent
features of pedestrians, improve the tracking algorithm accuracy, and reduce the
incidence of IDs.

(4) For pedestrian tracking in videos, the data association part is improved, and low-
scoring detection boxes are associated with pedestrian trajectories for dual data
association, which reduces the frequency of trajectory interruption when pedestrians
are obscured and improves the robustness of the tracking module.



Appl. Sci. 2022,12, 9597

30f16

2. Materials and Methods
2.1. Dataset

To verify the effectiveness of the proposed AMDDATrack algorithm in multi-pedestrian
tracking tasks, data from the publicly available CUHK-SYSU and PRW datasets were cho-
sen as the training set and evaluated on MOTChallenge [31]. CUHK-SYSU is a large-scale
benchmark dataset for people searches containing 18,184 images, 8432 pedestrian identities,
and 99,809 well-labeled bounding boxes. The images are derived from two sources, films
and TV dramas, and contain different perspectives, lighting, resolutions, occlusions, and
backgrounds. Person re-identification in the wild (PRW), a dataset collected by Tsinghua
University, is a 10-h video in which all pedestrians appearing in each frame are labeled
with bounding boxes and assigned an ID at the same time. Multi-Object Tracking Chal-
lenge (MOTChallenge) is a publicly available benchmark platform for multi-object tracking.
Taking MOT16 [32] as an example, 14 video sequences are provided, seven of which are
used for training and seven for testing, all of which are still or moving images in an un-
constrained environment. The tracking results are already given in the data, so there is no
need to solve the problem of pedestrian detection during training, only tracking. In this
paper, the proposed AMDDATrack algorithm is tested on the MOT16 and MOT17 datasets.

2.2. Structure of CenterNet

The first step of the multi-pedestrian tracking algorithm is to detect pedestrians, so
the performance of the detection network directly affects the results of the tracking model.
Since the anchor mechanism was proposed, most high-performance detection algorithms
are based on anchoring. Although this is effective, the anchor-based detection network is
very sensitive to the scale and aspect ratio hyperparameters of the anchor, which requires
a lot of time to adjust., In order to ensure a high recall rate, a large number of anchors is
required, which will lead to unbalanced positive and negative samples. In recent years,
some studies have questioned the need for anchors and proposed a detection network that
does not depend on anchors, CenterNet, which frees the network from the dependence
on anchors.

Given that the anchor-based detection network has the problems of a large number of
parameters and sensitivity to hyperparameters that directly affect the accuracy and speed
of the tracking model, this paper adopts CenterNet, an anchor-free single-stage object
detection network that transforms the object detection problem into an object centroid
estimation problem, avoiding the introduction of a large number of parameters by pre-
setting anchor frames. The local peak of the heatmap corresponds to the center point of
the pedestrian being tracked, and the width and height of the pedestrian detection boxes
are directly regressed according to the coordinates of the object’s center point, which can
accurately locate the pedestrian while reducing the number of parameters, providing a
good basis for the subsequent tracking module to accurately match the tracking.

In the process of pedestrian detection with CenterNet, when the S; frame passes
through the detection network, three branches with different dimensions (heatmap, box_size,
offset) are obtained, each of which outputs the location of all detected pedestrian cen-
troids: heatmap, = {c},c?...c)}; width and height of all pedestrian detection boxes,
boxsize; = {z},z7...zN}; the offset is used to refine the pedestrian centroids of the
heatmap and improve the accuracy of the detection network. The three branches are
shown in Figure 1.

During pedestrian tracking, due to camera angle and other factors, the size of pedestri-
ans on the surveillance video screen varies widely, and the problem of mutual occlusion in
tracking often occurs. Usually, detection convolutional neural networks tend to design the
network very deep in order to extract more differentiated high-level semantic information
about pedestrians, and as the convolutional neural network deepens, the perceptual field
becomes larger and larger, which is very unfavorable to detecting small-sized pedestrians.
For example, when a pedestrian turns his back to the camera and walks further and further
away, the size presented on the screen becomes smaller and smaller; it will be a missed



Appl. Sci. 2022,12, 9597

40f16

detection, which directly leads to the interruption of the trajectory in the subsequent track-
ing process; in dense scenes where pedestrians block each other, the blocked pedestrians
have often missed detection, which leads to ID switches in the subsequent tracking process
when two pedestrians walk in opposite directions to produce blocking. It can be seen
that the performance of the front-end detection network directly affects the subsequent
tracking results. Therefore, we first improve the detection ability and localization accuracy
of small-sized pedestrians by introducing a feature pyramid structure to the CenterNet
network to fuse deep and shallow feature maps and then improve the accuracy of mutually
occluded pedestrians by increasing the resolution of feature maps to reduce the probability
of trajectory interruption and ID switches in the subsequent tracking process.

(b)

Figure 1. Three branches of CenterNet detection network: (a) heatmap; (b) center point offset; (c) size

of box.

2.3. Improved CenterNet
2.3.1. Multi-Layer Feature Aggregation

CenterNet uses backbone networks with small sampling rates, and the module’s back-
bone feature extraction networks, such as ResNet [33], Inception, and MobileNet [34] only
use multiple deformable convolutions [35] and deconvolution to up-sample one-quarter
of the input image for detection and do not achieve reuse of multi-layer features. The
module is prone to missing some small pedestrians in the image and loses a large amount
of pedestrian texture and location information contained in the shallow feature maps,
which is essential for tracking algorithms. Therefore, multi-layer feature aggregation [36] is
helpful to reduce identity switches with the one-shot algorithm due to its improved ability
to handle scale variations.

As aresult, we incorporated the FPN into CenterNet, as shown in Figure 2. The shallow
feature map has a smaller sensory field and contains more location and feature information
of the obscured pedestrians compared to the deep feature map, so its introduction makes
the network directly incorporate the semantic information of obscured pedestrians, which
is beneficial for extracting their features. The fusion of feature maps of different layers of the
FPN can effectively improve the accuracy of the network for obscured pedestrian detection.

2.3.2. High-Resolution Feature Maps

As an important part of the tracking algorithm, pedestrian detection technology
is often applied in dense pedestrian scenes, such as shopping malls, traffic hubs, road
intersections, etc. Due to the high similarity in appearance of pedestrian targets and serious
mutual occlusion, the visual pixels of occluded pedestrians in the image are limited, and
the foreground target occupies part of the area of occluded pedestrians. In Figure 3b, the
red box indicates the foreground pedestrian and the green box the obscured pedestrian;
their centroids are indicated by red and green dots, respectively. According to the matching
mechanism of CenterNet, centroids falling into the same sub-feature are sent to the training
process as belonging to the same pedestrian, resulting in obscured pedestrians being directly
ignored by the detection network and missed detection of pedestrians. Moreover, due to
the effect of occlusion, most pixels are shared between occluding and occluded pedestrians,
resulting in low differentiation between the two in the feature extraction process. As seen
in Figure 3, compared with the one occluding, the occluded pedestrian occupies a very
limited number of pixels, which results in the extracted features being mixed with a large
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amount of information about the foreground target, which in turn affects the detection
of the obscured pedestrian and easily causes missed detection, which leads to tracking
trajectory interruptions and IDs.

Input(512,512,3)

Concat ?

EEET— —
Conv Block(128,128,256) —» ConvTranspose2d -

Conv Block stride=2(64,64,512) —  Convlranspose2d
Concat

Conv Block stride=2(32,32,1024) —  ConvTranspose2d
Congat

Conv Block stride=2(16,16,2048)

(16,16,2048)

Figure 2. Multi-Layer feature aggregation network.

(b) (c)

Figure 3. Difficulty in detecting obscured pedestrians: (a) high overlap of two pedestrians; (b) cen-
troids falls into the same grid; (c) centroids falls into different grids.

Therefore, this paper introduces a high-resolution feature map to address the problem
of missed detection of obscured pedestrians in the detection network; that is, up-sampling
is performed on the feature map after the FPN, fusing the shallow pedestrian information
extracted from the backbone network and the multi-layer pedestrian information. Then,
as shown in Figure 3, we use up-sampling to increase the resolution of the FPN and
make the centroids of highly overlapping pedestrians fall in different sub-feature regions
as much as possible. The features of obscured pedestrians originate from their limited
visible pixels, and the shallow features contain more details than the deep features due
to their small perceptual field. Therefore, the introduction of FPN and high-resolution
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feature maps not only enhances the ability of the network to extract information about the
obscured pedestrians but also improves the accuracy of their localization in the subsequent
tracking process.

2.4. Improved Channel Attention Mechanism Module

With the deepening of the neural network, the feature map size becomes smaller
and smaller, resulting in the weakening or loss of some appearance features and spatial
location information of small-sized pedestrians in the image; the relationship between
feature channels is not fully considered in the upscaling and downscaling operations of
the backbone network. The convolutional channel features correspond to different parts
of the human body, which affects the accuracy of pedestrian localization. Therefore, the
relationship between body parts and convolutional channels can be effectively utilized
through the channel attention mechanism to deal with seriously occluded pedestrians. To
address this, in this paper we propose an improved channel attention mechanism to enhance
the performance of the RelD branch by extracting more expressive pedestrian apparent
features and spatial location information in the feature channels, reducing the number of
trajectory interruptions and IDs caused by missed detection or mutual occlusion between
pedestrians, and improving the robustness of the multi-pedestrian tracking algorithm. In
response to problems, such as loss of pedestrian spatial location information and destruction
of image spatial structure caused by global average pooling (GAP) and fully connected
(FC) operations in the classical SENet [37] channel attention mechanism, we designed a
new module, AM-Block, shown in Figure 4b, which can effectively improve the accuracy of
pedestrian localization in the subsequent tracking process.

The AM-Block structure is shown in Figure 4b, F4 represents the input feature map
of the AM-Block; W x H is the width and height of F4, and C represents the number of
feature channels. After the feature map is input into the AM-Block module, to obtain
rich pedestrian location information, the input feature maps are spatially compressed by
GAP and global max pooling (GMP) parallel structures to obtain two feature map channel
weights. For better characterization of global information, the spatially compressed feature
maps are, respectively, dimensionalized by 1 x 1 convolution of the number of channels
C/d (it is experimentally known that the best result is obtained when d is taken as 8).
Replacing the fully connected operation in the common attention mechanism, the 1 x 1
convolution operation does not destroy the spatial structure of the image. Then the number
of channels is dimensioned up by the 1 x 1 convolution of the number of channels as C, and
finally, the feature map after the two branches are summed is subjected to the nonlinear
sigmoid activation function to find the channel weights:

b= f11><1(‘5(fll><1(faverugepool(FA)))) (1)
b= f12><1(5(f12><1(fmaxpool(FA)))) (2)
B =0(F+hk) ©)

In Equation (1), ¢ represents the ReLU [38] activation function, ¢ represents the
Sigmoid activation function, and F; represents the generated feature channel weights.
Finally, the input feature map F, is dotted with feature channel weights F3 to obtain the
feature map with channel attention Fp:

Fg = Fs-F 4)

Feature map Fjp after the AM-Block module can effectively increase the channel weights
of important features and strengthen the important feature information of pedestrians,
suppress the interference of useless information, and improve the characterization ability
of the backbone feature extraction network.
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Figure 4. Improved channel attention mechanism module; (a) flowchart of SENet; (b) flowchart of
AM-Block module.

2.5. Dual Data Association

The multi-pedestrian tracking algorithm is aimed at continuously localizing multiple
pedestrians in a video sequence, maintaining the identity of each pedestrian consistently
across video frames, and generating pedestrian motion trajectories. The most commonly
used tracking algorithm uses the Kalman filter to process video data frame by frame, and
the Hungarian matching algorithm matches the pedestrian detection boxes and appearance
feature vectors output from the detection network in the current frame with the pedestrian
position predicted by the Kalman filter in the current frame across frames. The cascade
matching method is used for the problem of associating detected pedestrians in the cur-
rent frame with already existing tracking trajectories, and pedestrians that appear more
frequently are prioritized for matching to solve the probability dispersion problem of
continuous prediction.

Xy = AXj1+ BUg 1+ W1 @)

Zr = HX + Vi (6)
Xy = AXy_1+ BUj_; @)
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Xy = Xp+ Ki(Zp — HXp) (10)
Py = (I - KyH)P; (11)

The equations of the Kalman filter are given as Equations (5)-(10), where XE represents
the a priori state estimate, which is predicted from the optimal estimate at the previous
moment to the current moment; the Z; in Equation (6) represents the actual detected
pedestrian motion state by CenterNet at the moment t, Z; is detected by the CenterNet
detection network and Xj is calculated by the Kalman filter. Equation (7) is the covariance
matrix of Equation (6), and Equation (8) is the covariance matrix of Equation (5). By using
the covariance matrix of the theoretical value in Equation (5) and the actual measured
values in Equation (6), we can know their stability, respectively. In the pedestrian tracking
process, in order to determine whether the theoretical value in Equation (5) or the detected
value in Equation (6) is accurate, the equation shown in Equation (10) is established. X
represents the optimal estimate, Z; — H )A(E represents the difference between the pedestrian
motion state predicted by the Kalman filter and the motion state detected by the CenterNet
detector, so Ky represents the weight, whose value is close to the true value, which value of
the weight is greater. It can be seen in Equation (9) that K is larger when the covariance
Py of the theoretical value is larger, and at the same time, we can see by Equation (10) that
the proportion of the theoretical value is smaller when K} is larger; after obtaining the
measured and theoretical values and their differences, we update the parameters of the
Kalman filter using Equation (11).

However, there is an occlusion problem in real traffic scenarios, and mutual occlusion
between pedestrians leads to a lower detection frame score for occluded pedestrians. In
Figure 5, the pedestrian with ID number 4 is gradually blocked from frame 77 to frame
95, and the detection frame score gradually decreases from 0.8 to 0.1. Therefore, although
the pedestrian is detected in frames 91 and 95, this pedestrian is discarded because the
detection frame score of 0.1 is less than the confidence threshold, resulting in a trajectory
interruption. Thus, it is not reasonable to discard the low-scoring pedestrian detection
frame based only on a frame confidence threshold.

(b)

Figure 5. Dropping a low-scoring detection frame causes a trajectory break; (a) 77th frame; (b) 91st

frame; (c) 95th frame.

In this paper, we set the confidence threshold of the detection boxes to 0.01 to keep
the low-scoring detection boxes, and for the high-scoring detection boxes, we followed
the current common data association method, Then, we used the Hungarian algorithm to
match it optimally. The low-scoring detection boxes were associated with the trajectories
that were not successfully matched with the high-scoring detection boxes in the previous
frame for the second time; then, the Hungarian algorithm was used again to match the
low-scoring pedestrian detection boxes with the existing trajectories. The purpose is to pull
out partially occluded pedestrians from low-scoring detection boxes, optimize the trajectory
interruption problem caused by occlusion during the tracking process, and maintain the
continuity of the trajectories.
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Kalman

For the convenience of calculation, assume that the pedestrians in the video are moving
in a uniform motion, and the flow chart of the improved tracking algorithm is shown in

Figure 6, it has the following steps:
Deleted

Low score boxes

High score boxes

Unmatched low
—>

score Detections

Dual Data Unmatched

Tracks

Unmatched
Tracks Matched
J Tracks
Unmatched }I1igh > 1oL
score Detections Mateh

Association

Unmatched
Tracks

Unmatched high

Matching

cascade

senre Detections

Filter
Predict

Confirmed

4)&}@ Tracks

Matched Tracks

Unconfirmed

Update Kalman Filter

3 consecutive hits: Uneonfirmed —» Confirmed

New Tracks (Unconfirmed)

Figure 6. Flowchart of dual data association module.

Step 1: Output the detected boxes and apparent feature vectors of all pedestrians
detected in the current frame through the anchor-free detection network, and set the
confidence threshold to 0.01 to retain both high and low-scoring detected boxes;

Step 2: Use the Kalman filter to predict the pedestrian motion state of the current
frame and set a tracker for each existing track. If the Kalman filter predicts the pedestrian
motion state of the current frame with a matching high-scoring pedestrian detection box,
the counter of the tracker is set to 0; conversely, if the tracker does not find matching
detection boxes for a period of time (max_age > 30), the tracker is deleted and the line of
people leaves the video screen by default.

Step 3: At the same time, when a new pedestrian appears in a frame, a new tracker
is created for the pedestrian. If the motion state predicted by the Kalman filter can find a
matching detection box for three consecutive frames, the new pedestrian is confirmed and
the tracker state is set to “confirmed”; otherwise, it is “unconfirmed”, which generally pri-
oritizes matching the confirmed tracker, where the matching algorithm uses the Hungarian
algorithm and considers the motion information and appearance feature association of the
pedestrian at the same time.

Motion information correlation: Because of the continuity of pedestrian motion in the
video, the degree of correlation between the high-scoring pedestrian detection box and the
position predicted by the tracker is calculated using the Mahalanobis distance, as shown in
Equation (12):

1V, j) = (1 — i) X711 — pi) (12)

where (V) (i, ) represents the match between the j-th pedestrian detection box in the current
frame and the i-th trajectory predicted by the Kalman filter, X;l represents the covariance
matrix between the position of the pedestrian detection box and the average tracking
position, /; represents the position of the j-th pedestrian detection box in the current
frame, and p; represents the position of the trajectory predicted by the i-th tracker in the
current frame.

Appearance information association: In order to enhance the robustness of the model
when pedestrians are obscured and then reappear, pedestrian apparent feature vectors
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are introduced for data association. First, for each high-scoring pedestrian detection box
output by the detection network, a 128-dimensional feature vector is extracted by the RelD
module, and a list is created for each tracked pedestrian, storing the apparent feature
vectors of the last 100 frames that were successfully matched. Next, the minimum cosine
distance between the last 100 successfully associated feature sets of the i-th tracker and
the appearance feature vector of the j-th pedestrian detection box in the current frame
is calculated. If this distance is less than the set threshold, indicating success, the cosine
distance is calculated as shown in Equation (13):

12)(i, j) = min{1 —r[r|r} € R;} (13)

The degree of matching between the detection boxes and the tracking trajectories is
calculated by simultaneously considering the correlation between pedestrian motion infor-
mation and appearance information, and then linearly weighting, as shown in Equation (14):

cij = MY (G, j)+ (1 - A (,)) (14)

when ¢; ; is within the intersection of the two metric thresholds, the high-scoring pedestrian
detection boxes are considered to be correctly matched with the existing trajectories, and
the remaining detection boxes and trajectories are classified as unmatched.

Step 4: At this point, the unsuccessfully matched trackers and low-scoring pedestrian
detection boxes in step 1 are again subjected to minimum cosine distance calculation, ob-
scured pedestrians are excavated in the low-scoring detection boxes, successfully matched
detection boxes and the track are updated with the Kalman filter, and unsuccessful low-
scoring detection boxes are directly deleted.

Step 5: Finally, the unconfirmed trackers in step 4 are compared with the unconfirmed
high-scoring detectors and unconfirmed trackers in step 3 to calculate the minimum cosine
distance, and the successful ones are updated with the Kalman filter. For the unconfirmed
trackers, if they are “confirmed” and max_age < 30, the tracker will be saved and continue
to match with the next frame of the video. If it is “not-confirmed”, it will be deleted directly.

3. Experimental Results and Analysis
3.1. Experimental Environment

The environment configuration for this experiment was as follows: Intel (R) Core
(TM) i7-10870H CPU @2.20HZ and NVIDIA GeForce RTX 2060 Ti GPU; the software
environment for experiments and testing includes Windows 10 operating system, CUDA
10.0 +cuDNN?7.1 GPU gas pedal, and pytorch based deep learning framework.

3.2. Experimental Evaluation Criteria

In order to compare the performance of multi-pedestrian tracking algorithms more
objectively, this paper uses the evaluation criteria commonly used in the field of multi-object
tracking and object detection, and the main MOT indexes are shown in Table 1. In the table,
an upward arrow indicates the higher the value, the better the algorithm performance, and
a downward arrow indicates the lower the value, the better the algorithm performance.

Table 1. Evaluation Criteria and their meaning.

Evaluation Criteria Meaning of Criteria
FP| Rate of being misidentified as a positive sample, i.e., false detection rate
FNJ Rate of being mistaken for negative samples, i.e., missed detection rate
IDs| Number of pedestrian ID switches, i.e., pedestrian identity changes
MOTA?T Tracking accuracy calculated by metrics, such as FP, EN, IDs
IDF11 Accuracy and recall of tracking with constant ID
MLJ Tracking of failed pedestrians as a percentage of all pedestrians

MT?1 Track of successful pedestrians as a percentage of all pedestrians




Appl. Sci. 2022,12, 9597

11 of 16

Tracking accuracy (MOTA), shown in Table 1, is the main evaluation index of the
multi-pedestrian tracking algorithm. It can directly reflect the performance of the algorithm,
and the calculation process is given in Equation (15), where GT represents the real number
of pedestrians in the video frame image, and the MOT value ranges from negative infinity
to 1. Since the detection network is a very important part of the tracking algorithm and is
improved in this paper, it needs to be evaluated as well. The performance of the detection
network is evaluated based on precision, recall, average precision (AP), and mean average
precision (mAP) as shown in Equations (16)—(18), in which TP stands for true positive, FP
stands for false positive, FN stands for false negative.

FN + FP + IDs c

MOTA =1 — oT (—o0,1] (15)
Precision = TPTFP - AllDe];fctions (16)

Recall = TPZPFN - AllGroz;deruths 17)
mAP = lQquZQR AP(q) (18)

3.3. Ablation Experiments
3.3.1. Detection Performance

Because the detection performance largely determines the performance of the track-
ing algorithm, in order to verify the effectiveness of the improved CenterNet detection
network proposed in this paper, first, we conducted two sets of ablation experiments for
the two parts of the improvement and then selected four current mainstream detection
networks to compare with the improved CenterNet. The first set of experiments tested the
effectiveness of ablation of the feature pyramid network (FPN) and high-resolution feature
map (HR) introduced in the neck part of the CenterNet The data in Table 2 show that the
introduction of both the FPN and the HR can effectively improve the detection capability
of the network, and the combination of the two results in a more significant improvement
in detection capability.

Table 2. Impact of improvements to neck part of CenterNet on detection performance.

Algorithms mAP(%)
CenterNet 68.5
CenterNet+FPN 68.9
CenterNet+HR 68.6
CenterNet+FPN+HR 70.3

The second group of experiments compared the effect of the improved channel atten-
tion (CA) mechanism in the backbone network on the detection capability of CenterNet by
using the same dataset. As shown in Table 3, the improved channel attention mechanism
significantly improves the performance of the detection network by adaptively improving
the differentiation of pedestrian features extracted by the backbone network with almost
no increase in computation and inference time.

Table 3. Impact of improved spatial attention mechanism on CenterNet detection capability.

Algorithms mAP(%)
CenterNet 68.5
CenterNet+FPN+HR 70.3

CenterNet+FPN+HR+CA_ours 70.5
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The third group of experiments was conducted to verify the performance of the pro-
posed improved CenterNet detection network compared with four mainstream detection
networks, among which SSD [39] and YOLOvV4 [40] are single-stage detection networks,
and Faster RCNN [41] and Mask RCNN are two-stage detection networks. CenterNet_ours
is the improved network in this paper. The results in Table 4 show that the improved
CenterNet proposed in this paper is significantly better than the mainstream networks
in common use today, with a 4.2 percentage point improvement over YOLOv4, and a
13.1 percentage point improvement compared to Faster RCNN, the classical two-stage
detection network.

Table 4. Comparison with mainstream detection networks.

Algorithms AP(%)
SSD 31.2
YOLOV4 43.5
Faster RCNN 34.7
Mask-RCNN 39.8
CenterNet 47
CenterNet_ours 47.6

3.3.2. Tracking Performance

To verify the impact of the proposed improved CenterNet detection network and the
dual data association module on the tracking algorithm, we experimentally compared
the proposed AMDDATrack algorithm with the current mainstream tracking algorithms;
the results are shown in Table 5. It can be seen that the improved detection network
performance and retrieval of low-scoring detection boxes lead to a significant improvement
in tracking algorithm accuracy with FairMOT as the baseline.

Table 5. Tracking results on the MOT17 dataset.

Algorithms MOTA IDF IDs FN FP
Tube_TK(one-shot) [41] 63.0 58.6 413 177,483 27,060
CSTrack(one-shot) [42] 74.9 72.6 3567 114,303 23,847
DeepSORT(two-stage) 60.3 61.2 2442 185,301 36,111

TransTrack(one-shot) [43] 65.8 56.9 5355 163,683 24,000
FairMOT (one-shot) 73.7 72.3 3303 117,477 27,507
AMDDATrack(one-shot) 74.3 75.3 2056 84,932 26,773

As shown in Table 5, with the conf_thres set to 0.6, the tracking accuracy of the AMD-
DATrack algorithm proposed in this paper is 0.6 percentage points higher on the MOT17
dataset than the FairMOT multi-pedestrian single-stage tracking algorithm; in particular,
the IDs index is significantly reduced, indicating that the AMDDATrack algorithm has
improved robustness when dealing with severe occlusion and can significantly reduce the
number of pedestrian trajectory interruptions and ID switches.

4. Discussion

In order to demonstrate the effectiveness of the algorithm proposed in this paper
more intuitively, Figures 7 and 8 show the tracking results of FairMOT and AMDDATrack
on the test sequences of MOT15, MOT16, and MOT17 datasets. Figure 7 shows a section
of tracking results of the two algorithms on the ETH-Crossing sequence of the MOT15
dataset. The scene has complex pedestrian flow, changing backgrounds, a large number
of pedestrians, and large appearance changes depending on the shooting angle. With
regard to the numbers marked on the pedestrians in the video, when tracking with the
FairMOT algorithm, the algorithm assigns ID numbers 1 and 10 to the middle-aged couple
(Figure 7a), and when the boy wearing a helmet crosses through the pedestrians, an
occlusion is gradually created (Figure 7b). Because of the occlusion, the trajectory is
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interrupted, and the two pedestrians are reassigned new ID numbers, 16 and 19, at frame
126, (Figure 7d), that is, an ID switch occurs, and the couple has a total of six switches in
the whole video sequence. The AMDDATrack algorithm initially assigns the couple ID
numbers 1 and 7, (Figure 7e), and when the boy with the helmet gradually obscured the
lady with number ID 1, there is a brief interruption in the trajectory, but the tracking frame
is quickly retrieved at frame 120. The ID numbers of both people do not change after the
end of masking, and no ID switches occur in the whole video sequence, which maintains
accurate and stable tracking the whole time (Figure 7h).

(8) . (h

Figure 7. Tracking results of ETH-Crossing sequence. (a) FairMOT results in frame 92. (b) FairMOT
results in frame 111. (c) FairMOT results in frame 120. (d) FairMOT results in frame 126. (e) AMDDA-
Track results in frame 92. (f) AMDDATrack results in frame 111. (g) AMDDATrack results in frame
120. (h) AMDDATrack results in frame 126.

Figure 8. Tracking results of 05-SDP sequence. (a) FairMOT results in frame 97. (b) FairMOT results in
frame 120. (c) FairMOT results in frame 198. (d) AMDDATrack results in frame 97. (e) AMDDATrack
results in frame 120. (f) AMDDATrack results in frame 198.

The tracking effects of the FairMOT and AMDDATrack algorithms proposed in this
paper on the 05-SDP video sequence in the MOT17 dataset are shown in Figure 8. When
using the FairMOT algorithm to track the video sequence, the pedestrian in the center of
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the frame is detected at frame 97, and the algorithm assigns him ID number 10 (Figure 8a).
Subsequently, the video is continuously obscured by vehicles and pedestrians to different
degrees (Figure 8b), and the pedestrian is reassigned ID number 16 at frame 198, i.e.,
the trajectory is interrupted, generating an ID switch, A total of three ID switches are
generated in the whole video, and track interruption is generated at frame 214. When
the AMDDATrack algorithm is used, the pedestrian in the center of the frame is initially
assigned ID number 8, (Figure 8d); the algorithm can still track him continuously and
stably after vehicles and other pedestrians obscure him, (Figure 8f). When the pedestrian in
the center of the frame is nearly half obscured by the pedestrian on the left, the algorithm
can still accurately associate him with ID number 8. The trajectory is associated, and no ID
switches occur for the pedestrian with number 8 in the whole video, but the trajectory is
interrupted at frame 238 due to complete occlusion. That is, the proposed algorithm can
still correctly associate the pedestrian tracking frame with the pedestrian with ID number 8
in the case of severe occlusion, without generating track interruptions and ID switches.

From the experimental results of these two sets of video sequences, it can be seen
that the algorithm in this paper has good robustness when dealing with multi-pedestrian
tracking in complex scenes; especially when the pedestrians are severely obscured, it can
still correctly associate the detection boxes with the tracking trajectories and the tracking
performance is stable.

5. Conclusions

In this paper, we proposed a multi-pedestrian tracking algorithm called AMDDATrack
based on the attention mechanism and dual data association to address the problem of fre-
quent IDs and trajectory interruptions in the current mainstream multi-pedestrian tracking
algorithms. The proposed algorithm is based on the FairMOT algorithm and enhances
pedestrian apparent feature extraction ability, improves tracking algorithm accuracy, and
significantly reduces the number of IDs; a dual data association method is designed for the
characteristics of pedestrian tracking, which effectively reduces the number of trajectory
interruptions in the case of pedestrian occlusion, with almost no additional parameters
introduced to increase the computation. Moreover, the network complexity is low and
it is easy to train compared with higher accuracy algorithms. However, there are still
some shortcomings in this algorithm. One is that it did not deal with the problem of an
anchor-free detection network judging more than one pedestrian as the same when dense
pedestrian centroids overlap; the second is that there is still room to further improve the
problem of missed and false detection of small-sized pedestrians in scenes with strong
lighting changes.
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