
����������
�������

Citation: Duflo, G.; Danoy, G.;

Talbi, E.-G.; Bouvry, P. Learning to

Optimise a Swarm of UAVs. Appl. Sci.

2022, 12, 9587. https://doi.org/

10.3390/app12199587

Academic Editor: Dario Richiedei

Received: 21 August 2022

Accepted: 20 September 2022

Published: 24 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Learning to Optimise a Swarm of UAVs
Gabriel Duflo 1,*, Grégoire Danoy 1,2 , El-Ghazali Talbi 2,3 and Pascal Bouvry 1,2

1 SnT, University of Luxembourg, 1855 Luxembourg, Luxembourg
2 FSTM/DCS, University of Luxembourg, 4364 Esch-sur-Alzette, Luxembourg
3 CNRS/CRIStAL, University of Lille, 59655 Villeneuve d’Ascq, France
* Correspondence: gabriel.duflo@uni.lu

Abstract: The use of Unmanned Aerial Vehicles (UAVs) has shown a drastic increase in interest in
the past few years. Current applications mainly depend on single UAV operations, which face critical
limitations such as mission range or resilience. Using several autonomous UAVs as a swarm is a
promising approach to overcome these. However, designing an efficient swarm is a challenging task,
since its global behaviour emerges solely from local decisions and interactions. These properties make
classical multirobot design techniques not applicable, while evolutionary swarm robotics is typically
limited to a single use case. This work, thus, proposes an automated swarming algorithm design
approach, and more precisely, a generative hyper-heuristic relying on multi-objective reinforcement
learning, that permits us to obtain not only efficient but also reusable swarming behaviours. Exper-
imental results on a three-objective variant of the Coverage of a Connected UAV Swarm problem
demonstrate that it not only permits one to generate swarming heuristics that outperform the state-
of-the-art in terms of coverage by a swarm of UAVs but also provides high stability. Indeed, it is
empirically demonstrated that the model trained on a certain class of instances generates heuristics
and is capable of performing well on instances with a different size or swarm density.

Keywords: learning to optimise; hyper-heuristic; multi-objective reinforcement learning; UAV swarming;
distributed algorithm

1. Introduction

The usage of UAVs finds its roots where human intervention might be difficult, risky or
costly. Initially thought for military purposes, UAVs have demonstrated their tremendous
potential in civilian applications such as parcel delivery, rescue mission or environment
monitoring. Current applications nonetheless rely on the usage of a single UAV (remotely
piloted or autonomous), which faces multiple limitations, such as its range of action,
payload capacity and system resilience.

Using several autonomous UAVs simultaneously as a swarm is one promising solution
to address these limitations. Inspired by natural phenomena (e.g., birds flocks or ant
colonies), swarm intelligence allows one to achieve complex tasks while solely relying on
local decisions and interactions. Such a distributed and self-organised approach allows
multi-UAV systems to be more scalable, resilient and flexible.

However, defining a priori the behaviour of each individual swarm member to obtain
a desired collective behaviour is difficult and time-consuming due to the high uncertainty
of a swarm operation. As a consequence, classical multi-robot design techniques are not
applicable, as they require the global specifications of the systems to define the behaviour of
individual robots [1]. Other methods, mainly belonging to the field of evolutionary swarm
robotics, ref. [2] have been proposed to automate the design of more complex systems like
robot swarms. Here, the design problem is modelled as an optimisation problem which
consists in finding an optimal parameterisation and architecture of the neural network
used to control each swarm member. However, as outlined in [3], these have limitations,
for instance, they are typically applied to a single use case (i.e., no generalisation study).

Appl. Sci. 2022, 12, 9587. https://doi.org/10.3390/app12199587 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12199587
https://doi.org/10.3390/app12199587
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9419-4210
https://doi.org/10.3390/app12199587
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12199587?type=check_update&version=2

Appl. Sci. 2022, 12, 9587 2 of 24

Automating the design of flexible/reusable swarming behaviours would, thus, over-
come these challenges. However, as outlined by Birattari et al. [1], automatic robot swarm
design still remains an open research problem.

The work proposed in this article, thus, aims to automate the design phase of UAV
swarms thanks to a novel hyper-heuristic based on Reinforcement Learning (RL) and, more
particularly, Q-Learning (QL). More precisely, it seeks to improve the state-of-the-art in
automated algorithm design to generate efficient swarming behaviours in the context of
area coverage. The problem of covering an area consists of moving UAVs so that any
location of the area is visited by at least one UAV at some point in time.

This article introduces several novel contributions: (1) a three-objective variant of the
“Coverage of a Connected-UAV Swarm” problem referred to as CCUS3O, (2) a generative
hyper-heuristic based on Q-learning (QLHH-II), which aims at obtaining efficient and
scalable heuristics, (3) a factorial experiment to analyse the sensitivity of QLHH-II to its
parameterisation, and (4) an empirical comparison of QLHH-II performance to QLHH and
two state-of-the-art heuristics on CCUS3O.

The remainder of this article first presents a state-of-the-art analysis of the manual and
automatic design of robot/UAV swarms in Section 2. The CCUS3O optimisation model
is then formally described in Section 3, preceding the presentation of the proposed hyper-
heuristic, QLHH-II, in Section 4. The following sections are related to the experiments. In
Section 5, the experimental setup and process are described, while the results are shown in
Section 6. The last section contains conclusions and perspectives on the work.

2. Related Work

Although robot swarming has received increasing interest over the past years, no
single definition has yet been established. In the remainder of this article, the definition
of Arnold et al. [4] will be considered. The authors define a robot swarm as “a group of
three or more robots that perform tasks cooperatively while receiving limited or no control
from human operators”. This definition implies three requirements. A swarm should first
contain at least three robots/UAVs; otherwise, the internal interaction would be absent or
too low. Then, robots in a swarm should cooperate to perform tasks, which implies that
the behaviour of one will influence the behaviour of the others. A swarm finally receives
little or no control from human operators, which makes a swarm differ from a fleet in
which there is a centralised behaviour, with a central unit shared by every robot/UAV. The
behaviour of a swarm should, thus, be distributed.

Such behaviours have been classified by Brambilla et al. [5], Schranz et al. [6] in
four categories as depicted in Figure 1: spatial organisation (robots have to organise
themselves to form patterns or simply aggregate), navigation (robots have to coordinate
their movement), decision making (robots have to influence themselves to take a common
decision) and miscellaneous (other significant behaviours which could not belong to any of
the three previous categories). Since this work focusses on the area coverage by a swarm
of UAVs, it falls in the “navigation” category containing four subcategories: collective
exploration, coordinated motion, collective transport and collective localisation. The
remainder of this section focusses on collective exploration, as it is the target of this work.

Appl. Sci. 2022, 12, 9587 3 of 24

Collective Exploration

Coordinated Motion

Collective Transport

Collective Localisation

Aggregation

Pattern Formation

Self-Assembly

Object Clustering and Assembly

Self-Healing

Self-Reproduction

Human-Swarm Interaction

Consensus

Task Allocation

Collective Fault Detection

Collective Perception

Synchronisation

Group Size Regulation

Swarm Behaviours

Spatial Organisation

Navigation

Decision Making

Miscellaneous

Figure 1. Classification of swarm behaviours proposed by Brambilla et al. [5] and extended by
Schranz et al. [6].

2.1. Manual Design of Robot/UAV Swarms

The literature contains a variety of studies based on path planning to manually design
the behaviour of robots or UAVs, including in the context of coverage as surveyed in
Cabreira et al. [7]. The idea is to compute the optimal path of robots/UAVs offline, i.e.,
before starting the mission. In some works, these precomputed paths may be updated
or recomputed. For example, Siemiatkowska and Stecz [8] recalculates Vehicle Routing
Planning (VRP) when UAVs detect a threat on their way. Additionally, the problem of
path planning is often formulated as a variant of VRP. It is also the case of Semiz and
Polat [9] who solves a problem of area coverage (differently from the problem tackled in
this work). These path planning techniques are not comparable to the work proposed
in this article. Indeed, most of these studies do not fit the above definition of a swarm.
Nevertheless, with path planning techniques, UAVs follow the path calculated beforehand,
which implies strong control from a human operator. Moreover, these techniques are
usually exact methods and/or metaheuristics that are too expensive for online usage.

Another way to manually design robot/UAV swarms considers online techniques
based on direct or indirect communication between robots/UAVs. Some of those are based
on line-of-sight communication. The work of Nouyan et al. [10] consists in chaining a
swarm of robots between two points where the robots have different colours according to
the direction of the chain. Ducatelle et al. [11] propose a communication system for making
a swarm of robots reach an unknown target point. However, when dealing with collective
exploration, the vast majority relies on a stigmergy process such as pheromone-based
systems. Some work focus on the design of the swarm system [12,13], which abstracts
from the application, i.e., the collective task. The idea is to design a pheromone system
as close as possible to how pheromones would evolve in nature. These pheromone sys-
tems are used to investigate the impact of using multiple pheromones in the context of a
collective task [14,15].

Most of the literature, meanwhile, deals with task-specific systems, i.e., how to use
the pheromone for the desired collective task. Kuiper and Nadjm-Tehrani [16] first in-
troduced a pheromone-based system to optimise the coverage of an area by a swarm of
UAVs. In that work, UAVs have to choose a direction according to the amount of repulsive
pheromones left by other UAVs. Rosalie et al. [17] proposed an extension of the latter
work where the random aspect is replaced by a chaotic system. The objective is to ob-
tain a movement that seems unpredictable from the outside while being deterministic.
Danoy et al. [18] combined the work of Kuiper and Nadjm-Tehrani [16] with a multi-hop
clustering approach to consider the connectivity of the swarm during the coverage task.
The added connectivity objective aims to maintain a good exchange of information within
the swarm and, thus, improve its performance. Brust et al. [19] extended the previous
work with a dual-pheromone model to tackle three objectives of the swarm: area coverage,
swarm connectivity and target tracking.

Appl. Sci. 2022, 12, 9587 4 of 24

Although such pheromone-based approaches have shown good results, Hunt et al. [20]
show that they face limitations, particularly when the density of the swarm is very high
(the number of robots/UAVs relative to the size of the area). Added to this limitation,
such a pheromone-based behaviour has to be designed manually, which can be very time-
consuming and specific to an application. For instance, the pheromone evaporation rate or
the balance between different pheromones (in the case of using multiple types) may differ
according to the emergent task of the swarm.

2.2. Automated Design of Robot/UAV Swarms

An approach that has recently raised some interest consists in automating the design
of swarming behaviours, as mentioned by Birattari et al. [1]. This process can be assimilated
to a hyper-heuristic which has been deeply surveyed by Burke et al. [21], Epitropakis and
Burke [22], Burke et al. [23]. Hyper-heuristics are used more generally in optimisation for
automating the design of heuristics for a given problem. Li and Malik [24] first assimilate
that process to learning to optimise where they view an optimisation algorithm as a
policy in a Markov Decision Process (MDP). In the context of robot/UAV swarms, a
heuristic corresponds to the local behaviour of each UAV used to tackle global problems
like optimising the coverage of an area.

2.2.1. Selective Approaches

Hyper-heuristics were first defined by Cowling et al. [25] as “heuristics to choose
heuristics”. Their purpose was to select the best heuristic, among a set of predefined
low-level heuristics, according to a given problem instance, which is referred to as selective
hyper-heuristics. A high-level learning process, e.g., genetic programming, reinforcement
learning or classifier, is then used for selection purposes. This process has only recently
been applied in the context of the UAV / robot swarm and is still an open research area,
as outlined by Birattari et al. [1]. The latter manifesto presents the current challenges
of “automatically designing a swarm for any mission with a given class”. Most existing
techniques consist in providing UAVs/robots with a set of predefined actions so that they
can learn at each step which action to use according to the given task and the state of the
environment. For instance, Birattari et al. [26] developed AutoMoDe, which is a framework
to automate the design of a robot swarm with different specialisations (corresponding to
each set of behaviours). Ligot et al. [27] extend the latter work with a way to automatically
generate different missions along with a performance indicator. Reinforcement Learning
(RL) is mainly used as a high-level algorithm. The idea is to represent the actions of
RL by the different behaviours of the swarm. Yu et al. [28] used it in the context of a
self-assembling swarm and Yu et al. [29] in the more specific case of surface cleaning. It
is also used by Nagavalli et al. [30] to choose a sequence of behaviours for a given task,
such as navigating in an environment with obstacles. These selective approaches are
prominently used in the context of robot/UAV swarming as it is convenient to provide
specific behaviours to a robot or UAV.

2.2.2. Generative Approaches

A second and more recent branch of hyper-heuristics relying on a generative approach
exists in the literature but it has not received much attention yet in the robot/UAV commu-
nity. Generative hyper-heuristics do not need a set of predefined low-level heuristics but a
set of “building blocks” from which the high-level algorithm will construct possibly unseen
low-level heuristics. This research direction was first mentioned by Duflo et al. [31,32]
where the task of the swarm is represented as a multi-objective optimisation problem. RL is
then used to generate distributed heuristics for this problem. A drawback of these methods
is their tendency to favour one objective during the learning process. This work proposes
to improve the state-of-the-art thanks to a more accurate description of the multi-objective
optimisation problem and a novel hyper-heuristic for generating distributed heuristics for
such a multi-objective problem.

Appl. Sci. 2022, 12, 9587 5 of 24

3. CCUS3O Model

The following UAV swarm surveillance scenario is considered in this work: several
UAVs equipped with ad hoc communication capabilities take off from different bases to
cover a common area (see Figure 2a with blue squares as bases of UAVs). These UAVs
evolve as a swarm that needs to cover as much area as possible, as fast as possible, while
remaining as connected as possible. This connectivity aspect is crucial in such a distributed
system, as it will enhance communication within the swarm. The local information of each
UAV will, therefore, spread faster, which in turn will result in improved performance of
the global system (i.e., swarm). In this context, the information exchanged by UAVs is the
current solution according to their distributed knowledge. A formalisation of a solution is
described in Section 3.1.4. Once the UAVs have finished covering the area, they must return
to their base (i.e., initial starting point). Such a surveillance scenario can find numerous
civil applications that require a fast and efficient coverage of a large area, such as search
and rescue missions, forest fire or pollution detection.

Environment graph Communication graph Starting points of UAVs Paths of UAVs

(a) (b) (c)
Figure 2. Swarm of UAVs covering an area with obstacles. The UAVs are flying from different bases
(blue squares) following the discretisation of the map (dashed blue lines), as shown in (a). At that
time, the environment graph (in green) and the communication graph (in red) are represented in (b).
The current solution as a set of paths (in blue) is depicted in (c).

Duflo et al. [31,32] designed the Coverage of a Connected-UAV Swarm (CCUS) optimi-
sation problem for that purpose. It optimises the coverage of an area by a swarm of UAVs
with two objectives: coverage speed and swarm connectivity. This work proposes to extend
CCUS to a three-objective model, referred to as CCUS3O, which targets coverage time,
coverage rate and connectivity. What motivates the introduction of a third objective is that
the coverage objective in CCUS includes both the coverage time and the coverage rate in
one single value. Such a scalarisation introduces a bias that not only can negatively impact
the performance, but also reduces the explainability of the objective value. Using three
objectives in CCUS3O, thus, permits us to have more atomic objectives. The remainder of
this section first presents a formal definition of instances and solutions (see Section 3.1),
followed by the evaluation of solutions according to the three objectives (see Section 3.2).

3.1. Formal Expression

The CCUS3O model considers two entities: an environment graph which is a dis-
cretisation of the area, and the communication graph, which depicts the communication
network of the swarm. Both are represented in Figure 2b and detailed hereinafter.

3.1.1. Environment Graph

The environment graph is a discretisation of the environment that defines where UAVs
can move and which ways they can take (see Figure 2b). It is represented as Ge = (V, Ee)
with V the set of vertices and Ee the set of edges. This graph is here considered static, i.e.,
the set of edges remains the same along with their length and connected.

As a notation, dist : V2 → R returns the length of the shortest path between two given
vertices. The neighbourhood of a vertex v is represented byN e(v), which is the set of every
vertex linked to v in the environment graph.

Appl. Sci. 2022, 12, 9587 6 of 24

3.1.2. Communication Graph

The communication graph indicates the position of UAVs (i.e., vertices) and connects
them (i.e., edges) if they are close enough for communicating, i.e., below a predefined
communication range threshold Dcom from each other (see Figure 2b). The value of Dcom is
directly related to the ad hoc communication setup. The communication graph is noted
Gc = (U, Ec), with U the set of UAVs. Unlike the environment graph, it is dynamic and
not always connected, since the position of UAVs changes during the coverage task.

As a notation, pos : U → V returns the position of a given UAV, i.e., the vertex on
which the UAV is currently located. Moreover, the neighbourhood of a UAV u is depicted
by N c(u), which is the set of all UAVs in the communication range of u.

3.1.3. Definition of Instances

A CCUS3O instance is defined by an environment graph and an initial communication
graph and can be written as I = (Ge, Gc). Since Gc belongs to the instance, the initial
position of UAVs is, therefore, specific, which means that two different initial positions
result in two different instances. The set of CCUS3O instances is depicted as I. Given two
graphs Ge = (V, Ee) and Gc = (U, Ec), then I = (Ge, Gc) ∈ I if and only if ∀u ∈ U

N c(u) =
{

u′ ∈ U\{u} | dist(pos(u), pos(u′) ≤ Dcom
}

From this definition, an instance class can be defined by an environment graph and the
size of the communication graph. Given a connected graph G and an integer k > 0, the class
of instances C(G, k), thus, represents the instances with k UAVs in an environment graph G.
Thus, instances of the same class only differ in terms of the initial position of UAVs.

C(G, k) = {(G, (U, Ec)) ∈ I | |U| = k}

3.1.4. Definition of Solutions

A solution for a CCUS3O instance I ∈ I is a set of paths in Ge. It can be defined as
S = {Pu}u∈U , with each path Pu starting at the origin vertex of the corresponding UAV u,
as represented in Figure 2c. In addition, a solution is considered feasible if and only if the
paths Pu are cycles, i.e., Pu[1] = Pu[|Pu|], ∀u ∈ U. In the CCUS3O scenario, it means that
every UAV has returned to its starting point. As a notation, S̄ refers to the vertices of Ge

not appearing in S, i.e., not visited by any UAV.

S̄ = {v ∈ V | @u ∈ U, v ∈ Pu}

3.2. Objective Values

At any moment during the execution of the coverage mission, the current solution can
be evaluated according to the three CCUS3O objectives: coverage time, coverage rate and
connectivity. Any solution S is, thus, evaluated by O(S) ∈ R3:

O(S) =

O(rate)(S)
O(time)(S)
O(conn)(S)

where O(rate)(S), O(time)(S) and O(conn)(S) refer to the objective values of S according to the
coverage time, the coverage rate and the connectivity. Let O = {rate, time, conn} denote
the set of CCUS3O objectives.

3.2.1. Coverage Rate

During a coverage mission, UAVs are expected to cover as much area as possible. In
CCUS3O, it corresponds to maximising the number of vertices visited in the environment
graph. For any solution S, its objective value for the coverage rate O(rate)(S) is then defined

Appl. Sci. 2022, 12, 9587 7 of 24

as the difference between the number of non-visited vertices, i.e.,
∣∣S̄∣∣, and the number of

vertices in the environment graph, i.e., |V|.

O(rate)(S) =
∣∣S̄∣∣− |V|

The result is always a nonpositive number to obtain a minimisation objective. For
missions where the whole area covered is considered, this objective is then equal to the
opposite of the number of vertices in the environment graph.

3.2.2. Coverage Time

In addition to covering as much area as possible, the time for the UAVs to return
to their base must be minimised. In the CCUS3O model, UAVs are considered to fly at
a constant speed. The fact that the speed is constant shows that the time spent and the
distance travelled are proportional, regardless of the value of the speed. Therefore, the
coverage time can be calculated from the distance travelled by the UAVs. During a coverage
mission, the UAVs do not return to their base at the same moment. Therefore, the total
coverage time corresponds to the time needed by the UAV that finished last, that is, with
the longest trip. For any solution S (including nonfeasible ones), O(time)(S) is defined as:

O(time)(S) = max
u∈U

lu

where lu is the length of the path made by UAV u at the current time and the path from
the current position to the starting vertex (i.e., base station). Thus, it represents the length
of the cycle made by the UAV u if the latter comes back to its initial vertex from the
current position.

lu = dist(pos(u), Pu[1])︸ ︷︷ ︸
distance from the initial vertex

+
|Pu |−1

∑
i=1

dist(Pu[i], Pu[i + 1])︸ ︷︷ ︸
distance travelled so far

Since the objective is to cover the area as fast as possible, the coverage time objective
should be minimised. Furthermore, minimising the longest cycle (compared to minimising
the average, for instance) prevents the situation where some UAVs finish their tour much
earlier than the other ones.

3.2.3. Connectivity

Efficient information sharing is of prime importance for UAV swarms, which are
highly mobile ad hoc networks relying on distributed decision making. In CCUS3O, it
is considered that every UAV u asynchronously shares its local information with every
UAV in its communication neighbourhood depicted by N c(u). As a consequence, every
UAV in the same connected component of the communication graph has similar local
information about the area that has been covered. Therefore, this connectivity objective
aims at minimising the average number of connected components in Gc. For this purpose,
a discretisation of time T = {t1, t2, · · · } ⊂ R is considered, and for a solution S, TS ⊂ T
contains every time lower than or equal to the current time of S. The objective value for the
connectivity O(conn)(S) is then obtained as:

O(conn)(S) =
1
|TS| ∑

t∈TS

ct

where ct is the number of connected components in Gc at time t.
Each UAV keeps in memory the representation of the solution (based on its distributed

knowledge), i.e., the path made by each UAV so far. When two UAVs communicate, they
share that information and keep for each path the most recent one, as shown in Figure 3.

Appl. Sci. 2022, 12, 9587 8 of 24

0: [1, 7, 9]

1: [5, 6, 4, 5, 7]

2: [9, 0]

...

0: [1, 7, 9, 3]

1: [5, 6]

2: [9, 0, 4, 6, 2]

...

(a)

0: [1, 7, 9, 3]

1: [5, 6, 4, 5, 7]

2: [9, 0, 4, 6, 2]

...

0: [1, 7, 9, 3]

1: [5, 6, 4, 5, 7]

2: [9, 0, 4, 6, 2]

...

(b)

Figure 3. Every UAV stores the known path of each UAV. When two UAVs can communicate, they
compare their known paths (a) and update them according to their length (b). (a) Each UAV’s known
path is compared to the one from the coming information. It is red if the length is smaller than the one
from the coming information and green otherwise. (b) Each UAV’s known path is updated according
to the path with the biggest length among both information.

4. Proposed QLHH-II Algorithm

The purpose of QLHH-II is to generate, using Q-learning, the CCUS3O heuristic that
will be used by each UAV. This section first presents the structure of the proposed generative
hyper-heuristic QLHH-II. It then details every step of the algorithm. Finally, it describes
its general pseudocode. Since QLHH-II extends QLHH designed by Duflo et al. [31], the
improvement of the model is explained in Section 4.1.2 and a comparison of the heuristics
generated by both models is made in Section 6.2.

4.1. Hyper-Heuristic Structure

A hyper-heuristic consists of a high-level algorithm performing a search process
in a space of low-level heuristics. These two levels depict the concept of learning to
optimise with the high-level algorithm as the learning part and the low-level heuristic as
the optimisation part. In this work, the low-level space is composed of CCUS3O heuristics,
while the high-level algorithm is QL. More precisely, all CCUS3O heuristics are based on one
heuristic template (see Algorithm 1). From that template is extracted a dynamic component
which corresponds to the search space for the high-level algorithm (see Section 4.1.2).

The high-level/low-level structure is illustrated in Figure 4 (detailed in Section 4.2).
The barrier domain shows the separation between the low-level heuristics, which depend
on the problem, and the high-level algorithm, which is problem independent.

REWARDUPDATE

SSS

ΘΘΘ
vvv

vvvrrrΘΘΘ

update the solution

High-level algorithm

Low-level heuristic

Domain
barrier

EVALUATION

Figure 4. Overview of the proposed QLHH-II algorithm.

Appl. Sci. 2022, 12, 9587 9 of 24

Algorithm 1: Low-level heuristic template
input : Instance I ∈ I
output :Solution S = {Pu}u∈U

1 for UAV u ∈ U do
2 Pu ← [pos(u)]
3 while S̄ 6= ∅ do
4 vnext ← arg max

v∈V
fu(v)

5 Pu ← Pu + shortest_path(pos(u), vnext)

6 end
7 Pu ← Pu + shortest_path(pos(u), Pu[1])
8 end
9 return S

4.1.1. Low-Level Heuristics

In the context of this work, UAVs are moving as a swarm in a distributed way. The
generated low-level heuristic should thus be distributed. Each UAV asynchronously has
the same behaviour as described in Algorithm 1. At each step, every UAV u evaluates
the vertices of the environment graph with a scoring function fu and chooses to fly to the
one maximising that function (line 4). If the chosen vertex is not in the neighbourhood
of the current one, i.e., vnext /∈ N e(pos(u)), then the UAV simply uses the shortest path
between both vertices to reach the destination (line 5). When every vertex has been covered
by UAVs, they fly back to their initial position (line 7). Since the low-level heuristics are
distributed, the latter condition may not be correct. Each UAV indeed takes this decision
based on its local knowledge. This means that one or more UAVs may keep flying while
the environment graph is actually fully covered.

The low-level heuristic template depicted in Algorithm 1 thus describes the search
space when every low-level heuristic is represented by its scoring function fu. For example,
if fu(v) = −dist(pos(u), v), the UAVs will then fly to the nearest vertex. Such a behaviour
thus belongs to the space of low-level heuristics.

4.1.2. High-Level Algorithm

The goal of the high-level algorithm is to find the best definition of the scoring function
fu. A QL algorithm is used for this purpose since the function fu can be assimilated into a
state action value function, as detailed below.

The idea of RL, as depicted in Figure 5, is to make an agent evolve in an environment.
The policy of the agent makes him choose an action according to the current state of the
environment. This action then produces a reward that the agent uses to modify its policy
so that the next choices of action are expected to be better. QL works with a function Q that
is a state action value function. This means that Q evaluates an action from a given state.
Therefore, the policy consists of choosing the action to maximise Q at a certain state. The
purpose of QL is then to learn the Q function so that Q(s, a) represents the maximal reward
obtainable by choosing the action a from the state s.

With function fu as a state-action value function, there is still the need to map the
components of the CCUS3O context into RL components, i.e., to define the states and
actions. Here is the mapping that is used in QLHH-II: UAVs are RL agents; the current state
of the environment in RL is considered here as the current solution; an action is assimilated
to a vertex from the environment graph as the next destination of a UAV. Consequently,
finding the next vertex to go, given the current solution, corresponds to the RL policy,
which makes an agent choose an action from a certain state. Considering that, the line 4 in
Algorithm 1 is equivalent to a QL policy with fu as the state-action value function, i.e., the
Q function.

Appl. Sci. 2022, 12, 9587 10 of 24

Agent

Environment

POLICY

state

actionreward

Figure 5. Overview of Reinforcement Learning (RL).

Using QL here comes with two main challenges based on the nature of CCUS3O.
The first one is to use RL in a multi-agent context, which is referred to as Multi-Agent
Reinforcement Learning (MARL). The model used here is the most basic one, with full coop-
eration and all of the agents sharing the same policy. Secondly, RL is here used to generate
heuristics for a multi-objective problem. The area of Multi-Objective Reinforcement Learn-
ing (MORL) has shown a growing interest in the past few years, but it still lacks existing
techniques and benchmarks. Most of the literature considers scalarisation techniques (i.e.,
reducing a multi-objective policy into a single one) [33]. That process is used differently
in QLHH-II than in the original QLHH. QLHH indeed provides multiple policies that
are scalarised into a single one, while QLHH-II uses a single policy and scalarises the
multiple rewards into a single one. The multiple policies of QLHH have their own learning
process from their own reward. This independence between objectives has shown difficulty
in balancing them in the generated heuristic, which is an issue in itself. If it turns out
that connectivity has more emphasis, UAVs are flying together rather than visiting new
vertices, which can make episodes very long in the context of CCUS(3O) since the terminal
condition for UAVs to return to their base is that every vertex is visited. To overcome this
issue, the idea with QLHH is to update the weights during the scalarisation according to
objectives “needing support” but it obliges the user to define higher and lower bounds for
each objective, which can be time consuming. The single policy of QLHH-II is intended to
break this independence and improve the balance of objectives in the generated heuristics.

4.2. QLHH-II Detailed Steps

This section details the three steps of QLHH-II shown in Figure 4: (1) the evaluation
of the vertices by the UAVs to choose the next destination, (2) the computation of the
reward for such a choice of action and (3) the update of the policy according to the obtained
rewards. The policy used here is parameterised by Θ. It means that the entire QLHH-II
process consists of learning the value of Θ, which defines the generated heuristic.

4.2.1. Evaluation

Each UAV uses the Q function from QL to evaluate a vertex, i.e., an action, at the
current solution, i.e., the state. Therefore, the function Qu(S, v) gives a score for the UAV u
to fly to vertex v at solution S. The choice of action for the UAV u, therefore, consists of
choosing the vertex that maximises Qu.

Embedding Structure

The purpose of the following embedding structure is to represent a vertex v, according
to the knowledge of a UAV u, by a p-dimensional vector µuv.

µuv = relu(θ1 · xuv) ∈ Rp

with θ1 ∈ Rp×3 and relu is the rectified linear unit; where xuv ∈ R3 is the vector of state
variables of vertex v for UAV u. Each component of that vector corresponds to one CCUS3O
objective. For the coverage time, it equals 1 if the vertex is on the shortest path from the

Appl. Sci. 2022, 12, 9587 11 of 24

position of the UAV u and its initial position, and 0 otherwise. For the coverage rate, it
equals 1 if the vertex has been visited by any UAV and 0 otherwise. For the connectivity, it
equals 1 if the vertex is in the communication range of another UAV and 0 otherwise. The
formal definition is given below.

x(time)
uv =

{
1 if dist(pos(u), Pu[1]) = dist(pos(u), v) + dist(v, Pu[1])
0 otherwise

x(rate)
uv =

{
1 if v /∈ S̄
0 otherwise

x(conn)
uv =

{
1 if ∃u′ ∈ U\{u}, dist(pos(u′), v) ≤ Dcom

0 otherwise

Parameterisation

The scoring function Qu(S, v; Θ) is a matrix computation that takes as input two p-
dimensional vectors, one for the current solution and one for a vertex to evaluate. For a
UAV u, a vertex v is directly represented by µuv while the solution is represented by the
sum over every vertex, i.e., ∑v∈V µuv.

Qu(S, v; Θ) = θ>2 · relu
([

θ3 · ∑
v∈V

µuv, θ4 · µuv

])

with θ2 ∈ R2p and θ3, θ4 ∈ Rp×p; where [·, ·] is the concatenation operator.
Due to the embedding structure described above, a state and an action (respectively

a solution and a node) are represented by two p-dimensional vectors ∑v∈V µuv and µuv,
respectively. The policy of the high-level Q-learning algorithm can, thus, be used on
different instances of different size (not the same number of nodes in the environment
graph nor the same number of UAVs). This makes it possible to learn the policy on different
instances and to apply the generated heuristic to unknown environments.

4.2.2. Reward

In RL, the reward is given for an action chosen in a certain state, i.e., for a vertex
chosen in a certain solution in the CCUS3O context. Let St be the current solution at the
time t, vt the vertex is chosen by a UAV at that time and St+1 the resulting solution, the
reward for such an action is given by

r(St, vt) = O(St)−O(St+1) ∈ R3

Since the CCUS3O objectives must be minimised, the reward must be positive if
the objective value after the action is smaller than before and vice versa. The reward is,
therefore, O(St)−O(St+1) instead of O(St+1)−O(St). Therefore, minimising objectives is
equivalent to maximising the reward.

Cumulative Reward

In QLHH-II, an update of the policy is made for a frame of τ movements. Therefore,
it considers a cumulative reward, i.e., the sum of consecutive rewards. The cumulative
reward of τ iterations from time t is given by Rt,τ . Due to the above definition of the reward
calculated for an action, Rt,τ is equivalent to the difference in the objective value of the
solutions before and after the τ movements, i.e., St and St+τ , respectively.

Rt,τ =
τ−1

∑
i=0

r(St+i, vt+i) = O(St)−O(St+τ) ∈ R3

Appl. Sci. 2022, 12, 9587 12 of 24

Scalarisation

The vector of cumulative rewards Rt,t+τ , i.e., for a frame of τ movements from time t, is
reduced to a scalar reward rt using a linear scalarisation consisting of a convex combination
of every reward.

rt = ∑
o∈O

w(o) · R(o)
t,τ ∈ R

with ∑o∈O w(o) = 1. For experiments described later, all objectives are given the same
importance, i.e., w(rate) = w(time) = w(conn) = 1

3 .

4.2.3. Update

For each action made, the following tuple is stored in memoryM: UAV performing
the action; state in which the action is made; action considered; the cumulative reward of
the τ following actions; state after these τ actions. In CCUS3O, at each time step t, the tuple

(u, St−τ , vt−τ , rt−τ , St) is thus added inM. Every such item i =
(

u(i), S(i), v(i), r(i), S′(i)
)
∈

Mmakes it possible to compute the following two values depicted in Figure 6:

B

pred(Θ)

targ

error

Figure 6. Representation of predicted and targeted values and the corresponding error for items of
a mini-batch.

predi(Θ) = Qu(i)

(
S(i), v(i); Θ

)
targi = r(i) + γ ·max

v∈V
Qu(i)

(
S′(i), v; Θ

)
with γ ∈ [0, 1] the discount factor; predi(Θ) the value of the evaluation obtained by
choosing v(i) from S(i) with the current Θ, and targi the value of the target evaluation, i.e.,
the evaluation that should have been made according to the obtained reward and future
reward. After every movement of a UAV, Θ is, thus, updated by processing a Stochastic
Gradient Descent (SGD) step for a mini-batch B ⊂ M randomly selected from the memory
to minimise the loss, formally defined below, being the squared mean error.

loss = ∑
i∈B

(predi(Θ)− targi)
2

It should be noted that the target value targ is considered a constant. It means that
during its calculation, there is no trace of the variable Θ for the SGD, unlike the predicted
value, which depends on Θ.

4.3. General Pseudo-Code

Algorithm 2 describes the whole process of the proposed QLHH-II. Firstly, Θ is
randomly initialised (line 3). Then an epoch consists of tackling every instance of I . For
example, every UAV has the same process asynchronously. As long as there are still
unvisited vertices according to their knowledge (line 9), they choose a new destination

Appl. Sci. 2022, 12, 9587 13 of 24

according to the evaluation Qu function (line 11, see Section 4.2.1). With a certain probability
depending on the exploration rate ε ∈ [0, 1], the choice of the new destination is made
uniformly at random among every vertex instead. The UAVs then use the shortest path to
go to their chosen vertex (line 12). After the movement is completed, the reward can be
computed (line 13, see Section 4.2.2). If at least τ movements have been performed, the
memory and Θ are updated (lines 15–16, see Section 4.2.3). Lines 21–24 simply correspond
to the action of a UAV to fly back to its initial position. It should be noted that for that
last action, the final solution is not added to the memory tuple, since it corresponds to
a terminal state and is therefore not used in the computation of the targeted evaluation.
Finally, Θ returns after the last epoch, which represents the returned low-level heuristic.

Algorithm 2: Pseudo-code of QLHH-II
input :Distribution I of instances
output :Updated Θ

1 Randomly initialise Θ
2 M← ∅
3 for epoch do
4 for episode do
5 Generate an instance I ↪→ I
6 t← 0
7 while S̄ 6= ∅ do
8 St ← save(S)
9 vt ← arg max

v∈V
Qu(St, v; Θ)

10 Pu ← Pu + shortest_path(pos(u), vt)
11 r(St, vt)← O(St)−O(S)
12 if t ≥ τ then
13 M←M∪{(u, St−τ , vt−τ , rt−τ , S)}
14 Update Θ with a SGD step for B ⊂ M
15 end
16 t← t + 1
17 end
18 St ← save(S)
19 Pu ← Pu + shortest_path(pos(u), Pu[1])
20 r(St, Pu[1])← O(St)−O(S)
21 M←M∪{(u, St−τ , vt−τ , rt−τ)}
22 Update Θ with a SGD step for B ⊂ M
23 end
24 end
25 return Θ

5. Experimental Setup

This section introduces the setup used to conduct the experiments. In the following,
the metrics used to assess the performance of the generated heuristic with QLHH are
presented. Then, the manually designed heuristic used as the basis of comparison is
introduced. Finally, details on the whole experimental process are provided.

5.1. Performance Metrics

Two types of metrics are presented in this section: the metrics used to evaluate the
performance of a swarm according to the coverage and the connectivity; the metrics used
for comparing two sets of non-dominated solutions in multi-objective optimisation. As
depicted in Figure 7, a heuristic H1 provides different solutions S1, S2, · · · , Sk. The swarm
metrics evaluate these solutions according to coverage and connectivity. For a solution
Si, a couple of values (covi, coni) is, therefore, returned and can be displayed in a two-

Appl. Sci. 2022, 12, 9587 14 of 24

dimensional coordinate system. Therefore, the obtained set of 2D points represents the
heuristic H1, whose performance can finally be evaluated using the three MO metrics.

Swarm metrics

MO metrics

Swarm metrics Swarm metrics

(HV1, IGD1, ∆1)

H1

· · ·

(covk, conk)(cov2, con2)(cov1, con1)

SkS2S1

MO metrics

· · ·

(HV2, IGD2, ∆2)

H2

Figure 7. Usage of both swarm metrics and MO metrics to assess the performance of a heuristic.

5.1.1. Swarm Metrics

Here, two state-of-the-art metrics [19] are defined to assess the performance of the
swarm. The coverage speed evaluates the quality of coverage, while the number of con-
nected components evaluates the connectivity.

Coverage Speed

Let n(t)
v be the number of times the vertex v ∈ V has been visited at the time step

t ∈ {0, · · · , T}. Then, speed(r) is the time required by the swarm to cover the rate r ∈ [0, 1]
of the environment graph.

speed(r) = arg min
0≤t≤T

∣∣∣{v ∈ V | n(t)

v > 0
}∣∣∣

|V| ≥ r

Number of Connected Components

This metric is similar to the definition of the connectivity objective of CCUS. The value
of number is then the average number of connected components in the communication graph.

number = O(conn)(ST)

5.1.2. Multi-Objective Metrics

To evaluate the quality of CCUS solutions, three metrics considering the multi-
objective aspect have been used: the Hyper-Volume (HV), the Inverted Generational
Distance (IGD) and the spread (∆). For a set of solutions, let P = {pi}i be the subset of non-
dominated ones, and P∗ =

{
p∗i
}

i be the optimal Pareto front. These two sets are ordered
according to one of their objective values. The Euclidean distance in the objective space
between two points from both fronts is given by d : {1, · · · , |P∗|} × {1, · · · , |P|} → R+.

d(i, j) =
∥∥p∗i − pj

∥∥
2

Hyper-Volume (HV)

HV represents the volume in the objective space covered by the points in P, relative to
a reference point w.

HV = volume

 |P|⋃
i=1

vi

with vi the hypercube in the objective space made by pi and w.

Appl. Sci. 2022, 12, 9587 15 of 24

Inverted Generational Distance (IGD)

IGD measures the proximity of the front P to the optimal front P∗.

IGD =
1
|P∗|

√√√√|P∗ |∑
i=1

(
min

1≤j≤|P|
d(i, j)

)2

Spread (Δ)

∆ indicates how well the non-dominated solution are spread on the front P. It also
takes into account the width of P compared to the optimal front P∗.

∆ =

d f + dl +
|P|−1

∑
i=1

∣∣di − d̄
∣∣

d f + dl + (|P| − 1)d̄

with d f = d(1, 1) and dl = d(|P∗|, |P|) the distances in the objective space between the first
edges of P and P∗ and their last edge. Moreover, di = ‖pi − pi+1‖2 is the distance between

two adjacent points in P, with d̄ = 1
|P| ∑

|P|−1
i=1 di the average distance.

5.2. Comparison Heuristics

To evaluate the performance of the heuristic generated by QLHH-II, it has been
executed on different instances along with other heuristics which are presented in this
section. The first heuristic has been designed manually to specifically tackle CCUS3O,
while the two others are state-of-the-art pheromone-based heuristics that aim to cover
an area.

5.2.1. Manually-Designed Heuristic

The Weighted Objective (WO) heuristic has been designed to tackle CCUS3O instances.
It belongs to the space of low-level heuristics (defined in Algorithm 1), where the scoring
function fu depends on three values (one per CCUS3O objective).

fu(v) = ∑
o∈O

a(o)uv

with

a(time)
uv = W − dist(pos(u), v)− dist(v, Pu[0])

a(rate)
uv = W · x(rate)

uv

a(conn)
uv = min

(
W, W + Dcom − min

u′∈U\{u}
dist(v, pos(u′))

)
The value of W is set arbitrarily. For the coverage time objective, the weight linearly

decreases according to the distance of the path from the current position to the initial
position passing by the vertex to be evaluated. The weight of the coverage rate objective is
equivalent to the state variable of the vertex to evaluate. For the connectivity objective, the
weight depends on the distance to the closest UAV from the vertex to evaluate. If the latter
distance is lower than Dcom, i.e., is in the communication range of a UAV, then the weight
is maximum; otherwise, it linearly decreases according to that distance. Even though the
quality of WO is not guaranteed, it makes it possible to compare the performance of the
heuristic generated by QLHH-II with behaviour more relevant than a random process.

5.2.2. Pheromone-Based Heuristics

As explained in Section 2, different techniques based on pheromone have been used
in the context of area coverage by a swarm of robots/UAVs. Two have been implemented

Appl. Sci. 2022, 12, 9587 16 of 24

here to assess the quality of the coverage provided by the generated heuristic. For both
heuristics, the behaviour is very similar to the one described in Algorithm 1. However, they
do not belong to the space of low-level heuristic since the choice of the next position v for a
UAV at a position vcurr is stochastic and thus depends on a probability P(v | vcurr).

Heuristic Φ: The first heuristic, referred to as Φ, is based on repulsive pheromones [16],
i.e., UAVs drop pheromones on their way to indicate visited places. The probability of
a UAV going to a position is then inversely proportional to the amount of pheromones
at that position (i.e., the more pheromones, the less chance). The environment in which
UAVs are evolving is a grid, and at each iteration, UAVs assign the current coverage time
to their current position. So each position is assigned a value that corresponds to the last
time a UAV has visited it. As with repulsive pheromones, the lower the value assigned to a
position, the higher the chance that UAVs have of choosing that position. Given a position
v, let tv be the time assigned to that position and N (v) be the set of adjacent positions. The
probability of going to a position v for a UAV at position vcurr is

P(v | vcurr) =

T − tv

(|N (vcurr)| − 1) · T if v ∈ N (vcurr)

0 otherwise

with T = ∑
v∈N (vcurr)

tv.

Heuristic Φ-K: The drawback of the heuristic Φis that it does not consider the connec-
tivity of the swarm. That is the purpose of the work, [18] which adds a dynamic clustering
algorithm, the so-called KHOPCA [34], to maintain connectivity within the swarm of UAVs.
Let this heuristic be Φ-K. KHOPCA algorithm dynamically assigns a state value s(u) to
each UAV u that represents the distance to the cluster head (s(u) = 0 if u is the cluster
head). For a UAV u, let N (u) be the set of UAVs in the communication range of u. Then,
s(u) is iteratively updated by following four simple rules:

s(u) =

min
u′∈N (u)

s(u′) + 1 if min
u′∈N (u)

s(u′) < s(u)

0 if min
u′∈N (u)

s(u′) = k

s(u) + 1 if s(u) 6= 0∧ s(u) < min
u′∈N (u)

s(u′)

s(u) + 1 if s(u) = 0∧ min
u′∈N (u)

s(u′) = 0

where k + 1 is the number of UAVs (k is the biggest possible distance from the cluster head).
At initialisation, s(u) = k for every UAV u. At each iteration, UAVs which are not cluster
heads follow their cluster with a certain probability PK, otherwise they choose their next
position according to the probability defined in the heuristic Φ. When a UAV follows its
cluster, it decides to go to the position of its neighbour (a UAV in its communication range)
with the lowest state value. Since the value of PK has a high impact on the quality of the
coverage, let Φ-KPK denote this heuristic with a certain value for PK.

5.3. Experimental Process

For the experiments, all of the instances consider a grid graph as an environment
graph. An instance class is then defined by its grid dimension and the number of UAVs in
the swarm (see Section 3.1.3). The set of parameters present is presented in Table 1. The
maximal distance of communication is the distance in which two UAVs can communicate
(see Section 3.1.2). The exploration rate is the percentage chance of choosing a random
action instead of following the policy (see Section 4.3). The discount factor is the importance
given to the final reward (see Section 4.2.3). The size of the movement frame is the number
of movements considered for one reward (see Section 4.2.2). The next three parameters
cannot be chosen empirically while they strongly affect the learning process. To have a
relevant value for them, a factorial experiment is processed (detailed in Section 6.1). The
learning rate defines how much of the gradient is used for a step of SGD (see Section 4.2.3).

Appl. Sci. 2022, 12, 9587 17 of 24

The embedding dimension is the length of the vectors representing both states and actions
(see Section 4.2.1). The mini-batch size is the number of items selected from the memory
to process the SGD (see Section 4.2.3). When the parameterisation is defined, a stability
experiment is processed where the purpose is to train QLHH-II on instances from a certain
class and to execute the generated heuristic on other classes (detailed in Section 6.3). The
training then occurs on instances with 10 UAVs moving on a 20 × 20 grid. 50 instances
are randomly chosen from the latter instance class and the QLHH-II algorithm is executed
10 times on each (see Algorithm 2). The generated heuristic is finally executed on instances
of other classes along with the heuristics presented in Section 5.2 to assess its performance.

Table 1. Experimental parameters used for training QLHH-II.

Parameter Name Notation Value

maximal distance of communication Dcom 4

exploration rate ε 0.05

discount factor γ 0.9

size of movement frame τ 10

Factorial experiment

learning rate α

embedding dimension p

mini-batch size |B|

Stability experiment

number of epochs 10

number of instances 50

grid width 20

grid height 20

number of UAVs 10

6. Experimental Results

This section presents the experimental results of QLHH-II on the CCUS3O problem,
which have been conducted on the High-Performance Computing (HPC) platform of the
University of Luxembourg [35]. The factorial experiment is presented first to determine
the best learning rate, embedding dimension and size of the mini-batch. Then, QLHH-II
performance is evaluated against QLHH. Finally, an experimental study of the stability of
QLHH-II with regard to state-of-the-art heuristics is depicted.

6.1. Factorial Experiment

To assess the best parameterisation of QLHH-II, an analysis of the sensitivity to its
three parameters has been conducted. To this end, four values have been considered for
each parameter. The size of the mini-batch can be 16, 32, 48 or 64; the learning rate can be
0.01, 0.05, 0.1 or 0.2; and the embedding dimension can be 8, 16, 24 or 32. The objective is
to learn a heuristic for each possible combination. The training is identical to the stability
experiment, i.e., on 50 instances from the class (20× 20/10) (with a 20× 20 grid graph as
an environment and 10 UAVs) with 10 epochs. After the training, the generated heuristic for
each parameterisation is executed on 30 instances from the same class. These instances are
the same for every heuristic generated. A distribution of 30 solutions is thus obtained and

Appl. Sci. 2022, 12, 9587 18 of 24

the non-dominated solutions are retained so that the Pareto fronts are compared with the
three multi-objective metrics presented in Section 5.1.2. The results are depicted in Table 2.

Table 2. Results of the factorial experiment.

Parameters Multi-Objective Metrics Parameters Multi-Objective Metrics
|B| α p HV IGD ∆ |B| α p HV IGD ∆

16 0.01 8 3.563× 100 6.943× 10−1 8.618× 10−1 48 0.01 8 4.419× 100 7.402× 10−1 8.856× 10−1

16 0.01 16 - - - 48 0.01 16 2.702× 100 7.689× 10−1 8.098× 10−1

16 0.01 24 6.645× 100 5.901× 10−1 9.521× 10−1 48 0.01 24 4.650× 100 5.817× 10−1 8.374× 10−1

16 0.01 32 7.533× 100 5.960× 10−1 8.198× 10−1 48 0.01 32 2.289× 100 8.747× 10−1 9.659× 10−1

16 0.05 8 2.991× 100 6.652× 10−1 8.405× 10−1 48 0.05 8 8.770× 100 4.760× 10−1 8.859× 10−1

16 0.05 16 - - - 48 0.05 16 8.217× 100 6.190× 10−1 8.181× 10−1

16 0.05 24 2.970× 100 8.404× 10−1 9.097× 10−1 48 0.05 24 2.957× 100 5.229× 10−1 8.832× 10−1

16 0.05 32 3.298× 100 7.641× 10−1 8.169× 10−1 48 0.05 32 8.079× 100 3.875× 10−1 8.312× 10−1

16 0.1 8 1.602× 100 9.507× 10−1 9.086× 10−1 48 0.1 8 7.025× 100 1.585× 100 9.206× 10−1

16 0.1 16 3.312× 100 7.516× 10−1 7.294× 10−1 48 0.1 16 6.233× 100 4.743× 10−1 8.450× 10−1

16 0.1 24 2.809× 100 7.297× 10−1 8.672× 10−1 48 0.1 24 1.346× 100 8.545× 10−1 9.068× 10−1

16 0.1 32 3.657× 100 4.579× 10−1 8.550× 10−1 48 0.1 32 3.356× 100 8.097× 10−1 8.830× 10−1

16 0.2 8 3.104× 100 7.491× 10−1 8.504× 10−1 48 0.2 8 2.998× 100 8.283× 10−1 6.839× 10−1

16 0.2 16 2.076× 100 1.259× 100 8.002× 10−1 48 0.2 16 - - -
16 0.2 24 9.748× 10−1 1.183× 100 8.649× 10−1 48 0.2 24 4.722× 100 4.648× 10−1 7.043× 10−1

16 0.2 32 3.642× 10−1 1.340× 100 8.695× 10−1 48 0.2 32 9.218× 100 5.138× 10−1 7.945× 10−1

32 0.01 8 7.883× 100 5.403× 10−1 7.599× 10−1 64 0.01 8 2.151× 100 6.401× 10−1 6.742× 10−1

32 0.01 16 3.361× 100 5.872× 10−1 8.483× 10−1 64 0.01 16 2.321× 100 7.610× 10−1 7.307× 10−1

32 0.01 24 2.367× 100 8.732× 10−1 9.251× 10−1 64 0.01 24 7.462× 100 5.618× 10−1 8.354× 10−1

32 0.01 32 7.830× 100 5.094× 10−1 9.181× 10−1 64 0.01 32 2.342× 100 8.738× 10−1 8.609× 10−1

32 0.05 8 6.487× 100 6.024× 10−1 6.703× 10−1 64 0.05 8 9.521× 100 4.550× 10−1 7.852× 10−1

32 0.05 16 2.978× 100 8.138× 10−1 6.714× 10−1 64 0.05 16 6.635× 100 5.011× 10−1 9.590× 10−1

32 0.05 24 9.313× 100 5.033× 10−1 8.528× 10−1 64 0.05 24 5.551× 100 5.119× 10−1 8.547× 10−1

32 0.05 32 2.358× 100 9.777× 10−1 8.211× 10−1 64 0.05 32 2.187× 100 9.350× 10−1 9.302× 10−1

32 0.1 8 3.419× 100 7.751× 10−1 7.992× 10−1 64 0.1 8 4.890× 100 1.571× 100 9.727× 10−1

32 0.1 16 2.775× 100 6.742× 10−1 9.633× 10−1 64 0.1 16 1.215× 101 4.476× 10−1 8.144× 10−1

32 0.1 24 9.578× 100 5.004× 10−1 8.685× 10−1 64 0.1 24 5.168× 100 5.850× 10−1 9.691× 10−1

32 0.1 32 5.264× 100 4.408× 10−1 7.589× 10−1 64 0.1 32 2.639× 100 9.195× 10−1 7.823× 10−1

32 0.2 8 1.037× 100 1.012× 100 9.629× 10−1 64 0.2 8 3.983× 100 4.678× 10−1 9.390× 10−1

32 0.2 16 6.113× 100 4.206× 10−1 9.379× 10−1 64 0.2 16 8.947× 100 4.400× 10−1 6.742× 10−1

32 0.2 24 5.449× 100 1.259× 100 9.237× 10−1 64 0.2 24 4.196× 100 6.790× 10−1 8.198× 10−1

32 0.2 32 7.063× 100 5.652× 10−1 9.239× 10−1 64 0.2 32 9.567× 100 4.774× 10−1 9.516× 10−1

For each column of Table 2, i.e., for each metric, values are normalised and a colour
gradient is used to enhance the quality of a parameterisation according to metrics (the
more red the better). By looking at the table, it can be noted that the model is very sensitive
to parameterisation. This is shown by the high disparity of values. Among parameters,
the size of the batch |B| seems to have an impact independently from other parameters.
Among the range of values, the bigger is |B|, the better the results in general. The size
of the batch has an impact on the IGD. Selecting fewer elements for the gradient descent
indeed enhances the exploration. It is not obvious to analyse the impact of the other two
parameters independently according to Table 2. The embedding dimension p has a direct
impact on the size of the searching space (the higher p, the wider the searching space). For
a certain learning rate α, the model would struggle to converge with a lower searching
space, i.e., a lower p. It is thus relevant to admit that the lower is p, the lower should be α.
Among the best five parameterisations, the convergence is observed and at the end, the
selected paramterisation is the following: |B| = 48; α = 0.2; p = 32.

6.2. Comparison with QLHH

This section aims at comparing the current hyper-heuristic QLHH-II to the one it
extends, i.e., QLHH. To compare both models, QLHH and QLHH-II have been trained
on instances from class (15× 15/10). QLHH uses the parameterisation provided used
by Duflo et al. [31] while QLHH-II uses the parameterisation obtained after the factorial
experiment described above. The generated heuristic has then been executed on several

Appl. Sci. 2022, 12, 9587 19 of 24

instances, ten times, from the same class. The solutions are represented according to both
swarm metrics for two instances in Figure 8.

Figure 8. Solutions obtained with heuristics generated by QLHH and QLHH-II on two instances (the
x-axis uses a logarithm scale due to the huge gap between heuristics).

The results shown in Figure 8 are representative of the behaviour in other instances. It
shows the Pareto fronts obtained by executing both generated heuristics ten times on two
instances from the class (15× 15/10). QLHH generated a heuristic that provides solutions
with a low number of connected components, around 1.5. This is due to the fact that
the scalarisation weights enhance the connectivity objective without making UAVs cover
new vertices until a point where the weight for the coverage rate becomes too large. This
explains why the coverage speed is extremely high for solutions obtained by the heuristic
generated by QLHH. The heuristic generated by QLHH-II provides a poorer connectivity
since the number of connected components is around 3, but also a much better coverage
speed. For any instance, UAVs need between 100 and 150 units of time to cover 95% of
the environment graph, while they need between 10,000 and 30,000 with the heuristic
generated by QLHH.

By looking at Figure 8, QLHH-II may seem to focus on the coverage objective only, but
this is not the case. This idea is induced by the good connectivity obtained by the heuristic
generated by QLHH in comparison, but the solutions produced by the latter heuristic are
practically unusable. Consequently, the heuristics generated by QLHH will not be used as
a comparison for the stability experiment detailed below.

6.3. Stability

QLHH-II has been trained on instances from the (20× 20/10) instance class. This
class has been chosen since the number of UAVs is high enough to have a wide range of
values for the connectivity objective. Moreover, the ratio of the number of vertices over the
number of UAVs is good, so that UAVs are not constrained to fly together by the lack of
free room. The generated heuristic has then been executed on other instance classes, i.e.,
(15× 15/10), (20× 20/5), (20× 20/10), (20× 20/15) and (25× 25/10). The objective
is not only to demonstrate its good performance on other instance classes with different
numbers of UAVs and environment grid sizes but also to validate its good stability against
heuristics from the state-of-the-art.

6.3.1. Training

This section presents the training process along with the evolution of the Pareto front,
which depicts the convergence of the model and, therefore, justifies the training time.
QLHH-II has been trained on 50 instances over 10 epochs, resulting in 500 episodes. The
evolution of the three MO metrics during training is illustrated in Figure 9. In terms of
IGD, the algorithm features a very fast convergence in the first episodes and then continues
to improve at a slower pace. When considering HV, it appears that QLHH-II improves
solutions steadily with a major increase around the 300th episode. With regard to the
third metric, Δ, it converges until the 50th episode and then worsens. This might be

Appl. Sci. 2022, 12, 9587 20 of 24

explained by the fact that adding any new non-dominated to the front may completely
disrupt the diversity.

Figure 9. Evolution of the front during the training according to HV, IGD andΔ.

6.3.2. Testing

For both WO and the generated heuristics, each UAV has a deterministic behaviour
so they are not stochastic as are heuristics Φ and Φ-K. However, since UAVs move asyn-
chronously, two executions on the same instance may provide two different solutions,
which makes these two heuristics non-deterministic. Thus, all heuristics have been exe-
cuted 30 times per instance, resulting in 30 solutions per instance. These distributions are
compared according to their Pareto front using the three MO metrics defined in Section 5.1.
A Wilcoxon signed-rank test is then used to assess the statistical significance of the results.
The results of the latter test are displayed in three tables, one per MO metric (HV in Table 3,
IGD in Table 4 and Δ in Table 5). For each table, a cell in dark blue means that the heuristic
generated by QLHH-II outperforms the specific heuristic (column name) for the specific
instance class (row name) with a 95% confidence. A light-blue cell means that the heuristic
generated by QLHH-II provides better results on average but without statistical confidence.

According to the HV metric, the heuristic generated by QLHH-II outperforms all
pheromone-based heuristics. However, for most of the instance classes, the WO heuristic
provides better results with 95% confidence. This is an unexpected result when looking
at its results in terms of IGD and Δmetrics. It indeed clearly appears that the generated
heuristic outperforms WO for every instance class according to IGD and Δ. While these
metrics, respectively, measure the convergence and the diversity of the front, the results in
terms of HV values are not similarly competitive with respect to WO. This behaviour can
be visualised in Figure 10, which displays the non-dominated solutions for two different
instances. It can be observed that, despite a clear lack of diversity in the front of WO, its
lowermost point is very distant from the other solutions (including the dominated ones),
which in turn drastically increases the value of HV.

In terms of IGD, the heuristic generated by QLHH-II outperforms all other heuristics as
presented in Table 4. It means that the non-dominated solutions provided by the generated
heuristic are closer to the optimal front than other heuristics. This result is particularly
good since the front provided by the generated heuristic has more points than other ones
for most instances (see Figure 10).

This diversity in the Pareto fronts obtained with the QLHH-II generated heuristic is
confirmed by the results according to the Spread metric (Δ) presented in Table 5. QLHH-II
obtained fronts are, in the majority of cases, more diverse than the state-of-the-art heuristics.
For some class, heuristic Φ-K, however, provides more diverse fronts, but with a 95%
confidence only for the class (20× 20/5).

Appl. Sci. 2022, 12, 9587 21 of 24

Table 3. Comparison between heuristics according to HV.

Instance Class Heuristic

Grid #UAVs QLHH-II WO p-Value Φ p-Value Φ-K0.05 p-Value Φ-K0.10 p-Value Φ-K0.20 p-Value

15 × 15 10 2.03× 101

±3.97
1.92× 101

±3.54 4.37× 10−4 5.42
±1.27 7.11× 10−15 7.94

±1.81 7.11× 10−15 1.01× 101

±2.03 7.11× 10−15 1.40× 101

±2.93 7.11× 10−15

20 × 20 05 1.35× 101

±3.01
1.48× 101

±2.92 1.20× 10−2 2.52
±6.82× 10−1 7.63× 10−6 3.56

±8.02× 10−1 7.63× 10−6 4.53
±1.03 7.63× 10−6 6.83

±1.59 7.63× 10−6

20 × 20 10 1.60× 101

±4.61
1.75× 101

±4.21 4.57× 10−2 3.27
±9.60× 10−1 1.19× 10−7 4.81

±1.27 1.19× 10−7 6.39
±1.78 1.19× 10−7 9.40

±2.52 1.19× 10−7

20 × 20 15 1.67× 101

±3.69
1.63× 101

±3.59 1.40× 10−1 3.24
±8.12× 10−1 1.86× 10−9 5.22

±1.01 1.86× 10−9 7.14
±1.50 1.86× 10−9 1.13× 101

±2.50 1.86× 10−9

25 × 25 10 9.88
±2.62

1.40× 101

±2.14 1.53× 10−5 1.62
±4.86× 10−1 7.63× 10−6 2.72

±5.71× 10−1 7.63× 10−6 3.74
±7.10× 10−1 7.63× 10−6 5.65

±1.22 7.63× 10−6

Table 4. Comparison between heuristics according to IGD.

Instance Class Heuristic

Grid #UAVs QLHH-II WO p-Value Φ p-Value Φ-K0.05 p-Value Φ-K0.10 p-Value Φ-K0.20 p-Value

15 × 15 10 3.74× 10−1

±1.46× 10−1
8.99× 10−1

±2.92× 10−1 3.54× 10−11 2.40
±1.62× 10−1 7.11× 10−15 1.99

±1.98× 10−1 7.11× 10−15 1.64
±1.70× 10−1 7.11× 10−15 1.11

±1.50× 10−1 7.11× 10−15

20 × 20 05 6.08× 10−1

±3.23× 10−1
1.25

±4.08× 10−1 1.58× 10−3 2.57
±2.21× 10−1 7.63× 10−6 2.35

±2.09× 10−1 7.63× 10−6 2.16
±1.85× 10−1 7.63× 10−6 1.69

±1.72× 10−1 7.63× 10−6

20 × 20 10 6.68× 10−1

±3.27× 10−1
1.15

±5.13× 10−1 1.26× 10−2 2.58
±2.55× 10−1 1.19× 10−7 2.26

±2.51× 10−1 1.19× 10−7 1.97
±2.49× 10−1 1.19× 10−7 1.50

±2.52× 10−1 1.19× 10−7

20 × 20 15 5.09× 10−1

±2.00× 10−1
1.32

±3.25× 10−1 9.31× 10−9 2.51
±2.12× 10−1 1.86× 10−9 2.14

±1.58× 10−1 1.86× 10−9 1.78
±1.55× 10−1 1.86× 10−9 1.14

±1.57× 10−1 1.86× 10−9

25 × 25 10 8.60× 10−1

±3.73× 10−1
1.52

±5.57× 10−1 6.58× 10−3 2.72
±1.95× 10−1 7.63× 10−6 2.47

±1.85× 10−1 7.63× 10−6 2.20
±2.18× 10−1 7.63× 10−6 1.74

±2.40× 10−1 7.63× 10−6

Table 5. Comparison between heuristics according toΔ.

Instance Class Heuristic

Grid #UAVs QLHH-II WO p-Value Φ p-Value Φ-K0.05 p-Value Φ-K0.10 p-Value Φ-K0.20 p-Value

15 × 15 10 8.26× 10−1

±6.43× 10−2
8.68× 10−1

±8.06× 10−2 6.31× 10−3 9.15× 10−1

±4.05× 10−2 6.46× 10−10 8.74× 10−1

±6.32× 10−2 1.15× 10−4 8.67× 10−1

±7.12× 10−2 9.31× 10−3 8.53× 10−1

±8.43× 10−2 6.68× 10−2

20 × 20 05 8.95× 10−1

±8.04× 10−2
9.00× 10−1

±5.45× 10−2 8.99× 10−1 9.18× 10−1

±3.54× 10−2 3.69× 10−1 8.88× 10−1

±5.11× 10−2 5.51× 10−1 9.29× 10−1

±4.40× 10−2 1.54× 10−1 8.47× 10−1

±4.78× 10−2 4.32× 10−2

20 × 20 10 8.34× 10−1

±4.33× 10−2
8.56× 10−1

±1.94× 10−1 1.15× 10−2 9.18× 10−1

±3.16× 10−2 3.58× 10−7 9.16× 10−1

±4.22× 10−2 3.58× 10−7 9.01× 10−1

±6.23× 10−2 2.05× 10−4 8.79× 10−1

±7.06× 10−2 1.38× 10−2

20 × 20 15 8.64× 10−1

±5.73× 10−2
8.91× 10−1

±6.26× 10−2 1.58× 10−1 9.27× 10−1

±3.61× 10−2 7.99× 10−6 9.13× 10−1

±3.26× 10−2 7.98× 10−4 8.88× 10−1

±5.89× 10−2 1.64× 10−2 8.48× 10−1

±6.70× 10−2 5.70× 10−1

25 × 25 10 8.42× 10−1

±2.84× 10−2
8.64× 10−1

±8.88× 10−2 2.46× 10−1 9.46× 10−1

±2.84× 10−2 7.63× 10−6 9.40× 10−1

±3.88× 10−2 7.63× 10−6 9.24× 10−1

±4.21× 10−2 7.63× 10−6 9.26× 10−1

±3.80× 10−2 7.63× 10−6

Appl. Sci. 2022, 12, 9587 22 of 24

Figure 10. Example of fronts obtained with different heuristics for two instances, from the classes
(20× 20/10) on the left and (25× 25/10) on the right.

Overall, except for some specific cases, the heuristic generated by QLHH-II outper-
forms the state-of-the-art heuristics according to the three MO metrics. By observing the
fronts obtained with different heuristics (see Figure 10, for example), several aspects can be
pointed out. First, in terms of convergence of the Pareto front, all of the pheromone-based
heuristics are completely outperformed by the generated heuristic. Most of the solutions
provided by heuristics Φ and Φ-K are dominated by solutions from the front of the gener-
ated heuristic. Another point is that the WO heuristic provides the best coverage results for
every instance. However, it does not seem to consider the connectivity aspect of the swarm
while that heuristic has been designed to balance the CCUS3O objectives. It shows that
the limitation of the manual design is even more apparent when trying to deal with multi-
objective optimisation problems. The last aspect is that the front obtained with the QLHH-II
generated heuristic is generally the one containing the most solutions. This is an important
feature since it shows that it is able to provide a larger set of well-performing solutions.

The main purpose of this experiment was to demonstrate the stability of the model.
After training QLHH-II on instances from (20× 20/10), the generated heuristic has shown
very similar results after being executed on other instance classes. The class where the
generated heuristic seems to be the least efficient is (20× 20/5) in terms of diversity of
the front. This is, however, not due to the density of the swarm compared to the swarm of
the grid (fewer UAVs than during training) since the generated heuristic provides good
results on instances from (25× 25/10) where the grid is bigger than during training. The
model is, thus, able to generate a heuristic without being overfitted by the dimension of
the instance. The stability of the model is a very promising aspect, since it shows that the
generated heuristic can perform well not only on unknown instances, but also in unknown
situations and, therefore, dynamic environments.

7. Conclusions

This article introduced a novel approach for learning to optimise the coverage of
an area by a swarm of UAVs, i.e., automating the design of swarming behaviours in the
context of area coverage missions. As a first step, a multi-objective optimisation problem
has been defined to formally describe the objectives of the task to cover an area with a
swarm of UAVs. This problem, called the Coverage of a Connected-UAV Swarm with
3 Objectives (CCUS3O), considers the coverage rate, the coverage time and the swarm
connectivity. A CCUS3O instance represents a scenario for an area coverage mission.
To automatically obtain the distributed heuristics necessary to tackle CCUS3O, a novel
hyper-heuristic has been developed. Based on multi-objective Q-learning, also referred
to as QLHH-II, it has been experimented on a set of CCUS30 instances. 50 instances from
the class 20× 20/10) (10 UAVs on a 20× 20 grid) have been used for the training. The
generated heuristic has then been executed on 50 new instances of five different classes.
The proposed hyper-heuristic has revealed a better convergence than existing techniques by
generating a heuristic not only with better performance but also with more consideration
of the multi-objective aspect. After processing a factorial experiment to determine an

Appl. Sci. 2022, 12, 9587 23 of 24

efficient parameterisation, experimental results demonstrate that while trained on a single
instance class, the generated heuristic has shown to outperform on other classes a manually
designed problem-specific heuristic along with state-of-the-art techniques designed for
the coverage by a swarm of UAVs. In addition, empirical evidence of the good stability of
the model and the better balance obtained on both objectives, coverage speed and swarm
connectivity, has been provided.

Future works will first consist of analysing other types of scalarisation techniques,
such as Chebyshev. In the next step, following the empirically assessed good stability of
the model, i.e., ability to generate a heuristic that performs well in unknown instances, the
final objective of this work will be to study QLHH-II in dynamic environments. In a later
stage, QLHH-II will be extended to tackle more diverse classes of problems.

Author Contributions: Conceptualisation, G.D. (Gabriel Duflo); methodology, G.D. (Gabriel Duflo);
software, G.D. (Gabriel Duflo); validation, G.D. (Gabriel Duflo); formal analysis, G.D. (Gabriel Duflo);
investigation, G.D. (Gabriel Duflo); resources, G.D. (Gabriel Duflo); data curation, G.D. (Gabriel Duflo);
writing—original draft preparation, G.D. (Gabriel Duflo); writing—review and editing, G.D. (Gabriel Duflo)
and G.D. (Grégoire Danoy); visualisation, G.D. (Gabriel Duflo); supervision, G.D. (Grégoire Danoy),
E.-G.T. and P.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Birattari, M.; Ligot, A.; Bozhinoski, D.; Brambilla, M.; Francesca, G.; Garattoni, L.; Garzón Ramos, D.; Hasselmann, K.; Kegeleirs,

M.; Kuckling, J.; et al. Automatic Off-Line Design of Robot Swarms: A Manifesto. Front. Robot. AI 2019, 6, 59. [CrossRef]
[PubMed]

2. Silva, F.; Duarte, M.; Correia, L.; Oliveira, S.M.; Christensen, A.L. Open Issues in Evolutionary Robotics. Evol. Comput. 2016,
24, 205–236. [CrossRef] [PubMed]

3. Francesca, G.; Birattari, M. Automatic Design of Robot Swarms: Achievements and Challenges. Front. Robot. AI 2019, 3, 29.
[CrossRef]

4. Arnold, R.; Carey, K.; Abruzzo, B.; Korpela, C. What is A Robot Swarm: A Definition for Swarming Robotics. In Proceedings
of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, NY, USA,
10–12 October 2019; pp. 0074–0081.

5. Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: A review from the swarm engineering perspective. Swarm
Intell. 2013, 7, 1–41. [CrossRef]

6. Schranz, M.; Umlauft, M.; Sende, M.; Elmenreich, W. Swarm Robotic Behaviors and Current Applications. Front. Robot. AI 2020,
7, 36. [CrossRef] [PubMed]

7. Cabreira, T.M.; Brisolara, L.B.; Ferreira, P.R., Jr. Survey on Coverage Path Planning with Unmanned Aerial Vehicles. Drones 2019,
3, 4. [CrossRef]

8. Siemiatkowska, B.; Stecz, W. A Framework for Planning and Execution of Drone Swarm Missions in a Hostile Environment.
Sensors 2021, 21, 4150. [CrossRef] [PubMed]

9. Semiz, F.; Polat, F. Solving the area coverage problem with UAVs: A vehicle routing with time windows variation. Robot. Auton.
Syst. 2020, 126, 103435. [CrossRef]

10. Nouyan, S.; Campo, A.; Dorigo, M. Path formation in a robot swarm: Self-organized strategies to find your way home. Swarm
Intell. 2008, 2, 1–23. [CrossRef]

11. Ducatelle, F.; Di Caro, G.A.; Pinciroli, C.; Mondada, F.; Gambardella, L.M. Communication assisted navigation in robotic swarms:
Self-organization and cooperation. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 4981–4988.

12. Sun, X.; Liu, T.; Hu, C.; Fu, Q.; Yue, S. ColCOS Φ: A Multiple Pheromone Communication System for Swarm Robotics and
Social Insects Research. In Proceedings of the 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics
(ICARM), Toyonaka, Japan, 3–5 July 2019; pp. 59–66.

13. Na, S.; Qiu, Y.; Turgut, A.E.; Ulrich, J.; Krajník, T.; Yue, S.; Lennox, B.; Arvin, F. Bio-inspired artificial pheromone system for
swarm robotics applications. Adapt. Behav. 2021, 29, 395–415. [CrossRef]

http://doi.org/10.3389/frobt.2019.00059
http://www.ncbi.nlm.nih.gov/pubmed/33501074
http://dx.doi.org/10.1162/EVCO_a_00172
http://www.ncbi.nlm.nih.gov/pubmed/26581015
http://dx.doi.org/10.3389/frobt.2016.00029
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.3389/frobt.2020.00036
http://www.ncbi.nlm.nih.gov/pubmed/33501204
http://dx.doi.org/10.3390/drones3010004
http://dx.doi.org/10.3390/s21124150
http://www.ncbi.nlm.nih.gov/pubmed/34204272
http://dx.doi.org/10.1016/j.robot.2020.103435
http://dx.doi.org/10.1007/s11721-007-0009-6
http://dx.doi.org/10.1177/1059712320918936

Appl. Sci. 2022, 12, 9587 24 of 24

14. Liu, T.; Sun, X.; Hu, C.; Fu, Q.; Isakhani, H.; Yue, S. Investigating Multiple Pheromones in Swarm Robots—A Case Study of
Multi-Robot Deployment. In Proceedings of the 2020 5th International Conference on Advanced Robotics and Mechatronics
(ICARM), Shenzhen, China, 18–21 December 2020; pp. 595–601.

15. Liu, T.; Sun, X.; Hu, C.; Fu, Q.; Yue, S. A Multiple Pheromone Communication System for Swarm Intelligence. IEEE Access 2021,
9, 148721–148737. doi: 10.1109/ACCESS.2021.3124386. [CrossRef]

16. Kuiper, E.; Nadjm-Tehrani, S. Mobility Models for UAV Group Reconnaissance Applications. In Proceedings of the 2006
International Conference on Wireless and Mobile Communications (ICWMC’06), Bucharest, Romania, 29–31 July 2006; IEEE:
Bucharest, Romania, 2006; p. 33.

17. Rosalie, M.; Danoy, G.; Chaumette, S.; Bouvry, P. Chaos-enhanced mobility models for multilevel swarms of UAVs. Swarm Evol.
Comput. 2018, 41, 36–48. [CrossRef]

18. Danoy, G.; Brust, M.R.; Bouvry, P. Connectivity Stability in Autonomous Multi-level UAV Swarms for Wide Area Moni-
toring. In Proceedings of the 5th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and
Applications—DIVANet ’15, Cancun, Mexico, 2–6 November 2015; ACM Press: Cancun, Mexico, 2015; pp. 1–8. [CrossRef]

19. Brust, M.R.; Zurad, M.; Hentges, L.; Gomes, L.; Danoy, G.; Bouvry, P. Target Tracking Optimization of UAV Swarms Based on Dual-
Pheromone Clustering. In Proceedings of the 3rd IEEE International Conference on Cybernetics, Exeter, UK, 21–23 June 2017;
pp. 1–8.

20. Hunt, E.R.; Jones, S.; Hauert, S. Testing the limits of pheromone stigmergy in high-density robot swarms. R. Soc. Open Sci. 2019,
6, 190225. [CrossRef]

21. Burke, E.K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan, E.; Qu, R. Hyper-heuristics: A survey of the state of the art.
J. Oper. Res. Soc. 2013, 64, 1695–1724. [CrossRef]

22. Epitropakis, M.G.; Burke, E.K. Hyper-heuristics. In Handbook of Heuristics; Martí, R., Pardalos, P.M., Resende, M.G.C., Eds.;
Springer International Publishing: Cham, Switzerland, 2018; pp. 489–545.

23. Burke, E.K.; Hyde, M.R.; Kendall, G.; Ochoa, G.; Özcan, E.; Woodward, J.R. A Classification of Hyper-Heuristic Approaches:
Revisited. In Handbook of Metaheuristics; Gendreau, M., Potvin, J.Y., Eds.; Springer International Publishing: Cham, Switzerland,
2019; Volume 272, pp. 453–477.

24. Li, K.; Malik, J. Learning to Optimize. In Proceedings of the 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, 24–26 April 2017.

25. Cowling, P.; Kendall, G.; Soubeiga, E. A Hyperheuristic Approach to Scheduling a Sales Summit. In Practice and Theory of
Automated Timetabling III; Goos, G., Hartmanis, J., van Leeuwen, J., Burke, E., Erben, W., Eds.; Springer: Berlin/Heidelberg,
Germany, 2001; Volume 2079, pp. 176–190.

26. Birattari, M.; Ligot, A.; Francesca, G. AutoMoDe: A Modular Approach to the Automatic Off-Line Design and Fine-Tuning
of Control Software for Robot Swarms. In Automated Design of Machine Learning and Search Algorithms; Pillay, N., Qu, R., Eds.;
Natural Computing Series; Springer International Publishing: Cham, Switzerland, 2021; pp. 73–90.

27. Ligot, A.; Cotorruelo, A.; Garone, E.; Birattari, M. Towards an Empirical Practice in Off-line Fully-automatic Design of Robot
Swarms. IEEE Trans. Evol. Comput. 2022, 1. [CrossRef]

28. Yu, S.; Aleti, A.; Barca, J.C.; Song, A. Hyper-heuristic Online Learning for Self-assembling Swarm Robots. In Computational
Science—ICCS 2018; Shi, Y., Fu, H., Tian, Y., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J., Sloot, P.M.A., Eds.; Springer
International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 10860, pp. 167–180.

29. Yu, S.; Song, A.; Aleti, A. A Study on Online Hyper-heuristic Learning for Swarm Robots. In Proceedings of the IEEE Congress
on Evolutionary Computation, Wellington, New Zealand, 10–13 June 2019; pp. 2721–2728.

30. Nagavalli, S.; Chakraborty, N.; Sycara, K. Automated sequencing of swarm behaviors for supervisory control of robotic swarms.
In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 2674–2681.

31. Duflo, G.; Danoy, G.; Talbi, E.G.; Bouvry, P. A Q-Learning Based Hyper-Heuristic for Generating Efficient UAV Swarming
Behaviours. In Proceedings of the Intelligent Information and Database Systems; Nguyen, N.T., Chittayasothorn, S., Niyato, D.,
Trawiński, B., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 768–781. [CrossRef]

32. Duflo, G.; Danoy, G.; Talbi, E.G.; Bouvry, P. Automating the Design of Efficient Distributed Behaviours for a Swarm of UAVs. In
Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020;
pp. 489–496.

33. Van Moffaert, K.; Drugan, M.M.; Nowe, A. Scalarized multi-objective reinforcement learning: Novel design techniques. In
Proceedings of the 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), Singapore,
16–19 April 2013; pp. 191–199.

34. Brust, M.R.; Frey, H.; Rothkugel, S. Dynamic Multi-Hop Clustering for Mobile Hybrid Wireless Networks. In Proceedings of
the 2nd International Conference on Ubiquitous Information Management and Communication, ICUIMC ’08, Suwon, Korea, 31
January–1 February 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 130–135. [CrossRef]

35. Varrette, S.; Bouvry, P.; Cartiaux, H.; Georgatos, F. Management of an Academic HPC Cluster: The UL Experience. In Proceedings
of the 2014 International Conference on High Performance Computing & Simulation (HPCS 2014), Bologna, Italy, 21–25 July 2014;
pp. 959–967.

http://dx.doi.org/10.1109/ACCESS.2021.3124386
http://dx.doi.org/10.1016/j.swevo.2018.01.002
http://dx.doi.org/10.1145/2815347.2815351
http://dx.doi.org/10.1098/rsos.190225
http://dx.doi.org/10.1057/jors.2013.71
http://dx.doi.org/10.1109/TEVC.2022.3144848
http://dx.doi.org/10.1007/978-3-030-73280-6_61
http://dx.doi.org/10.1145/1352793.1352820

	Introduction
	Related Work
	Manual Design of Robot/UAV Swarms
	Automated Design of Robot/UAV Swarms
	Selective Approaches
	Generative Approaches

	CCUS3O Model
	Formal Expression
	Environment Graph
	Communication Graph
	Definition of Instances
	Definition of Solutions

	Objective Values
	Coverage Rate
	Coverage Time
	Connectivity

	Proposed QLHH-II Algorithm
	Hyper-Heuristic Structure
	Low-Level Heuristics
	High-Level Algorithm

	QLHH-II Detailed Steps
	Evaluation
	Reward
	Update

	General Pseudo-Code

	Experimental Setup
	Performance Metrics
	Swarm Metrics
	Multi-Objective Metrics

	Comparison Heuristics
	Manually-Designed Heuristic
	Pheromone-Based Heuristics

	Experimental Process

	Experimental Results
	Factorial Experiment
	Comparison with QLHH
	Stability
	Training
	Testing

	Conclusions
	References

