
Citation: Ibarra-Pérez, T.;

Ortiz-Rodríguez, J.M.;

Olivera-Domingo, F.;

Guerrero-Osuna, H.A.;

Gamboa-Rosales, H.;

Martínez-Blanco, M.d.R. A Novel

Inverse Kinematic Solution of a

Six-DOF Robot Using Neural

Networks Based on the Taguchi

Optimization Technique. Appl. Sci.

2022, 12, 9512. https://doi.org/

10.3390/app12199512

Academic Editor: Luis Gracia

Received: 24 August 2022

Accepted: 17 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Novel Inverse Kinematic Solution of a Six-DOF Robot Using
Neural Networks Based on the Taguchi Optimization Technique
Teodoro Ibarra-Pérez 1,* , José Manuel Ortiz-Rodríguez 2, Fernando Olivera-Domingo 1,
Héctor A. Guerrero-Osuna 3 , Hamurabi Gamboa-Rosales 3 and Ma. del Rosario Martínez-Blanco 2,*

1 Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas (UPIIZ),
Zacatecas 98160, Mexico

2 Laboratorio de Innovación y Desarrollo Tecnológico en Inteligencia Artificial (LIDTIA),
Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico

3 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
* Correspondence: tibarrap@ipn.mx (T.I.-P.); mrosariomb@uaz.edu.mx (M.d.R.M.-B)

Abstract: The choice of structural parameters in the design of artificial neural networks is generally
based on trial-and-error procedures. They are regularly estimated based on the previous experience
of the researcher, investing large amounts of time and processing resources during network training,
which are usually limited and do not guarantee the optimal selection of parameters. This paper
presents a procedure for the optimization of the training dataset and the optimization of the structural
parameters of a neural network through the application of a robust neural network design methodol-
ogy based on the design philosophy proposed by Genichi Taguchi, applied to the solution of inverse
kinematics in an open source, six-degrees-of-freedom robotic manipulator. The results obtained
during the optimization process of the structural parameters of the network show an improvement in
the accuracy of the results, reaching a high prediction percentage and maintaining a margin of error
of less than 5%.

Keywords: backpropagation; optimization methods; inverse kinematics; robotics

1. Introduction

One of the main problems in the design of neural networks is the selection of the
structural parameters of the network and their corresponding values before performing the
training. In this work, the robust design artificial neural network (RDANN) methodology is
used. The main focus of this methodology is based on reducing the number of experiments
that can be carried out using the factorial fractional method, a statistical procedure based
on the robust design philosophy proposed by Genichi Taguchi. This technique allows one
to set the optimal settings on the control factors to make the process insensitive to noise
factors [1,2].

Currently, the selection of the structural parameters in the design of artificial neural
networks (ANNs) remains a complex task. The design of neural networks implies the
optimal selection of a set of structural parameters in order to obtain greater convergence
during the training process and high precision in the results. In [1], the feasibility of
this type of approach for the optimization of structural parameters in the design of a
backpropagation artificial neural network (BPANN) for the determination of operational
policies in a manufacturing system is demonstrated, where it is shown that the Taguchi
method allows designers to improve the performance in the learning speed of the network
and the precision in the obtained results.

Most designers select an architecture type and determine the various structural pa-
rameters of the chosen network. However, there are no clear rules on how to choose those
parameters in the selected network architecture, although these parameters determine the
success of the network training. The selection of the structural parameters of the network

Appl. Sci. 2022, 12, 9512. https://doi.org/10.3390/app12199512 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12199512
https://doi.org/10.3390/app12199512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5220-7001
https://orcid.org/0000-0003-0743-842X
https://orcid.org/0000-0002-9498-6602
https://doi.org/10.3390/app12199512
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12199512?type=check_update&version=2

Appl. Sci. 2022, 12, 9512 2 of 20

is generally carried out through the implementation of conventional procedures based
on trial and error, as shown in Figure 1, where a significant number of ANN models are
generally implemented in comparison with other unconventional procedures [3–6].

Figure 1. Trial-and-error procedure.

In this case, if a desired level of performance is not maintained, the levels in the previ-
ously established design parameters are changed until the desired performance is obtained.
In each experiment, the responses are observed in order to determine the appropriate levels
in the design of the structural parameters of the network [7].

A drawback in the use of this type of procedure is that one parameter is evaluated,
while the others are kept at a single level, so the level selected in a variable may not
necessarily be the best at the end of the experiment, since it is very likely that most of the
layout variables involved will change their value. A possible solution could be that all
the possible combinations in the parameters are evaluated, that is, to carry out a complete
factorial design. However, the number of combinations can be very large due to the
number of levels and previously established design parameters, so this method could be
computationally expensive and time-consuming.

Due to all these limitations, the scientific community has shown special interest in
the implementation of new approaches and procedures applied to the optimization of
structural parameters in the search to generate better performance in ANNs [8–13].

Currently, ANNs can be trained to solve problems that can be complex for a human or
a conventional computer, since they allow obtaining results with a high degree of precision
and a significant reduction in error in real-time applications. In recent decades, the use
of ANNs has been successfully applied in different fields, including pattern recognition,
classification, identification, voice, vision, control systems, and robotics, the latter of which
has raised special interest among researchers in the field, particularly the solution of the
inverse kinematics in manipulators with six or more degrees of freedom, due to the great
flexibility of control that they present for the execution of very complex tasks [14–17].

In [18], a BPNN algorithm is proposed, optimized by Fruit Fly Optimization Algorithm
(FOA), to find the solution of the inverse kinematics in a four-DOF robot, obtaining an
output error range −0.04686–0.1271 smaller than that obtained by a BPNN. In [19], a BPNN
algorithm, optimized by means of particle swarm optimization (PSO), is studied to solve
the inverse kinematic problem in a six-DOF UR3 robot applied in puncture surgery, where
convergence in the precision of the results, as well as the speed and generalization capacity
of the proposed network, is improved. In [20], a deep learning approach is proposed to solve
the inverse kinematics in a seven-DOF manipulator. The approach used allows it to be fast,
easy to implement, and more stable, allowing less sensitivity in hyperparameters. In [21], a
combination of swarm intelligence (SI) and the product of exponentials (PoEs) is used to
solve the inverse kinematics in a seven-DOF manipulator, where they are compared with the
conventional inverse kinematics and standard PSO algorithms. In [22], the main approach
is based on a redundant manipulator inverse kinematic problem that is formulated as a
quadratic programming optimization problem solved by different types of recurrent neural
networks. In [23], an approach is proposed to address the complexity of solving the inverse
kinematics in a seven-DOF serial manipulator through an algorithm based on the Artificial
Bee Colony (ABC) optimization algorithm, where two control parameters are used in order

Appl. Sci. 2022, 12, 9512 3 of 20

to adjust the search to optimize the distribution of the sources. In [24], an optimization
approach is shown in the planning of the trajectories applied in a five-bar parallel robot for
real-time control, minimizing the trajectory time and avoiding singularities in the parallel
manipulator, achieving an error of less than 0.7◦ at the joints.

Factorial experimental design is a statistical technique used to identify and measure
the effect that one variable has on another variable of interest. In 1920, R. A. Fisher
studied multiple factors in the agricultural field to determine the effect of each factor on the
response variable, as well as the effect of the interactions between factors on this variable.
This method is known as the factorial design of experiments. Factors are variables that
determine the functionality of a product or process and significantly influence system
performance and can usually be controlled. To evaluate the impact of each variable, the
factors must establish at least two levels; therefore, given k factors with l levels, a complete
factorial design that includes all the possible combinations between these factors and levels
will produce a total of lk experimental runs. Obviously, as k or l increases, the number
of experiments may become unfeasible to carry out, since a significant number of factors
would imply a large number of experiments. For this reason, fractional factorial designs
have been introduced, which require only a fraction of a run, unlike a complete factorial
design, and which allow estimating a sufficient number of effects [25,26].

Genichi Taguchi is considered to be the author of robust parameter design through
a procedure focused on reducing variation and/or sensitivity to noise in the design of
products or processes, which is based on the concept of fractional factorial design. Through
the implementation of orthogonal arrays (OA) and fractional factorial design, it is possible
to analyze a wide range of parameters through a reduced number of experiments, ensuring
a balanced comparison between the factors involved and the interaction with their different
levels [2,27,28].

The Taguchi method is applied in four stages:

1. Selection of design and noise variables. In this stage, the most important parameters for
the product/process are considered, taking into account the quality characteristics.
Generally, there are variables that can be controlled by the user and others that cannot.
These types of variables are known as design and noise factors, respectively, which
have an important influence on the operation of the product/process. They can be
determined mainly by answering the following questions: What is the optimal design
condition? What factors contribute to the results and to what extent? What will be the
expected result?

2. Design and experimentation. An OA is established, which contains the organization of
the experiment taking into account the levels established for each of the factors in order
to minimize the effects produced by noise factors. In other words, the adjustments
made to the factors must be determined in such a way that there is the least variation
in the response of the product/process, and the mean is established as close as possible
to the desired objective. The OA allows the implementation of a balanced design in
the weighting of the pre-established levels for each factor involved since it is possible
to evaluate various factors with a minimum number of tests, obtaining a considerable
amount of information through the application of few tests. The mean and variance of
the response obtained in the OA configuration are combined into a single performance
measure known as the signal-to-noise ratio (S/N).

3. Analysis of results. The S/N ratio is a quality indicator by which the effect produced
on a particular parameter can be evaluated. The variation in the response obtained in
dynamic characteristics, the S/N ratio, is shown below in the following equation:

S/N = 10·log10

(
βi

MSEi

)
, (1)

where βi is the square of the largest value of the signal, and MSEi represents the root
mean square deviation in the performance of the neural network, or in other words,
the mean square of the distance between the measured response and the best fit line.

Appl. Sci. 2022, 12, 9512 4 of 20

A valid robustness measure is related to obtaining the highest values in the S/N ratio,
because the configurations of control factors that minimize the effects on noise factors
can be identified.

4. Execution and confirmation of tests in optimal conditions. In this stage, a confirmation
experiment is carried out by performing training with optimal design conditions in
order to calculate the performance robustness measure and verify if this value is close
to the predicted value.

Inverse Kinematics with ANNs

During the last decade, robotics had an outstanding development in the industry,
particularly in aerospace, military, and medical areas, among others, especially in manipu-
lators with a large number of degrees of freedom (DOF), due to their high flexibility and
control to perform complex tasks [17,29,30].

Modern manipulators, usually kinematically redundant, allow complex tasks to be
solved with high precision in the results. These types of manipulators have at least six
DOF, allowing greater flexibility and mobility to perform complex tasks. The complexity
in manipulator control design based on an inverse kinematic solution approach can be
computationally complex, due to the nonlinear differential equation systems that are
usually present. Traditional methods with geometric, iterative, and algebraic approaches
have certain disadvantages and can often be generically inappropriate or computationally
expensive [16,31].

The ANNs present major advantages related to nonlinearity, parallel distribution,
high learning capacity, and great generalization capacity, and they can maintain a high
calculation speed, thus fulfilling the real-time control requirements. Consequently, various
approaches have been proposed by the scientific community in the use of intelligent algo-
rithms applied to the control of robotic manipulators such as the use of ANNs [19,20,32,33],
genetic algorithms [31,33–38], recurrent neural networks (RNNs) [37], [38], optimization
algorithms [18,23,39,40], and the use of neural networks and optimization methods for
parallel robots [24,41].

The organization of this work is as follows: In Section 2.1, the kinematic model of
the Quetzal manipulator is established. Section 2.2 describes the procedure for generating
the training and testing dataset. Section 2.3 describes the implementation of the RDANN
methodology for the optimization of structural parameters in the BPNN. In Section 3, the
results obtained are subjected to a reliability test stage through the use of a cross-validation
method to verify that the dataset is statistically consistent. The results of training in the
optimized BPNN show a significant improvement in the accuracy of the results obtained
compared with the use of conventional procedures based on trial-and-error tests.

2. Materials and Methods

In this paper, a robust design model is presented through a methodological and
systematic approach based on the design philosophy proposed by Genichi Taguchi. The
integration of optimization processes and ANN design are methodological tools that allow
the performance and generalization capacity in ANN models to be improved. In this study,
an RDANN methodology was used, which was initially proposed for the reconstruction of
spectra in the field of neutron dosimetry by means of ANNs [7].

The RDANN methodology was used to estimate the optimal structural parameters in
a BPNN to calculate the inverse kinematics in a six-DOF robot, where the main objective
was the development of accurate and robust ANN models. In other words, it was sought
that the selection of the structural parameters of the proposed model allows us to obtain
the best possible performance in the network.

2.1. Kinematic Analysis

The robot called Quetzal is based on an open source, 3D-printable, and low-cost
manipulator [42]. The modeling and representation were carried out using the Denavit–

Appl. Sci. 2022, 12, 9512 5 of 20

Hartemberg (D–H) parameters to obtain a kinematic model through four basic transforma-
tions that are determined based on the geometric characteristics of the Quetzal manipulator
to be analyzed [43]. The D–H parameters are shown in Table 1.

Table 1. D–H parameters of the Quetzal manipulator.

i Link Offset di
(cm)

Joint Angle θi
(rad)

Link Length
ai−1 (cm)

Twist Angle
αi−1 (rad)

1 20.2 θ1 0 π/2

2 0 θ2 16 0

3 0 θ3 + π/2 0 π/2

4 19.5 θ4 0 −π/2

5 0 θ5 0 π/2

6 6.715 θ6 0 0

The basic transformations represent a sequence of rotations and translations, where the
reference system of element i is related to the system of element i− 1. The transformation
matrix is given by Equation (2).

i−1
i T = RZ(θi)DZ(di)DX,(ai−1)RX(αi−1) (2)

Carrying out the multiplication of the four matrices, Equation (3) is obtained:

i−1
i T =

cθi −sθicαi−1 sθisαi−1 ai−1cθi
sθi cθicαi−1 −cθisαi−1 ai−1sθi
0 sαi−1 cαi−1 di
0 0 0 1

 (3)

where i−1
i T is the D–H transformation matrix from coordinate system i to i− 1. RZ(θi) is

the rotation matrix representing a rotation θi around the Z axis, DZ(di) is the translation
matrix representing a translation of di on the Z axis, DX,(ai−1) is the translation matrix
representing a translation of ai−1 on the X axis, RX(αi−1) is the rotation matrix representing
a rotation αi−1 around the X axis, cθi is shorthand for cos cos(θi), sθi is shorthand for sin(θi),
etc. The transformation matrices of each of the joints are multiplied to obtain the initial
position of the end effector in the base reference system, as shown in Equation (4).

0
6T = 0

1 A · 12 A · 23 A · 34 A · 45 A · 56 A =

[0
6R3×3

0
6P3×1

0 1

]
=

nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (4)

Therefore, the equation of the forward kinematics of the Quetzal manipulator can be
expressed as shown in Equation (5).

Ff orward_k(θ1, θ2, θ3, θ4, θ5, θ6) =
(

px, py, pz, nx, ny, nz, ox, oy, oz, ax, ay, az
)

(5)

As shown in Equation (5), the position of the end effector of the manipulator can be
obtained from the angular values of the six joints of the manipulator. However, in practice, it
is necessary to obtain the angles at each of the joints through a given position, so it is necessary
to calculate the inverse kinematics, which can be expressed as shown in Equation (6).

Finverse_k
(

px, py, pz, nx, ny, nz, ox, oy, oz, ax, ay, az
)
= (θ1, θ2, θ3, θ4, θ5, θ6) (6)

Appl. Sci. 2022, 12, 9512 6 of 20

Solving (4) gives the orientation and position of the final effector in regard to the
reference system, as shown in Equation (7), where the position vector [p] = {42.215, 0, 20.2}
and the orientation vector [n o a] = {0, 0, 1, 0,−1, 0, 1, 0, 0}.

T6
0 =

0 0 1 42.215
0 −1 0 0
1 0 0 20.2
0 0 0 1

 (7)

The graphic representation of the initial position of the Quetzal robotic manipulator is
shown in Figure 2 through a simulation carried out with the Robotics Toolbox for MATLAB
software [44].

Figure 2. Representation of the initial position of the Quetzal manipulator.

2.2. Training and Testing Datasets

The dataset was generated from the equations obtained in the forward kinematics of
the Quetzal manipulator. The variables involved in the proposed dataset were the orienta-
tion vector [n o a] =

{
nx, ny, nz, ox, oy, oz, ax, ay, az

}
, the position vector [p] =

{
px, py, pz

}
,

and the vector of joint angles [θ] = {θ1, θ2, θ3, θ4, θ5, θ6}, for a total of 18 variables.
Table 2 shows the ranges of movement established for each of the joints in the

workspace of the manipulator. Dataset X was generated with a spatial resolution of
25× 25× 25× 25× 25× 25× 25 in a six-dimensional matrix with 18 variables involved.
The total size of the dataset was 4,394,531,250 data, occupying an approximate physical
memory space of 32.74 Gb due to the data class of type Single− precision used in the study,
where the data are stored as 4-byte (32-bit) floating point values.

Table 2. Range of motion and step size at each of the joints.

Description θ1 θ2 θ3 θ4 θ5 θ6

Min 0 0 2π 0 2π 0

Max 2π π π/2 2π π/2 2π

Step π/12 π/24 π/24 π/12 π/24 π/12

Total steps 25 25 25 25 25 25

Appl. Sci. 2022, 12, 9512 7 of 20

Figure 3 shows a graphical representation of the workspace using a 3D data scatter
plot corresponding to the position vector [p] based only on the joints θ1, θ2, θ4, θ5 and θ6,
where it is possible to appreciate the workspace of the robotic manipulator without taking
into account joint θ3. The illustrated workspace was generated from the forward kinematic
equations as a function of the six joints.

Figure 3. Position vector [p] =
{

px, py, pz
}

in function of joints θ1, θ2, θ4, θ5 and θ6.

In order to process the enormous volume of data in a conventional processor, a data
reduction filter (DRF) based on linear systematic sampling (LSS) was applied to reduce
the set to a size of 190.7 Kb in memory [45]. The data were processed on an 8-core AMD
Ryzen 7 5000 series processor with a base clock of 1.8 GHz, 16 GB of RAM, and integrated
Radeon 16-thread graphics with a maximum clock of 4.3 GHz [46]. The dataset and code
are available in Supplementary Materials.

Figure 4 shows the scatter matrices corresponding to the position dataset before and
after applying the FRD filter, where a reduction of 99.99% of the data was obtained with a
size of 24,410 data. In Figure 4b, it is shown that the data maintain a constant and uniform
distribution with respect to the dataset of Figure 4a.

The data were normalized with a mean of zero in the range from−1 to 1 using Equation (8),
where data is the data to normalize, min is the minimum value of the dataset, range is a
value established by the difference between the maximum value and the minimum value of
the dataset, h and l are the maximum and the minimum desired values for normalization.

DataNorm =

(
data−min

range
× (h− l)

)
+ l (8)

2.3. Robust Design Methodology

Figure 5 shows the RDANN methodology based on the Taguchi philosophy that
consists of four stages. The designer must know the problem and choose an appropriate
network model, as well as the parameters involved in the design of the network for its
optimization (planning stage). By implementing an OA and systematically training a
small number of ANN models (experimentation stage), the response to be analyzed is
determined using the S/N relationship of the Taguchi method (analysis stage). Finally,
through a confirmation process, the best performance values of the model are obtained
(confirmation stage).

Appl. Sci. 2022, 12, 9512 8 of 20

Figure 4. Scatter matrix of the position dataset: (a) before applying the reduction filter; (b) after
applying the data reduction filter.

Figure 5. Robust design methodology for the optimization of structural parameters.

Appl. Sci. 2022, 12, 9512 9 of 20

The graphic representation of the BPNN used in this work is shown in Figure 6,
with 12 input variables and 6 output variables that correspond to the position vector
[p] =

{
px, py, pz

}
and orientation vector [n o a] =

{
nx, ny, nz, ox, oy, oz, ax, ay, az

}
as input

and the vector of joint angles [θ] = {θ1, θ2, θ3, θ4, θ5, θ6} as output.

Figure 6. BPNN network topology used in this study.

2.3.1. Planning Stage

In this stage, the design variables, noise, and the objective function are identified. The
objective function is defined according to the purpose and requirements of the system. In
this work, the objective function is related to the prediction or classification errors between
the calculator data and the data predicted by the ANN model during the testing stage.
The performance at the output of the ANN or the mean square error (MSE) is used as the
objective function and is described in the following equation:

MSE =

√√√√ 1
N

N

∑
i=1

(
θPREDICTED

i − θORIGINAL
i

)2 (9)

In this case, N represents the number of attempts, θPREDICTED
i represents the set

of joint values that are predicted by the BPANN, and θORIGINAL
i represents the set of

joint values.
The design variables correspond to those that can be controlled by the user, such as

the number of neurons in the first layer, the number of neurons in the second layer, the
momentum constant, and the learning rate. By contrast, the noise variables are commonly
not directly controlled by the user in most cases, such as the initialization of synaptic
weights that are generally assigned randomly, the size of the training sets versus test
sets, and the random selection of training and test sets. According to the requirements
of the problem, the user can choose the factors related to variation in the system during
the optimization process. Four design variables and three noise variables were selected
because they were directly involved with the performance of the ANN, as described below
in Table 3 with their respective configuration levels.

Appl. Sci. 2022, 12, 9512 10 of 20

In terms of variables, A is the number of neurons in the first hidden layer; B is the
number of neurons in the second hidden layer; C is the momentum constant, which allows
the stabilization of the updating of each of the synaptic weights taking into account the sign
of the gradient; D is the learning rate, which allows us to define the cost that the gradient
has in updating a weight because the increase or decrease in the synaptic weight is related
to the magnitude of the proposed value, so it may or may not affect the convergence of the
MSE, causing instability and divergence [47]. X is the initial set of weights, Y is the size in
proportions of the dataset, and Z is the random selection from the training and testing set.

Table 3. Design and noise variables.

Variables Level 1 Level 2 Level 3

A L1 L2 L3

B L1 L2 L3

C L1 L2 L3

D L1 L2 L3

X L1 L2 L3

Y L1 L2 L3

Z L1 L2 L3

Once the variables and their respective levels were chosen, a suitable OA was chosen
to carry out the training sessions. An OA is described as Lr(Sc), where r represents the
number of rows, c represents the number of columns, and s represents the number of
levels in each of the columns. In this experiment, the columns of the OA represent the
parameters to be optimized, and the rows represent the tests carried out by combining the
three proposed levels.

2.3.2. Experimentation Stage

The success in this stage depends on an adequate choice of the OA because, in this
process, a series of calculations are carried out in order to evaluate the interaction and the
effects produced between the variables involved through a reduced number of experiments.
For the implementation of a robust design, Taguchi suggests the use of a configuration in
two crossed OAs with L9

(
34) and L4

(
32), as shown below in Table 4.

Table 4. Recording of responses in trials using crossed OAs with L9
(
34) and L4

(
32) configurations.

Trial No. A B C D G1 G2 G3 G4 Average S/N

1 1 1 1 1 Resp1,1 Resp2,1 Resp3,1 Resp4,1 Avg1 SN1

2 1 2 2 2 Resp1,2 Resp2,2 Resp3,2 Resp4,2 Avg2 SN2

3 1 3 3 3 Resp1,3 Resp2,3 Resp3,3 Resp4,3 Avg3 SN3

4 2 1 2 3 Resp1,4 Resp2,4 Resp3,4 Resp4,4 Avg4 SN4

5 2 2 3 1 Resp1,5 Resp2,5 Resp3,5 Resp4,5 Avg5 SN5

6 2 3 1 2 Resp1,6 Resp2,6 Resp3,6 Resp4,6 Avg6 SN6

7 3 1 3 2 Resp1,7 Resp2,7 Resp3,7 Resp4,7 Avg7 SN7

8 3 2 1 3 Resp1,8 Resp2,8 Resp3,8 Resp4,8 Avg8 SN8

9 3 3 2 1 Resp1,9 Resp2,9 Resp3,9 Resp4,9 Avg9 SN9

Appl. Sci. 2022, 12, 9512 11 of 20

2.3.3. Analysis Stage

Through the S/N ratio, a quantitative evaluation is carried out, where the mean and
the variation in the responses measured by the ANN with different design parameters are
considered. The unit of measure is the decibel, and the formula is described as follows:

S/N = 10·log10(MSD) (10)

In this case, MSD is the root mean square deviation in the ANN performance. The
best topology is considered when more signals and less noise are obtained; therefore, a
high S/N ratio at this stage allows us to identify the best design values in the BPANN with
the help of statistical analysis with the JMP software.

2.3.4. Confirmation Stage

In this stage, the value of the robustness measure is obtained based on the specifications
and optimal conditions of the design. A confirmation experiment is carried out using the
optimal design conditions that were previously chosen, in order to verify if the calculated
value is close to the value predicted by the BPANN.

3. Results

In this work, the RDANN methodology was used for the optimal selection of the
structural parameters in a feed-forward backpropagation network, known as BPNN, to
find the solution to the inverse kinematics in a Quetzal robot. For the BPNN training,
the “resilient backpropagation” training algorithm and mse = 1E−4 were selected. In
accordance with the RDANN methodology, an OA corresponding to the design and noise
variables, respectively, was implemented in configurations L9

(
34) and L4

(
32) to determine

the response to the tests during the 36 training sessions carried out.
The results obtained after applying the RDANN methodology are presented in the

next sections.

3.1. Planning Stage

Table 5 shows the design and noise variables with their respective assigned values for
the different levels proposed during the experiment.

Table 5. Design and noise variables with their assigned levels.

Variables Level 1 Level 2 Level 3

A 80 100 120

B 30 60 90

C 0.1 0.2 0.3

D 0.01 0.1 0.2

X Set1 Set2 Set3

Y 7:3 8:2 9:1

Z Tr1/Tst1 Tr2/Tst2 Tr3/Tst3

The values for the three levels established in each of the tests regarding the number of
neurons for the first hidden layer were A = 80, 100, and 120, respectively; for the number
of neurons in the second hidden layer, they were B = 30, 60, and 90, respectively; for the
constant momentum, they were C = 0.1, 0.2, and 0.3, respectively; and for the learning
rate, they were D = 0.01, 0.1, and 0.2, respectively.

The values for the initial sets of weights X were randomly determined at all three
levels. The values set in the proportions of the dataset for level 1 were Y = 70% training
and 30% testing; for level 2, they were 80% and 20%, and for level 3, they were 90% and
30%, respectively; finally, the random selection of the training and testing set for level

Appl. Sci. 2022, 12, 9512 12 of 20

1 was Z = Training1/Test; for level 2, it was Training2/Test2, and for level 3, it was
Training3/Test3.

3.2. Experimentation Stage

A total of 36 training sessions were carried out by implementing the OA in L9
(
34) and

L4
(
32) configurations, where the network architectures were trained and tested, obtaining

the results shown in Table 6.

Table 6. Responses measured during the implementation of the crossed OA.

Trial No. G1 G2 G3 G4 Average S/N

1 0.0825789 0.08150994 0.08200742 0.08102935 0.0817814 −41.797957

2 0.0651544 0.06734919 0.06683558 0.0666657 0.0665012 −36.960574

3 0.0568985 0.05618239 0.05984281 0.05778079 0.0576761 −31.219083

4 0.074502 0.06984874 0.07645081 0.07592863 0.0741825 −27.856466

5 0.0618532 0.06118982 0.06071765 0.05706847 0.0602073 −28.973660

6 0.0525082 0.05237245 0.05415778 0.05406061 0.0532747 −34.832469

7 0.070358 0.06704642 0.06866684 0.07036554 0.0691092 −32.761969

8 0.0549823 0.04965534 0.05378926 0.05494074 0.0533419 −26.523630

9 0.0465695 0.04604935 0.04942250 0.05026433 0.0480764 −27.302767

For the analysis of the S/N ratio, an analysis of variance (ANOVA) was performed
using the statistical software program JMP. The S/N ratio and the mean value of the
MSE are two of the specific criteria for determining the appropriate levels in the variables
involved in network design, and their choice is determined through a series of validation
procedures carried out in the next stage, as described below.

3.3. Analysis Stage

Figure 7a shows the best network topology obtained through the normal profile;
Figure 7b describes the best topology through the desirable profile, and Figure 7c describes
the best network topology using the maximized desirable profile. The three network
profiles were obtained through statistical analysis in the JMP software to identify the
optimal values in each of the proposed profiles. After performing the analysis of the S/N
ratio, the values in which the levels for each of the variables involved were nearest to the
average and S/N ratio red lines on the X axis were chosen, which are described in Table 7.

Table 7. Best design values with normal desirable and maximized profiles.

Profile A B C D

Normal 80 30 0.01 0.1

Desirable 80 30 0.01 0.1

Maximized 100 30 0.2 0.2

For the choice of the best network profile obtained, three training sessions were carried
out for each of the three profiles in order to contrast them based on the size of the training
and test data and their generalization capacity, estimating the percentage of correct answers
in the prediction of the data, obtaining the results shown in Table 8.

The best topology corresponds to the maximized desirable profile, with the percentage
of obtained hits being 87.71% with a margin of error of less than 5% in the tests. Once the best
topology was chosen, the statistical tests of correlation and chi-square were performed, showing
the best and worst prediction of the network, as shown in Figures 8 and 9, respectively.

Appl. Sci. 2022, 12, 9512 13 of 20

Figure 7. S/N analysis for the determination of the optimal parameters of the network: (a) normal
profile; (b) desirability profile; (c) maximized desirability profile.

Appl. Sci. 2022, 12, 9512 14 of 20

Table 8. Comparison of density and percentage of hits in the three best profiles.

Training Profile Density Training time
(m)

% of Hits
χ2<5%

1 Normal 70:30 13.2649 85.72

2 Normal 80:20 16.1627 85.83

3 Normal 90:10 18.3473 86.40

4 Desirable 70:30 13.4989 87.39

5 Desirable 80:20 16.1765 85.32

6 Desirable 90:10 18.5385 85.50

7 Maximized 70:30 16.3393 87.71

8 Maximized 80:20 17.7275 86.30

9 Maximized 90:10 19.5463 86.86

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 21

Figure 8. Trajectory of the manipulator with the best prediction and correlation test: (a) best pre-
dicted values; (b) correlation test.

(a)

(b)

Figure 9. Trajectory of the manipulator with the worst prediction and correlation test: (a) worst
predicted values; (b) correlation test.

(b)

Figure 8. Trajectory of the manipulator with the best prediction and correlation test: (a) best predicted
values; (b) correlation test.

Appl. Sci. 2022, 12, 9512 15 of 20

Figure 9. Trajectory of the manipulator with the worst prediction and correlation test: (a) worst
predicted values; (b) correlation test.

To determine if the predicted data are statistically reliable, the cross-validation method
was used by splitting the training and testing datasets. The set was split into five subsets of
the same size, as shown in Figure 10. The validation subset in each training session was
used to measure the generalization error, in other words, the misclassification rate of the
model with data dissimilar from those previously applied during the training procedure.
The cross-validation procedure was implemented on the training and testing datasets, and
the average value of MSE and the standard deviation obtained were very close to those
obtained in the confirmation stage [48].

Table 9 shows the results obtained in the cross-validation process, where it is observed
that the average training value was equal to 17.5099, the average percentage of hits con-
sidering an error of less than 5% was equal to 87.86%, and the average value of MSE was
equal to 17.5099, with standard deviations of 1.5848, 1.8974, and 0.0059, respectively.

Appl. Sci. 2022, 12, 9512 16 of 20

Figure 10. Cross-validation model.

Table 9. Cross-validation results.

Profile Training Time (m) % of Hits χ2<5% MSE

1 14.6750 85.17 0.0757

2 18.2350 86.95 0.0690

3 18.2165 87.93 0.0669

4 18.2044 89.75 0.0633

5 18.2189 89.51 0.0603
Average 17.5099 87.86 0.0670

Standard deviation 1.5848 1.8974 0.0059

In relation to the three profiles analyzed, the choice of the appropriate levels for
the structural parameters of the best network topology were those corresponding to the
maximized desirable profile with 100 and 30 neurons, respectively, a momentum of 0.2,
and a learning rate of 0.2.

Figure 11 shows the layered surface diagram of the neural network used in this work.
The training was performed using MATLAB software. The ANN was composed of an
input layer with 100 neurons, a hidden layer with 30 neurons, and an output layer with
6 neurons. All three layers used the activation function. The training algorithm used to
adjust the weighting of the synaptic weights was resilient backpropagation.

Figure 11. Best maximized desirable topology used in this study.

3.4. Implementation Results Compared with Simulation Results

Table 10 shows the measurement of the 10 trajectories predicted by the Quetzal
manipulator and the error generated in comparison with the calculated trajectory. To
analyze the data, 10 trajectories were chosen from the training dataset, and the simulation
of each of them was carried out in order to obtain the distance traveled from the initial
position to the final point.

Appl. Sci. 2022, 12, 9512 17 of 20

Table 10. Trajectory comparison.

Trajectory Calculated Final
Position (cm) Calculated Measure Predicted Position (cm) Measured

Distance (cm) Error %

6 [−0.93, −3.81, 59.34] 4.9862 [5.51, 4.22, 58.91] 5.2 4.2

13 [−4.56, −19.98, 52.47] 22.78 [−8.78, −17.90, 52.97] 22.5 1.2

161 [−11.32, −35.76, 22] 55.13 [−27.17, −25.88, 18.96] 54.5 1.1

216 [−22.27, −26.95, 28] 48.97 [−27.18, −23.14, 28] 51.5 5.1

236 [−14.97, −25.94, 25.77] 47.33 [−28.22, −13.01, 20] 51 7.7

317 [14.32, −27.56, 8.46] 62.25 [14.58, −24.46, 4.94] 63.5 2

663 [4.36, −18.87, 46.35] 25.16 [5.12, −19.25, 46.33] 26 3.3

988 [30.75, −12.49, 33.98] 43.70 [26.63, −20.93, 29.13] 45.5 4.1

1025 [−12.41, 1.87, 57.09] 13.63 [−11.11, 4.18, 58.39] 14 2.7

1216 [23.41, 24.49, 37.90] 41.82 [19.59, 28.94, 34.78] 43.5 4

Average 3.5

The greatest error observed was in trajectory number 236, with a value of 7.7% com-
pared with the calculated one, while for trajectory number 6, the error was 1.1% compared
with the calculated one. A mean error of 3.5% was obtained for the implementation of the
10 physically realized trajectories using the low-cost (approximately USD 1500) 3D-printed
Quetzal manipulator.

3.5. Comparative Analysis

Table 11 shows the values obtained in the design of the optimized BPNN in comparison
with the BPNN based on trial and error and other methods used in the optimization of the
structural parameters in ANN. As can be seen, the conventional BPNN method based on
trial and error shows a greater difficulty in determining the optimal parameters, whereas
the optimized BPNN results in a shorter time in the training process than the other methods;
in addition, it involves noise parameters that are necessary to generate greater robustness
in the network design.

Table 11. Comparison of results with other methods.

Method Iterations Training Time Total Tested Networks Prediction Error

BPNN trial and error Often millions Several hours 100 in several hours Undetermined

PSO conventional [49] 5000 Not specified 10 0.00913

PSO [11] 100 03:51:38 10 in 39 h 0.0456

This study 10,000 00:17:30 36 in 178 min 0.0171

4. Conclusions and Discussion

Various approaches and powerful learning algorithms of great value have been in-
troduced in recent decades; however, the integration of the various approaches in ANN
optimization has allowed researchers to improve performance and generalizability in
ANNs. The results of this work revealed that the proposed systematic and experimental ap-
proach is a useful alternative for the robust design of ANNs since it allows simultaneously
considering the design and the noise variables, incorporating the concept of robustness in
the design of ANNs. The RDANN methodology used in this work was initially proposed in
the field of neutron dosimetry, so it was adapted for implementation in the field of robotics,
allowing us to improve the performance and generalization capacity in an ANN to find the
solution to the inverse kinematics in the Quetzal manipulator.

Appl. Sci. 2022, 12, 9512 18 of 20

The time spent during the network design process was significantly reduced compared
with the conventional methods based on trial and error. In the methods that are generally
proposed by the previous experience of the researcher, the design and modeling of the
network can take from several days to a few weeks or even months to test the different
ANN architectures, which can lead to a relatively poor design. The use of the RDANN
methodology in this study allowed the network design to be carried out in less time, with
approximately 13 h of training, due to the orthogonal arrangement corresponding to the 36
training sessions performed using a conventional AMD Ryzen 7 5700 series processor with
an integrated graphics card.

Depending on the complexity of the problem, the use of this methodology allows
handling times ranging from minutes to hours to determine the best robustness parameters
in the network architecture. Therefore, it is possible to streamline the process and reduce
efforts, with a high degree of precision in network performance. The use of the RDANN
methodology allowed the analysis of the interaction between the values in the design
variables that were involved, in order to consider their effects on network performance,
thus allowing a reduction in the time and effort spent in the modeling stage and speeding
up the selection and interpretation of the optimal values in the structural parameters of the
network. The quality of the data in the training sets, without a doubt, can significantly help
to increase the performance, generalization capacity, and precision of the results obtained.
Although the proposed method was implemented and tested in a low-cost manipulator in
this study, in future work, we plan to implement it in an industrial-type robot controller.
The implementation of the proposed method in parallel robotic manipulators, where the
solution of the kinematics is more complex, is also considered.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app12199512/s1, dataset: dataSetQuetzalRobot.mat, code: workspaceQuetzal.m.

Author Contributions: Conceptualization, T.I.-P. and M.d.R.M.-B.; methodology, J.M.O.-R. and
T.I.-P.; software, H.G.-R. and H.A.G.-O.; validation, H.G.-R. and T.I.-P.; formal analysis, J.M.O.-R.
and M.d.R.M.-B.; investigation, T.I.-P.; resources, F.O.-D. and H.A.G.-O.; data curation, H.G.-R. and
H.A.G.-O.; writing—original draft preparation, T.I.-P.; writing—review and editing, T.I.-P. and F.O.-D.;
visualization, H.G.-R. and H.A.G.-O.; supervision, M.d.R.M.-B.; project administration, M.d.R.M.-B.;
funding acquisition, J.M.O.-R. and T.I.-P. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by the Instituto Politécnico Nacional (IPN) under grants number
CPE/COTEBAL/14/2021, the Consejo Nacional de Ciencia y Tecnología (CONACYT-BECAS) under
grants number 431101/498318 and the Consejo Zacatecano de Ciencia, Tecnología e Innovación (COZCyT).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by the Instituto Politécnico Nacional (IPN) under
grants number CPE/COTEBAL/14/2021, the Consejo Nacional de Ciencia y Tecnología (CONACYT-
BECAS) under grants number 431101/498318 and the Consejo Zacatecano de Ciencia, Tecnología e
Innovación (COZCyT). The authors gratefully acknowledge these support agencies. We sincerely
thank the people who provided support and advice for this paper, as well as the reviewers for their
comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/app12199512/s1
https://www.mdpi.com/article/10.3390/app12199512/s1

Appl. Sci. 2022, 12, 9512 19 of 20

References
1. Khaw, J.F.C.; Lim, B.S.; Lim, L.E.N. Optimal Design of Neural Networks Using the Taguchi Method. Neurocomputing 1995, 7,

225–245. [CrossRef]
2. Rankovic, N.; Rankovic, D.; Ivanovic, M.; Lazic, L. A New Approach to Software Effort Estimation Using Different Artificial

Neural Network Architectures and Taguchi Orthogonal Arrays. IEEE Access 2021, 9, 26926–26936. [CrossRef]
3. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. In Advances in Neural

Information Processing Systems 25 (NIPS 2012); Pereira, F., Burges, C.J., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2012; Volume 25.

4. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
5. Kosarac, A.; Mladjenovic, C.; Zeljkovic, M.; Tabakovic, S.; Knezev, M. Neural-Network-Based Approaches for Optimization of

Machining Parameters Using Small Dataset. Materials 2022, 15, 700. [CrossRef] [PubMed]
6. Teslyuk, V.; Kazarian, A.; Kryvinska, N.; Tsmots, I. Optimal Artificial Neural Network Type Selection Method for Usage in Smart

House Systems. Sensors 2021, 21, 47. [CrossRef]
7. Ortiz-Rodríguez, J.M.; Martínez-Blanco, M.d.R.; Viramontes, J.M.C.; Vega-Carrillo, H.R. Robust Design of Artificial Neural

Networks Methodology in Neutron Spectrometry. In Artificial Neural Networks; Suzuki, K., Ed.; IntechOpen: Rijeka, Croatia, 2013.
8. Zajmi, L.; Ahmed, F.Y.H.; Jaharadak, A.A. Concepts, Methods, and Performances of Particle Swarm Optimization, Backpropaga-

tion, and Neural Networks. Appl. Comput. Intell. Soft Comput. 2018, 2018, 9547212. [CrossRef]
9. Sun, W.; Huang, C. A Carbon Price Prediction Model Based on Secondary Decomposition Algorithm and Optimized Back

Propagation Neural Network. J. Clean. Prod. 2020, 243, 118671. [CrossRef]
10. Huang, D.; Wu, Z. Forecasting Outpatient Visits Using Empirical Mode Decomposition Coupled with Back-Propagation Artificial

Neural Networks Optimized by Particle Swarm Optimization. PLoS ONE 2017, 12, e0172539. [CrossRef]
11. Gaxiola, F.; Melin, P.; Valdez, F.; Castro, J.R.; Castillo, O. Optimization of Type-2 Fuzzy Weights in Backpropagation Learning for

Neural Networks Using GAs and PSO. Appl. Soft Comput. 2016, 38, 860–871. [CrossRef]
12. Huang, H.-X.; Li, J.-C.; Xiao, C.-L. A Proposed Iteration Optimization Approach Integrating Backpropagation Neural Network

with Genetic Algorithm. Expert Syst. Appl. 2015, 42, 146–155. [CrossRef]
13. Amirsadri, S.; Mousavirad, S.J.; Ebrahimpour-Komleh, H. A Levy Flight-Based Grey Wolf Optimizer Combined with Back-

Propagation Algorithm for Neural Network Training. Neural Comput. Appl. 2018, 30, 3707–3720. [CrossRef]
14. Li, S.; Zhang, Y.; Jin, L. Kinematic Control of Redundant Manipulators Using Neural Networks. IEEE Trans. Neural Netw. Learn.

Syst. 2017, 28, 2243–2254. [CrossRef]
15. Gao, R. Inverse Kinematics Solution of Robotics Based on Neural Network Algorithms. J. Ambient Intell. Humaniz. Comput. 2020,

11, 6199–6209. [CrossRef]
16. Kramar, V.; Kramar, O.; Kabanov, A. An Artificial Neural Network Approach for Solving Inverse Kinematics Problem for an

Anthropomorphic Manipulator of Robot SAR-401. Machines 2022, 10, 241. [CrossRef]
17. Šegota, S.B.; And̄elić, N.; Mrzljak, V.; Lorencin, I.; Kuric, I.; Car, Z. Utilization of Multilayer Perceptron for Determining the

Inverse Kinematics of an Industrial Robotic Manipulator. Int. J. Adv. Robot. Syst. 2021, 18, 1729881420925283. [CrossRef]
18. Bai, Y.; Luo, M.; Pang, F. An Algorithm for Solving Robot Inverse Kinematics Based on FOA Optimized BP Neural Network. Appl.

Sci. 2021, 11, 7129. [CrossRef]
19. Jiang, G.; Luo, M.; Bai, K.; Chen, S. A Precise Positioning Method for a Puncture Robot Based on a PSO-Optimized BP Neural

Network Algorithm. Appl. Sci. 2017, 7, 969. [CrossRef]
20. Malik, A.; Lischuk, Y.; Henderson, T.; Prazenica, R. A Deep Reinforcement-Learning Approach for Inverse Kinematics Solution of

a High Degree of Freedom Robotic Manipulator. Robotics 2022, 11, 44. [CrossRef]
21. Malik, A.; Henderson, T.; Prazenica, R. Multi-Objective Swarm Intelligence Trajectory Generation for a 7 Degree of Freedom

Robotic Manipulator. Robotics 2021, 10, 127. [CrossRef]
22. Hassan, A.A.; El-Habrouk, M.; Deghedie, S. Inverse Kinematics of Redundant Manipulators Formulated as Quadratic Program-

ming Optimization Problem Solved Using Recurrent Neural Networks: A Review. Robotica 2020, 38, 1495–1512. [CrossRef]
23. Zhang, L.; Xiao, N. A Novel Artificial Bee Colony Algorithm for Inverse Kinematics Calculation of 7-DOF Serial Manipulators.

Soft Comput. 2019, 23, 3269–3277. [CrossRef]
24. Bourbonnais, F.; Bigras, P.; Bonev, I.A. Minimum-Time Trajectory Planning and Control of a Pick-and-Place Five-Bar Parallel

Robot. IEEEASME Trans. Mechatron. 2015, 20, 740–749. [CrossRef]
25. Arboretti, R.; Ceccato, R.; Pegoraro, L.; Salmaso, L. Design of Experiments and Machine Learning for Product Innovation: A

Systematic Literature Review. Qual. Reliab. Eng. Int. 2022, 38, 1131–1156. [CrossRef]
26. Ou, Z.; Zhang, M.; Qin, H. Tripling of Fractional Factorial Designs. J. Stat. Plan. Inference 2019, 199, 151–159. [CrossRef]
27. Rahman, M.A.; Muniyandi, R.c.; Albashish, D.; Rahman, M.M.; Usman, O.L. Artificial Neural Network with Taguchi Method for

Robust Classification Model to Improve Classification Accuracy of Breast Cancer. PeerJ Comput. Sci. 2021, 7, e344. [CrossRef]
[PubMed]

28. Manni, A.; Saviano, G.; Bonelli, M.G. Optimization of the ANNs Predictive Capability Using the Taguchi Approach: A Case
Study. Mathematics 2021, 9, 766. [CrossRef]

http://doi.org/10.1016/0925-2312(94)00013-I
http://doi.org/10.1109/ACCESS.2021.3057807
http://doi.org/10.3390/ma15030700
http://www.ncbi.nlm.nih.gov/pubmed/35160646
http://doi.org/10.3390/s21010047
http://doi.org/10.1155/2018/9547212
http://doi.org/10.1016/j.jclepro.2019.118671
http://doi.org/10.1371/journal.pone.0172539
http://doi.org/10.1016/j.asoc.2015.10.027
http://doi.org/10.1016/j.eswa.2014.07.039
http://doi.org/10.1007/s00521-017-2952-5
http://doi.org/10.1109/TNNLS.2016.2574363
http://doi.org/10.1007/s12652-020-01815-4
http://doi.org/10.3390/machines10040241
http://doi.org/10.1177/1729881420925283
http://doi.org/10.3390/app11157129
http://doi.org/10.3390/app7100969
http://doi.org/10.3390/robotics11020044
http://doi.org/10.3390/robotics10040127
http://doi.org/10.1017/S0263574719001590
http://doi.org/10.1007/s00500-017-2975-y
http://doi.org/10.1109/TMECH.2014.2318999
http://doi.org/10.1002/qre.3025
http://doi.org/10.1016/j.jspi.2018.06.002
http://doi.org/10.7717/peerj-cs.344
http://www.ncbi.nlm.nih.gov/pubmed/33816995
http://doi.org/10.3390/math9070766

Appl. Sci. 2022, 12, 9512 20 of 20

29. Zhang, Y.; Guo, D.; Li, Z. Common Nature of Learning Between Back-Propagation and Hopfield-Type Neural Networks for
Generalized Matrix Inversion With Simplified Models. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 579–592. [CrossRef]
[PubMed]

30. Alebooyeh, M.; Urbanic, R.J. Neural Network Model for Identifying Workspace, Forward and Inverse Kinematics of the 7-DOF
YuMi 14000 ABB Collaborative Robot. IFAC PapersOnLine 2019, 52, 176–181. [CrossRef]

31. Köker, R. A Genetic Algorithm Approach to a Neural-Network-Based Inverse Kinematics Solution of Robotic Manipulators Based
on Error Minimization. Inf. Sci. 2013, 222, 528–543. [CrossRef]

32. Volinski, A.; Zaidel, Y.; Shalumov, A.; DeWolf, T.; Supic, L.; Tsur, E.E. Data-Driven Artificial and Spiking Neural Networks for
Inverse Kinematics in Neurorobotics. Patterns 2022, 3, 100391. [CrossRef]

33. Fang, G.; Tian, Y.; Yang, Z.-X.; Geraedts, J.M.P.; Wang, C.C.L. Efficient Jacobian-Based Inverse Kinematics With Sim-to-Real
Transfer of Soft Robots by Learning. IEEEASME Trans. Mechatron. 2022, 1–11, in press. [CrossRef]

34. Phuoc, L.M.; Martinet, P.; Lee, S.; Kim, H. Damped Least Square Based Genetic Algorithm with Ggaussian Distribution of
Damping Factor for Singularity-Robust Inverse Kinematics. J. Mech. Sci. Technol. 2008, 22, 1330–1338. [CrossRef]

35. Köker, R.; Çakar, T. A Neuro-Genetic-Simulated Annealing Approach to the Inverse Kinematics Solution of Robots: A Simulation
Based Study. Eng. Comput. 2016, 32, 553–565. [CrossRef]

36. Qie, X.; Kang, C.; Zong, G.; Chen, S. Trajectory Planning and Simulation Study of Redundant Robotic Arm for Upper Limb
Rehabilitation Based on Back Propagation Neural Network and Genetic Algorithm. Sensors 2022, 22, 4071. [CrossRef]

37. Liu, R.; Liu, C. Human Motion Prediction Using Adaptable Recurrent Neural Networks and Inverse Kinematics. IEEE Control
Syst. Lett. 2021, 5, 1651–1656. [CrossRef]

38. Reinhart, R.F.; Steil, J.J. Reaching Movement Generation with a Recurrent Neural Network Based on Learning Inverse Kinematics
for the Humanoid Robot ICub. In Proceedings of the 2009 9th IEEE-RAS International Conference on Humanoid Robots, Paris,
France, 7–10 December 2009; pp. 323–330.

39. Yiyang, L.; Xi, J.; Hongfei, B.; Zhining, W.; Liangliang, S. A General Robot Inverse Kinematics Solution Method Based on
Improved PSO Algorithm. IEEE Access 2021, 9, 32341–32350. [CrossRef]

40. Ghosh, A.; Singh, O.; Ray, A.K. Inverse Kinematic Solution of a 7 DOF Robotic Manipulator Using Boundary Restricted Particle
Swarm Optimization. IFAC PapersOnLine 2022, 55, 101–105. [CrossRef]

41. Wang, D.; Wu, J.; Wang, L.; Liu, Y. A Postprocessing Strategy of a 3-DOF Parallel Tool Head Based on Velocity Control and Coarse
Interpolation. IEEE Trans. Ind. Electron. 2017, 65, 6333–6342.

42. Larrañaga, A. 3D Printable Robotic Arm. Available online: https://github.com/AngelLM (accessed on 5 July 2022).
43. Denavit, J.; Hartenberg, R.S. A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices. J. Appl. Mech. 1955, 22,

215–221. [CrossRef]
44. Corke, P.I.; Khatib, O. Robotics, Vision and Control: Fundamental Algorithms in MATLAB.; Springer: Berlin/Heidelberg, Germany,

2011; Volume 73, ISBN 3-642-20144-X.
45. Mostafa, S.A.; Ahmad, I.A. Remainder Linear Systematic Sampling with Multiple Random Starts. J. Stat. Theory Pract. 2016, 10,

824–851. [CrossRef]
46. Martínez-Blanco, M.d.R.; Ibarra-Pérez, T.; Olivera-Domingo, F.; Ortiz-Rodríguez, J.M. Optimization of Training Data Set Based on

Linear Systematic Sampling to Solve the Inverse Kinematics of 6 DOF Robotic Arm with Artificial Neural Networks. In Frontiers
of Data and Knowledge Management for Convergence of ICT, Healthcare, and Telecommunication Services; Paul, S., Paiva, S., Fu, B., Eds.;
Springer International Publishing: Cham, Switzerland, 2022; pp. 85–112. ISBN 978-3-030-77558-2.

47. Gurney, K. An Introduction to Neural Networks, 1st ed.; CRC Press: Boca Raton, FL, USA, 1997; ISBN 1-315-27357-8.
48. Paneiro, G.; Rafael, M. Artificial Neural Network with a Cross-Validation Approach to Blast-Induced Ground Vibration Propaga-

tion Modeling. Undergr. Space 2021, 6, 281–289. [CrossRef]
49. Dereli, S.; Köker, R. IW-PSO Approach to the Inverse Kinematics Problem Solution of a 7-DOF Serial Robot Manipulator. Sigma J.

Eng. Nat. Sci. 2018, 36, 77–85.

http://doi.org/10.1109/TNNLS.2013.2238555
http://www.ncbi.nlm.nih.gov/pubmed/24808379
http://doi.org/10.1016/j.ifacol.2019.10.019
http://doi.org/10.1016/j.ins.2012.07.051
http://doi.org/10.1016/j.patter.2021.100391
http://doi.org/10.1109/TMECH.2022.3178303
http://doi.org/10.1007/s12206-008-0427-4
http://doi.org/10.1007/s00366-015-0432-z
http://doi.org/10.3390/s22114071
http://doi.org/10.1109/LCSYS.2020.3042609
http://doi.org/10.1109/ACCESS.2021.3059714
http://doi.org/10.1016/j.ifacol.2022.04.017
https://github.com/AngelLM
http://doi.org/10.1115/1.4011045
http://doi.org/10.1080/15598608.2016.1231094
http://doi.org/10.1016/j.undsp.2020.03.002

	Introduction
	Materials and Methods
	Kinematic Analysis
	Training and Testing Datasets
	Robust Design Methodology
	Planning Stage
	Experimentation Stage
	Analysis Stage
	Confirmation Stage

	Results
	Planning Stage
	Experimentation Stage
	Analysis Stage
	Implementation Results Compared with Simulation Results
	Comparative Analysis

	Conclusions and Discussion
	References

