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Featured Application: Improving garment selection without manual measuring for made-to-order
sports garments.

Abstract: As sports garments are stretchable, different sizing tables are used than for retail clothing.
However, customers measuring themselves leads to errors and unsatisfaction, since these customized
branded garments cannot be returned. Using fitting sets avoids this, but this is not always feasible,
especially in an online retail environment. Therefore, this research aims to use descriptive measures—
parameters that do not require manual measuring because they are readily known by heart by almost
any customer—to predict users’ body measurements, which can, thus, be used by customers to
determine the size of their sports garment from a sizing chart. To validate if these input measures
are sufficient to predict the correct size, three prediction methods are used and compared with
baseline manual measurements. The methods are: (i) clothing size predictions from shape models
with descriptive measures as inputs, (ii) clothing size predictions from a regression analysis, and
(iii) clothing size predictions from a shape model based on extensive 3D scanned measurements as
input. The conclusion is that a regression algorithm with, as input variables, the straightforward
demographics of age, gender, stature, and weight is more accurate than the algorithm with the same
inputs but with a shape model behind it. Moreover, chest and hip circumferences have an intraclass
correlation coefficient rating above 0.9 and are, thus, suited for online retail of stretchable garments,
such as cycling clothes. As validated by end-users, the regression predictions are shown to agree
with preferred garment sizes of the participants, within the natural variation of personal preferences.

Keywords: shape model; regression model; customer-tailored sports garment design

1. Introduction

The ideal fit of sports apparel depends on the desired properties, such as aerodynamics,
comfort, compression, ventilation, and so on. In cycling, for example, both the comfort
and aerodynamics take a significant role in the design of the garment [1,2]. Thus, an outfit
should wrap around the person’s body as tightly as possible without overstretching, and
thus, without inducing too much pressure on the body. In this research, a collaboration
with sports garment producer Bioracer has given extensive insight in their design rules
and aims within the design and development team as well as sales strategies. This paper
will use their methods to construct sizing tables and evaluate the fit for cycling garments,
without revealing confidential insights. A simple rule of thumb used in this research is that
optimal pressure is approximately between 0 and 20% of isotropic stretch (received as a
guide by the garment designers). At this stretch, the garment does not put more than 5.0 N
of pressure on the body and is never loose. In practice, however, the pressure should also be
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adjusted per area of the body and preference of the end user. As an example, the pressure
should be lower on the chest and neck area, since this may hinder breathing. However,
on the arms and legs, a higher pressure can be helpful to streamline the cyclist, improve
posture, and, thus, minimize drag.

Currently, when buying new outfits of the Bioracer brand assortment, amateur cycling
teams request a sample set of clothing sizes so that each customer of the team can fit all
sizes [1]. In practice, this is often done by hosting one or multiple fitting moments, during
which the entire team comes together for test fits. Then, everyone decides what to buy
through a personalized online store page (i.e., personalized for the team), or the team lead
collects all sizes and places the group order. Consequently, all team members will receive
clothing with the same graphics and of the same type, but in their individual sizes. This
method makes sure each customer will receive clothing in the correct size; however, this
comes with a logistical expense and is not viable in all circumstances, nor is it useful for
individual customers. Given the increase in online shopping and the potential of digital
solutions, a new method is needed to keep up with the market [3,4]. In practice, the only
commercial variant known to the authors is the method of Bivolino [5], which focuses on
blouses using a larger set of input parameters to determine clothing size.

In the case study within this article, the clothing is customized for specific cycling
teams, and therefore, it is impossible to return the clothing items to the manufacturer
without the cost of remaking them. Unfortunately, customers that are unable to attend
the fitting session must often decide based on previous knowledge of their optimal size,
accept the risk of buying badly fitting garments, or take inaccurate measurements of their
body. For this latter purpose, many garment brands provide a lookup table on their online
store [6–8], whereby the subject should measure themselves at a couple of points (e.g., chest,
waist, and hip circumference) and then approximate their correct size. However, some
customers assume they know their sizes based on confection clothing and tend to not use
this table correctly. Moreover, this table often varies per clothing piece, style, and type.
Thus, sizes cannot be deduced from regular clothing sizes known from confection garments,
or even from other garments from the same brand.

1.1. Anthropometrics for Customer-Tailored Design

Traditionally, the collection of anthropometric measures was first done in one dimen-
sion (1D) by means of calipers to precisely determine the length or width of certain body
parts [9–11]. In addition, a measuring tape allowed to assess the circumferences of, for
example, the hips or waist. Such data were gathered in 1D anthropometric databases, such
as DINED [12] and DINBelg [13], facilitating the comparison of anthropometric data from
different studies.

Although few dimensions result in an easy interpretation of the data, there was
also a need for more detailed models with greater accuracy, which offer added value to
designers that want to include the fitting requirements of their products [11]. Therefore,
new techniques and tools focused on 3D geometry to include more details of the human
body. Initially, CT scans were used to capture, for example, the variety of the human scalp
or head shapes without the interference of hair [11,14]. Of course, disadvantages, such
as the required large sample size, feasibility, privacy, and health, had to be considered.
Therefore, 3D body scans have also been used to build 3D anthropometric databases, such
as the WEAR (World Engineering Anthropometry Resource) annex CAESAR database,
leading to the development of human shape models and their deployment in industrial
design [11,15].

1.1.1. Wear Database

An aid in the set goal of optimizing the fit for the mass public (mass customization
of fit) is the WEAR database (formerly known as the CAESAR database). This database
was set up two decades ago and still stands as a standard, as a collaboration between
three NATO countries (USA, the Netherland, and Italy) to collect ergonomic data about the
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general public for the development of product withing the U.S. Air force, The Society of
Automotive Engineers (SAE), and others. In contrast to previous collections and database,
Caesar was the first to collect state of the art standardized 3D scans of all the subjects,
as well as standardized measurements across continents [11]. This database of 3D scans
and measurements contains 4000+ subjects from the Netherlands, Spain, and Northern
America [15]. It includes 3D scans in a standardized pose and a list of measurements
ranging from the basic demographic parameters (e.g., age, gender, ethnicity, etc.) up to
detailed measurements taken by researchers (e.g., weight, chest girth, wrist circumference),
and so on. All measurements in the database have been recorded as defined in the ISO
7250 nomenclature [16], as well as in their final report on the project [17].

1.1.2. Shape Model

To process the massive set of 3D scanned models available in the Wear database, a
mathematical analysis should be made. One option for this is to describe the 3D shapes in
a statistical shape model (SSM) [14]. In an SSM, all shapes are aligned, such that any two
shapes can be compared point-to-point. Representing shapes as a mesh, then the collection
of all possible shapes is described as a high dimensional linear space, endowed with a
statistical distribution that indicates the probability density for each shape. In a statistical
shape model, computational techniques can be applied for, e.g., retrieving the average
model, principal component decomposition, etc. Intuitively and practically, an average
shape of the population is at the core, and per point in the model, its spatial variation
within the population is stored. Despite a shape model’s ability to accurately describe
the dataset’s shapes, it is difficult for non-specialists to interpret in- and outputs and link
models to practical use. The model houses a ton of information, but extracting specific
needed measurements is not that straightforward. Algorithms are required to match
principal components in the shape model with measurements and parameters known to
users [14].

In general, using a shape model to predict a user’s body shape is possible by combining
multiple anthropometric features as inputs and return the shape that best match these
inputs. The shape model does this for all points in the 3D mesh model, and thus, compiles
a new mesh representation. Various methods are available, depending on the needs [18].

1.2. Regression Models

In general terms, regression analysis searches the best matching relationship between
given inputs and a desired output. This relation can, depending on the method, be linear
in nature or computationally more complex. In this research, regression will be used to
model the relation between straightforward demographics, e.g., stature, weight, age, and
gender, and a set of output measurements that are used in pattern gradings to determine a
subject’s clothing size, e.g., chest circumference and hip circumference. In comparison to
the shape models, the dimension of the input and output spaces is small compared to the
thousands of data points that are used to represent a shape model. This reduces the size of
computational data, and thus, adds the possibility to make the regression nonlinear, even
with relatively few computational resources.

1.3. Research Objective

The use of shape models has proven its use in past research projects, but has mostly
been applied for designs on rigid products [14,19,20], e.g., helmets [21], glasses, EEG-
headsets [22], headphones, and masks, rather than for textile fabrics. By contrast, this
research aims to make the first attempts to provide a comparable assessment and methodol-
ogy for stretchable, deforming garments that have a different take on fit [23,24]. This article
specifically focuses on the case of cycling garments.

Based on the previously mentioned concerns, there are still great opportunities for
the optimization of the process to determine a customer’s optimal size without having to
take measurements or fit the set of clothing. In order to fill this gap, this research aims to
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predict a user’s garment sizes, by the means of enquiring commonly known parameters
(such as age, gender, weight, and stature) to predict chest and hip circumferences, the
relevant parameters for cycling garments in this case study. This is predicted through
either mathematical shape models or a simplified statistical regression model. To compare
additional input options, a 3D scanning method is added to provide additional input
measurements to the shape model prediction, thus hoping to increase accuracy with the
downside of needing physical measurements. To make statistical comparison possible,
all experiments will be compared to their manually measured circumferences that are
considered as ground truth throughout the experiment to make statistical analysis possible.
Later, the effect on garment sizes is also considered, but with the added complexity of
personal preference and personal bias, limiting the statistical insight.

In addition, an extra study has been performed to improve size predictions for female
subjects, using the bra size—another parameter that is mostly known by heart—to provide
the model with information on the body proportion.

2. Materials and Methods
2.1. Existing Shape Model

The Shape model used in this article stems from prior research [25–27]. This Shape
model is based on 901 of the most complete subjects (317 male and 484 female) from the
Dutch subset of the WEAR/CAESAR database, and is filtered based on correct posture,
complete mesh, and metadata completeness. The raw scans are processed by rigging to
determine correspondence between reference points on both the scan and a reference model.
This corrects for errors in posture, and normalizes all scans [27]. In this standardized pose,
all points are analyzed in their positional differences compared to the average reference
model. The resulting Shape model is based on linear interpolation on all 102.045 points in
the mesh model. The database used includes subjects of all ages (18 to 97), statures, body
types, and backgrounds, ranging from muscular subjects to obese samples.

The model describes an almost full body model (torso, head, arms, and legs, but no
hands or feet), but where needed, subsections of the data can be used to minimize errors
from undesired areas. Thus, despite efforts of improved rigging, oftentimes, arms or legs
are completely removed from the model, since these have the largest errors that could
stray the analysis and conclusions. The shape model holds all the information required
to predict the best matching (L2 metric) size and shape of the body that would fit within
the given specs or dimensions/parameters entered in the model. For example, providing a
user’s stature would provide the most average body shape from the model with exactly
that stature [27].

In order to predict a random test subject’s shape and parameters, the shape model
receives a list of measurements or parameters as input, and then tries to predict the best
matching size and shape of the subject to fit within these parameters. For this research, the
programmed shape model is separated for female and male subjects in the dataset and is
developed to return the predictions for 28 different pre-defined measurements [28] as a
CSV list to a plain text file and a 3D model to an .stl file containing the same 102,045 points
in a mesh, adjusted to this prediction.

Although there is pure math behind the shape models, the input measures and out-
comes are approximations in high-dimensional Hilbert space; to make these useful in
practice models are used to transform these spaces into measurement approximations.
Details on the algorithms, applications in industrial design and useful methodologies
behind shape models are build up for rigid products like EEG headsets [22].

For example, when a subject is predicted based on their stature, gender, and age, the
weight of the subject is unknown. In that case, the model takes the average, and thus, the
most probable shape out of the range of possible postures. However, models need to be
programmed to handle a specific set of input measurements, so no optional inputs are
possible in practice.
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For this research, two prediction models are defined; one that uses four input param-
eters, i.e., age, gender, stature, and weight, and one that uses the same four parameters
with an additional set of five measurements received from the Styku scan. These five
are the most accurate measurements from the Styku scanner [1], which are also present
in the shape model and feature the same definition: chest circumference, maximal hip
circumference, minimal waist circumference, bicep circumference, and neck circumference.
In theory, adding more inputs increases the accuracy of the model. However, consideration
needs to be taken to prevent overfitting of the model, and whether measurements are
defined in the exact same way as in the model [29]. Many of the measurements in Styku
are based on features that are not part of the ISO standard [16]. Each additional parameter
should increase the accuracy of the prediction a little, but the added benefit might be slim
in comparison to the added effort.

As a result of the large amount of data and resolution in the model, this process of
predicting takes around two to eight seconds depending on the processor’s abilities. These
timings do depend on the requirements and optimization in the model.

2.2. Participants

Thirty-seven (n = 37) Flemish subjects were randomly recruited to participate in
the experiment (of which 26 male and 11 female). Ten of these subjects were deemed
professional cyclists (of which six male and four female); the others were of varying levels
of fitness. The experiments took place individually over a period of one month and lasted
approximately 25 min per subject. The ethical commission reviewed the projects goals and
granted approval (17/30/345).

2.3. Materials

The following materials are required to conduct the research procedure:

- Dressing room and research room;
- A custom clothing set of the Bodyfit range of Bioracer in all sizes;
- Bioracer sizing chart, see Figure 1;
- Measuring tools: calipers, flexible ruler, and scales;
- Laptops to register all data and scans;
- Styku 3D scanner (Styku, n.d.) based on a Kinect V2 scanner and a turntable);
- Shape model of Section 3.1 (including optimal prediction parameters).
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Figure 1. Example of the sizing chart for male subjects of the professional Bodyfit garment range
with instructions on how to measure and select garments (Redrawing from [7]).

2.3.1. Clothing Set

The clothing set is based on the regular apparel garments sold by Bioracer with a
zipper on the front, but with minimal extra elements, such as pockets, zippers, or seams,
see Figure 2. To aid the scanning process, the garment has been printed with a grid pattern
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of 1 × 1 cm lines. This visually shows stretch in the fabric in both directions that can be
measured physically and registered on the scan.
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Figure 2. Custom made research garments in the standard confection sizes. The custom print consists
of a 1 × 1 cm grid of lines that aid in 3D scanning and measuring of stretch.

2.3.2. Styku 3D Scanner

The Styku scanner is a commercially available scanning system that is mainly oriented
on the fitness, health, and wellness sectors [30]. It rotates the subject on a turntable and
scans using a Microsoft Kinect V2 scanner, as seen in [31,32]. Its proprietary software
requires data input such as body weight and stature, and then scans one full rotation.
Data are processed by the proprietary software, and provides a reliable [28] an easy-to-
understand overview of common measurements on the body, as well as volume and
outline traces [30]. This setup is included as it could be a commercial cost-effective method
for receiving relatively accurate measurements with a simplified interface and mode of
operation [31,32]. Thus, it can deliver fast (around two minutes) and cheap measurements
in a retail or professional environment. However, it has the downside of requiring the
subject to be almost naked (underwear) or wearing skin-tight garment (i.e., being almost as
time consuming as fitting the real garment in the first place), and a few other restrictions
are mentioned in the literature [33–35].

2.4. Procedure

First, personal information in the form of four basic parameters was requested from
the participants: age, gender, weight, and height.

Second, the chest, waist, and hip circumferences of the participants were roughly
measured in normal clothes, in order to select a cycling outfit (pants and shirt) based on the
existing size charts from Bioracer (see Figure 1). A set was given to the participant in the
supposedly ideal size. Each participant was allowed to try all other outfit sizes in order to
determine their optimal fit according to personal preference. In addition, a validation was
done on the stretch, using the grid pattern on the outfit. In order to analyze the optimum
fitting outfit according to the design rules of Bioracer, it was necessary that as few wrinkles
as possible occurred in the worn outfit. Thus, a minimal stretch over the entire outfit was
aimed for, while keeping the outfit comfortable for the subject throughout the test. As a
consequence, for the further course of the experiment, some participants received a smaller
sized clothing to wear in comparison to their supposedly or preferred optimal size.

Third, in addition to the offered outfit, the preferred sizes of the cycling pants and
shirts that would have been handpicked by the participants were also noted.
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Fourth, based on common measurements that can be found in the WEAR database
as well as the shape model, eighteen manual measurements were conducted on the par-
ticipant wearing the cycling outfits: arm length, shoulder breadth, chest circumference,
circumference under bust, hip circumference, waist circumference minimum, waist front
length, acromion shoulder breadth, armscye circumference, biceps circumference, chest
girth, hip breadth sitting, mid lower arm circumference, neck base circumference, spine
to shoulder, tight neck circumference, waist circumference ‘at pants height’, and wrist
circumference. Measurements were done by one and the same trained researcher, to ensure
accurate measurements [36]. Anatomical landmarks and measurement methods were
followed as described in the CAESAR report [15]. These values were used as reference in
this study to compare all predicted measurements with. All measurements were taken in
order, twice in a row, and in case of a notable offset in both measurements, a third time
to eliminate measuring or typing errors [36]. For the measurements used in the Bioracer
sizing table, the closest corresponding Caesar equivalents are used, namely, the maximum
hip circumference, the minimal waist circumference, and the chest circumference over bust.

Fifth, wearing the outfit of the second step, two 3D scans with the Styku scanner were
taken one after the other. Two scans were used to compare the outcome of both, and, in
case of obvious variation in the data, a third scan was taken as validation (this could occur
when subjects moved throughout the scanning process). By wearing the cycling jersey, a
smooth (wrinkle-free) surface was achieved for the scan, and accurate measurements could
be achieved. Based on these 3D scans, 28 measurements of the participant were recorded
(for a complete list, see [28,30]).

2.5. Analysis

For all comparative results in this research, the manual measurements are taken
as a baseline reference to eliminate other influences and ambiguity between methods.
Comparing two methods directly with each other would lead to the issue of not knowing
what method is the accurate one and which has the offset, since in practice, both will
have their own errors. Hence, using the manually measured measurements as reference
abstracts the results from the application. Thus, the results can also be compared to other
methods and variability in clothing preference is excluded. Therefore, sometimes, extra
measurement examples are provided besides only the chest and hip circumference as an
additional insight on the accuracy of other measurement predictions. To compare the
results, a set of three statistics are selected.

First, the root mean square error (RMSE) is calculated to determine the unsigned differ-
ence between the manual measurements and the given prediction model. The RMSE is used
to indicate how far off the predictions are in comprehensible units (mm for most measures).

Second, the relative error of all errors is calculated in relation to the base measurement,
represented as percentages. With this method, the results are signed, and thus, they
provide an indication whether the result is, on average, over- or undersized compared to
the original measurements.

Third, the intraclass correlation coefficient (ICC) is determined to give an indication of
the predictability of the regression model between the input parameters and the resulting
predictions. Overall, a score above 0.75 is considered excellent, and is in this research
highlighted in all charts. Values between 0.6 and 0.75 are considered good, but for this
research, they are deemed insufficient to use. For use in a real-life commercial application,
perhaps even a bar of 0.9 should be reached to fulfil requirements. However, that depends
greatly on the circumstances and the allowed margins.

The combination of these three measures gives the best overall insight on the accuracy
and precision of the predictions. For example, for the given sports garments in this research,
where sizes in the size chart increase in steps of 6 cm, an RMSE of below this 6 cm would be
perfectly acceptable. Relative errors could point to consistent deviation in predictions that
could, thus, be improved upon by adding extra data samples or offsetting the prediction
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results. Finally, the ICC is the most used descriptive statistic method to determine the
quality of the prediction.

3. Results

This section is structured as follows: in step 1, a regression model is developed based
on data of the WEAR/CAESAR database (4094 subjects of the NL, IT, US database). In
step 2, two different (extreme) sets of input parameters are selected for the shape model,
for the comparative studies of the next step. In step 3, the use of four basic parameters as
input for both the manual measurements for the regression model and the shape model is
compared to the use of additional detailed data from the Styku scanner in the shape model.
To verify the relevance of the simplified regression model, in step 4, both the predicted size
according to the regression model and the supposedly ideal size according to the Bioracer
size chart are compared to the preferred handpicked size. See Figure 3 for a diagram of the
dataflow within the research.
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3.1. Step 1: Regression Model Development

In addition to the existing shape model (see Section 3.1), a non-linear 1D regression-
based prediction is developed as well in this research. This implies that 3D scan data would
no longer be needed in a commercial setup. This was again built upon the raw data of the
WEAR/CAESAR database; however, this time, only the metadata and measurements data
were used that were of higher quality and consumed less processing power to compile.
Because of missing data, some subjects had to be excluded, but 4194 subjects (from the
Netherlands, Spain, and Northern America) of the database remained (2083 male and
2111 female). The shape model needed both the metadata and the 3D scans to be of
good quality.

First, the dataset was split into male and female, and per set, the three input parameters
(age, stature, and weight) as well as the desired output measurements (as recorded in
the WEAR database) were gathered. Of these parameters, log and squared values were
calculated. Then, a multiple regression analysis revealed the most optimal predictive
formulae to predict the known measurement, see Table 1. The regression model was
free to leave out non relevant parameters (i.e., none of the base values, nor the log or
squared values were required to be used in the resulting formulae). This analysis gave
a list of coefficients to multiply the individual measurements with. Doing so for all of
them, and adding them together, provides the most probable prediction within these given
input parameters.
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Table 1. Non-linear regression formulae to predict chest and hip circumferences for male and female subjects.

Male chest
circumference

=

84.630845 × log(age)
−0.028169 × weight2 +14.480524 × weigh −647.094102 × log(weight)
−0.000204 × stature2 +2053.400368 × log(stature)
−4895.536588

Male hip
circumference

=

0.072907 × age2 −10.385996 × age +350.015534 × log(age)
+0.037967 × weight2 −8.498566 × weight +1363.200158 × log(weight )
−0000.301 × stature2

−1311.519809

Female chest
circumference

=

0.016543 × age2 −43.189966 × log(age)
−0.041868 × weight2 +16.94243 × weight −551.488704 × log(weight)
−0000.8065 × stature2

+ 1285.248759

Female hip
circumference

=

−0.339797 × age
+0.025388 × weight2 −4.287962 × weight +1221.98981 × log(weight)
−0000.5088 × stature2

−855.683863

Units: Weight in kg, age in years, stature in mm, and results in mm.

In comparison to the shape model, this regression method focuses on a set number
of specific measurements that need to be predicted, rather than the full 100,000 points
that are defined in the STL output of the shape model. Reducing the complexity by
this much allows less linear models and a more flexible fitting to the complex variation
of body sizes and shapes. In the further scope of this research, most focus will be on
the garment specific measurements such as chest circumference and hip circumference.
However, these regression models can be calculated for any of the measurements that
are present in the WEAR database. Nevertheless, the resulting model would need to be
analyzed in error to verify whether the input parameters could accurately predict the
desired output measurement.

3.2. Step 2: Selection of Input Parameters for Models

To select the optimal measures, a prior research project [37] performed on the Wear
dataset showed that the most important descriptors are, in order of accuracy of prediction:
stature, weight, hip circumference, and gender with an improved accuracy with each added
measure. For this research, the aim was to use those descriptive measures that most users
know by heart. Thus, the stature, weight, and gender are used together with age. To
compare the offset with added measures, an additional analysis was performed on as much
input data as could be gathered in a method that could be commercially used. To that end,
a Styku scanner was used that provides seven additional measurements on top of the four
known features.

In Figure 4, a comparison is made between both shape model prediction methods. The
first uses only the base parameters and the second includes five additional measurements
from the Styku scanner on top of the base parameters. The graph shows the relative error
in comparison to each other as well as the 95% confidence interval. Visible is that the
additional Styku data do provide more accurate predictions on most of the measurements,
with some exceptions, i.e., the neck circumference and the acronium shoulder breadth.
Some improve by a lot with these additional data, since these measurements are the same
as those that are predicted by the model. However, issues might come from overfitting,
whereby the shape model needs to make weird shapes to fit through the given inputs.
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3.3. Step 3: Comparison Manual Measurements versus Model Predictions

Using these prediction methods, it would be possible to do a three-way comparison
between the various 3D shape model predictions, the non-linear regression model pre-
dictions, and the manually taken measurements. However, in order to compare all, the
manual measurements were taken as ground truth reference, since they are taken by trained
researchers. In the following tables, data are shown as root mean square error, as well
as relative error, and the inter correlation coefficient (ICC) shows whether the method is
reliable and accurate enough to be effectively used.

Table 2 shows a comparison of the non-linear regression model’s results compared to
the manually performed measurements on the 37 test subjects. This gave a clear insight
that this method was significantly more accurate for male subjects than for female on all
measurements, except for the under bust circumference. That one has a slightly better ICC
(intraclass correlation coefficient). Based on the ICC for each prediction, only the chest and
hip predictions were excellent and would provide sufficiently accurate predictions.

Table 2. Overview of results on the regression model prediction based on the base parameter inputs.

Regression Model
(Base Parameters) RMSE (mm) Relative Error (%) ICC

M F M+F M F M + F M F M + F

Chest circ. 24.7 49.3 34.9 −0.72 −2.65 −1.36 0.95 0.84 0.90

Circ. under Bust 104.5 108.2 105.8 −11.0 −9.57 −10.5 0.47 0.51 0.49

Waist circ. 64.7 144.8 98.9 −5.64 −14.1 −8.47 0.74 0.43 0.56

Hip circ. 29.1 49.5 37.2 1.62 2.00 1.75 0.90 0.81 0.87

Arm length 127.9 86.4 115.7 24.85 16.79 22.16 0.12 0.09 0.13

Waist front length 48.2 66.0 54.8 −8.42 −12.5 −9.79 0.41 0.05 0.45

Table 3 shows the comparison on the shape model predictions using the base parame-
ters (age, gender, weight, and stature). What can be seen is that this model obtains excellent
scores on the chest circumference, hip circumference, and circumference under bust, and
would, thus, make accurate predictions. However, the difference between male and female
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subjects is greater here, showing that for female subjects only, the chest circumference is a
usable correlated prediction.

Table 3. Overview of the results of the shape model prediction based on the base parameter inputs.

Shape Model
(Base Parameters) RMSE (mm) Relative Error (%) ICC

M F M + F M F M + F M F M + F

Chest Circ. 60.3 57.0 59.2 −4.82 −2.65 −4.10 0.83 0.90 0.84

Circ. under Bust 43.2 102.2 68.7 2.91 −8.44 −0.87 0.86 0.57 0.76

Waist circ. 80.1 140.9 104.4 −8.04 −14.12 −10.07 0.72 0.50 0.60

Hip circ. 45.9 76.1 57.7 −1.74 1.60 −0.63 0.82 0.54 0.75

Arm length 185.8 178.2 183.3 −30.34 −34.86 −31.84 0.03 0.02 0.03

Waist front length 47.0 76.0 58.3 −8.65 −15.22 −10.84 0.48 0.12 0.48

Table 4 shows the comparison on the shape model predictions with the base parameters
and additional Styku measurements. This model scores best on a series of measurements:
chest circumference, circumference under bust, waist circumference, and hip circumference.
It is also capable of predicting all of these with high correlation for both male and female
subjects. Only the arm length and waist front length predictions are still very poorly and
show no correlation whatsoever.

Table 4. Overview of results on the shape model prediction based on the base parameters with
additional Styku inputs.

Shape Model
(Base + Styku Data) RMSE (mm) Relative Error (%) ICC

M F M + F M F M + F M F M + F

Chest circ. 33.1 39.1 35.1 −2.60 −2.83 −2.67 0.91 0.92 0.91

Circ. under Bust 26.2 55.1 38.0 −0.02 2.24 0.71 0.94 0.85 0.90

Waist circ. 209.2 65.3 50.6 −3.79 5.84 2.98 0.87 0.82 0.85

Hip circ. 38.0 22.6 33.8 −3.45 −1.59 −2.85 0.87 0.97 0.91

Arm length 280.7 242.5 269.0 56.68 47.31 53.64 0.03 0.03 0.04

Waist front length 143.8 175.4 154.7 29.34 39.91 32.74 0.06 0.03 0.06

Figure 5 shows all ICC results combined; the minimal acceptable target is 0.75, al-
though a higher score is better. It should be noted that the root means square error indicated
that the shape model with the Styku scanner data was most optimal overall, but not for
all measurements. For the waist front length, for some reason, the models based on base
data only score much better for males, and thus, also for the combined data. Addition-
ally, it is visible that in a lot of cases, the predictions for females score worse than the
ones for males. Depending on the measurement, the results are still accurate, but just
less ideal. Thus, considerations need to be taken depending on the target group of the
customers population.
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3.4. Step 4: Comparison Preferred Size versus Model and Chart Predictions

To predict the correct garments based on the predictions from the previous sections, a
comparison was performed between the preferred and handpicked clothing sizes, and the
ruler measurements and size chart on the one hand, and the regression prediction on the
other hand. Both values determined the selection that would be made from the Bioracer
size chart [7] based on chest circumference for the shirt and maximal hip circumference for
the shorts, as described in their instructions, see Figure 1. These selections were compared
to the piece of clothing that the subjects picked themselves, as described above.

Table 5 shows that this resulted in a larger prediction error than the original sizing
charts given when compared to the handpicked choices. However, it was visible in the
raw data that certain users are way off from the prediction as well as from the measured
size. This means that personal preference does play a significant role in the prediction
methodology, and should, therefore, be considered in a commercial system. In general,
both the measurement-based selection and the predicted selection undersize compared to
the preferences of the subjects. This became clear throughout the tests, since plenty of the
test subjects stated that they would prefer not to wear such tight clothing. However, the
bias of the test could come into play here, since the subjects were explained the goal of the
research, and that it should be a sporty fit. Additionally, it a difference between the male
and female results was noticeable. Men, on average, chose close to what the prediction and
measurements picked, but women were further off on both methods, and thus, seemed to
prefer looser shirts but tighter pants. This can also have to do with the prediction model
overestimating the hip to chest size in female subjects.

Table 5. Comparisons between the handpicked (preferred) garment sizes and the size chart selected
ones, as well as between the handpicked and the predicted sizes based on the regression model for
both shirts and shorts.

Shirts Shorts

Handpicked vs.
Size Chart Selection

Handpicked vs.
Predicted

Handpicked vs.
Size Chart Selection

Handpicked vs.
Predicted

Average error −0.11 sizes
(0.27 | −1)

−0.43 sizes
(−0.08 | −1.27)

−0.19 sizes
(−0.69 | 1)

−0.05 sizes
(−0.62 | 1.27)

Std 0.94
(0.67 | 0.89)

1.07
(0.84 | 1.1)

1.05
(0.74 | 0.63)

1.27
(0.94 | 0.9)

Absolute average ±0.65 sizes
(±0.42 | ±1.18)

±0.81 sizes
(±0.62 | ±1.27)

±0.84 sizes
(±0.77 | ±1)

±0.97 sizes
(±0.77 | ±1.45)

Combined results; (Male results | Female results); Positive values are a larger size predicted or measured
then chosen.
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3.5. Female-Specific Adaptations to Regression Model Predictions

Based on this gathered knowledge, a final additional attempt was made to make
the regression model more suited for the female subjects. Since chest circumference was
debatably the most important measurement for selecting cycling jerseys, the distribution
of their body shape and weight depends on the size of the hips and chest and could be
inversely proportional to each other when maintaining the same base parameters (age,
weight, and stature). Therefore, another measurement should be added to enlighten the
prediction model on this balance between shapes. The most known measurement under
female subjects could disputably be the bra size (and conveniently, this parameter was also
included in the wear database). Crudely, this bra size consists of an under chest circumfer-
ence and a difference measurement between under and over chest measurement [38]. This
measurement would be a perfect fit, since it provides easy insight, as long as the customer
is willing to share this personal information to the platform. Bra size charts do change
from region to region, standard to standard, and brand to brand, so some effort would be
needed to make this a completed solution; however, this analysis is performed as a proof
of concept.

In the WEAR database, bra sizes were recorded in EU-size standard. Therefore, the
recorded bra size (circumference) was converted from cm to. And the cup size is based on
the average conversion values, as defined in the EN 12302 [39], and can be seen in Table 6.
Using these results in the formula below in Table 7.

Table 6. Cup size to correction dimension between chest circumference and under bust circumference.

Cup-Size AA A B C D E F G H

Correction Value (mm) 11 mm 13 mm 15 mm 17 mm 19 mm 21 mm 23 mm 25 mm 27 mm

Table 7. Non-linear regression formulae to predict chest and hip circumferences for female subjects,
whereby female prediction also uses bra size information.

Female chest circumference =

0.0007104 × age2

−0.0015879 × weight2 +0.7503453 × weight
−0.0005683 × stature2

+0.402006 × bra_size +0.846651 × cup_size-correction
+22.1669827

Female hip circumference =

−0.0272542 × age
+0.0013592 × weight2 +88.0784348 × log(weight)
−0.00163 × stature2 +138.4747899 × log(stature)
−0.097014 × bra_size −0.0113216 × cup_size-correction
−452.389437

Units: Weight in kg, age in years, bra size and cup size in mm, stature in mm, and results in mm.

To validate the improvements, the male and female predictions were compared once
more with the new formulae, see Table 8. However, since these data were never requested
from the test subjects in the initial study, this analysis cannot be performed on our test
subjects’ data. The only available sample data are from the wear database, and thus, the
same data as used to train the model itself. This was, therefore, tested on a random set of
400 subjects from the Dutch female subset of the wear database and was not comparable
to the data in the previous charts that were obtained for real-life subjects. To be able to
compare the accuracy to other subjects, the original male regression formulae was also
tested again, this time on 400 Dutch male subjects.
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Table 8. Overview of results on the regression model prediction based on the base parameters with
the bra size information.

Regression Model+ RMSE (mm) Relative Error (%) ICICC

M F F +
Bra Size M F F +

Bra Size M F F +
Bra Size

Chest circumference 40.64 46.15 38.65 0.2 0.21 0.15 0.92 0.91 0.94

Hip circumference 36.42 40.61 40.23 0.12 0.15 0.17 0.91 0.92 0.93

Consequently, Table 8 indicates that the female results now scored better than the male
ones, simply because the bra size measurements (assuming the subjects knew their bra size
correctly) were a close match to the desired predicted chest circumference measurement.
The effects of this intervention might not look like a massive improvement, but it could
especially help in the edge cases of the statistics for extreme subjects’ situations. However,
this must be considered in proportion to the extra personal data being requested of the
subjects. This information might be deemed too personal, and not everyone might be
willing to provide it; extra care should be taken to inform customers about how the data
are used/stored.

4. Discussion

Regarding the followed methodology in this paper, several limitations and recom-
mendations for future research should be noted, as well as the relevance to commercial
applications and other sectors.

4.1. Limitations

First, the shape models used in this study were all based on linear spaces. This was
mainly chosen to limit the computational complexity of this model, since non-linear high
dimensional models would require many times more data and processing power/time. The
shape model in this research was also limited due to the number of subjects in the model,
and size constraints to keep the model usable. Since the accuracy of the measurements on
both methods should be comparable for a similar subset, the regression method has an
advantage in saving processing power, resulting in simple and easy to use measurements
based on basic formulae.

Next, within the data that were collected to run the predictions, all common data, such
as age, weight, and stature, were based on the input from the subjects themselves, who
know these parameters by heart. They were free to weigh or measure themselves, but this
was not done per a standard. This way, the prediction was comparable to what customers
would enter when using an online system. Notably, subjects disclaimed they might have
understated their weight, since they preferred their target weight rather than their actual
weight at the time of the experiments. When implementing an online shopping method,
this could be a complication that needs to be considered.

4.2. Future Opportunities

Regarding future research opportunities, the used grid pattern on the test clothing of
the experiment offers possibilities to map the stretch of the clothing in a visual, colored,
and graphed way. At the moment, these grid lines on the clothing were added to easily
measure the stretch at any given location using a small ruler (i.e., a measurement of 12 mm
across two lines would indicate a stretch of 20% on the 10 mm grid). Given the available 3D
scan information all around the body, all these data could be combined to analyze stretch
in a colormap visualization on the subjects’ 3D model. This could aid garment design and
customers fitting sessions by visualizing the problem areas, and analyzing the severity of
the problem. It can also aid the designers by achieving their desired fit, by showing the
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users in a color scale what stretch is desired, and that loose fitting clothes is not advised for
optimal performance.

The following two setups can be used to translate the prediction options within this
paper to a commercial setup. First, a system to enter personal (base) parameters in a
system (application, website, or other). Second, a setup whereby stores would have a
Styku scanner system that takes a set of standard measurements on top of those base
parameters to improve accuracy. Conversely, in the future, any measurement system
(smartphone, webcam, or custom setup) could measure the users body proportions (or
even measurements if 3D scanners become implemented in more systems) and add to the
model’s prediction accuracy.

The advantage in designing for stretch sports garments over confection apparel is the
stretchy nature of the fabric. This provides a margin of error whereby the fit is not perfect,
but the discomfort is acceptable. When compared to the research of Bivolino [5], this
research does not try to modify the garments to fit. Instead, it is aimed to select the optimal
garment out of the confection line of garments as shown in the sizing chart of Figure 1.
Thus, the degrees of freedom are constrained with less variability in the output. However,
the input is also constrained given the limitation of inputs without manual measuring and
using known to heart parameters.

For this work, a comparison is made between shape model predictions and regression
analysis. An alternative upcoming route is to go for machine learning and thereby allowing
additional complexity in the prediction algorithms. However, as is the case with shape
models, this also hides the actual dynamic between in- and outputs. The clean relation
between the variables is considered a great benefit in real-life applications, since the abilities
and limitations are visible.

4.3. Relevance for Other Sectors

In comparison to regular apparel that would be bought online, the stretchy character-
istics of sports clothing and the fully customized production per client is the key difference.
It is impossible to return a clothing item without having to reproduce this item at added
cost. For regular online retail, the added benefit of optimizing the selection procedure could
possibly save massive amounts of delivery trucks and returned goods. However, some
adaptions will be needed, since the measurements used in this experiment might not at all
be relevant for normal confection garments.

The proposed methods and analysis would also fit other applications where tight
fitting is required, such as pressure clothing used to treat skin burns. These pieces of
clothing are made to size using special equipment to avoid having seams on the fabric.
At the moment, this is an iterative process to adjust, but it is undesirable to remove the
clothing too often in the first moments of treatment, because of the fragile skin during
initial treatment. Having a method of predicting the measurements and shape of the person
and required patterns could help to reduce manufacturing time and start treatment quicker
after the burns without having to perform physical measurements on the patient.

5. Conclusions

The fit of cycling apparel depends on desired properties such as comfort and aerody-
namics. However, when a fitting moment with all clothing sizes is not feasible or desired,
the customer should be able to determine their optimal size without having to fit the
specific clothing or use measuring tools and size charts. Therefore, this research project
aimed to analyze and compare various solutions to predict a subject’s body shape and size
for sports garment applications, based on either manual measuring or shape models, in
order to validate the use of 3D anthropometric shape models and 1D regression statistics.
Advantages of using the shape models are clear, in that the full parameters and details
can be used to shape the garment. However, the downsides are also clear, in that the
processing of 3D data will always be much more time consuming than analyzing pure 1D
measurements through regression analysis.
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Therefore, the aim to generate an easy-to-process regression-based model that is
accurate enough to predict the users’ sports garment is achieved. The regression model
with four base parameters, i.e., age, weight, stature, and gender, achieves comparable
results on multiple measurements (conveniently on those that are relevant for the sports
garment), and is only surpassed by an elaborate shape model method with additional data
from a full body 3D scan. The simplicity of not needing to take a physical measurement is
a significant advantage, and combined with the fact that the regression models take next
to no processing power to analyze, this makes this method the way to go if the data are
available and accurate for the needed application.

Especially the need for a 3D scan would be cumbersome, since this already provides
all the needed measurements itself. Additionally, the time needed to take the scan could
just as well be used to fit the sample garments, which would provide an even better store
experience and customer satisfaction.

Specific care should be taken to verify if all needed measurements can accurately be
predicted for all populations. For females specifically, for example, extra information is a
great advantage in the accurate prediction of their body proportions. For other applications,
new parameters might need to be added, such as fitness or body proportion, to further
improve predictions.
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