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Abstract: Aiming to improve the comprehensive aerodynamic performance of a high-speed train,
a multi-objective shape optimization method for a streamlined train head is proposed in this work.
The shape of the streamlined train head is parameterized with some spline curves. The optimization
design variables are uniformly sampled using the optimal Latin hypercube design method. The
aerodynamic resistance and dipole noise sources are chosen as the optimization objectives, which can
be obtained through the computational fluid dynamics (CFD) method. An approximate calculation
model is established by the radial basis function neural network so as to effectively predict the
values of optimization objectives. The error between the predicted values and actual values of the
aerodynamic resistance is less than 1%, and that of the dipole noise source is less than 3 dB, which
demonstrate the validity of the approximate calculation model. In the optimization process, the
algorithm NSGA-II is adopted to update the values of the optimization design variables, and the
approximate calculation model is used to calculate the optimization objectives, which greatly reduces
the optimization computation time of the streamlined head shape. Through iterative computation
of the optimization algorithm in the design space, each optimized design variable shows a trend of
convergence, and the aerodynamic resistance and dipole noise source generally show a decreasing
trend. The Pareto front is corrected by the CFD method after optimization. The aerodynamic
resistance can be reduced by up to 4.5%, and the dipole noise source can be reduced by up to 3.9 dB.

Keywords: high-speed train; optimization; aerodynamic resistance; dipole noise source

1. Introduction

High-speed trains have attracted worldwide attention because of their advantages,
such as rapid speed, riding comfort, running safety and reliability. However, the operation
of high-speed trains also brings considerable problems to the environment, railway con-
struction and locomotive manufacturing industry. The dynamic environment of regular
trains is primarily mechanical action, while that of high-speed trains is primarily aerody-
namic action. The interaction between trains and the air flow will become more significant
with the increase of the cruising speed, resulting in a series of aerodynamic problems, such
as aerodynamic resistance, aerodynamic noise, passing pressure wave, tunnel compression
wave and expansion wave, crosswind stability [1–4], etc. The aerodynamic resistance of
a train is found to be proportional to the square of velocity, and the aerodynamic noise
proportional to the sixth power of velocity. This is an objective law that cannot be avoided
by any form of ground transportation. If the velocity reaches 300 km/h, the aerodynamic
resistance accounts for more than 75% of the total resistance of a high-speed train [5].
Meanwhile, aerodynamic noise has also become the main noise source [6]. Aerodynamic
resistance and aerodynamic noise, which are closely related to energy consumption and
environmental protection, have become the main factors affecting the improvement of
train speed.
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In the past decades, numerous investigations have been conducted to reduce the
aerodynamic resistance or reduce the aerodynamic noise. Geometric modifications of
train shape are the most effective methods to optimize aerodynamic performance. Liu
designed some bottom deflectors around the bogie cabin for the purpose of reducing the
aerodynamic resistance [7]. Li set up a train model with bionic round pits to investigate
the effects of non-smooth surface on the aerodynamic resistance reduction [8]. Hwang
proposed two side skirts so as to maximize resistance reduction, and the wind tunnel tests
demonstrate that the drag coefficient was reduced by at least 5% [9]. As to the reduction of
aerodynamic noise, Zhang established an effective method for calculating aerodynamic
noise of a train and designed local structures to reduce the aerodynamic noise [10]. Li
investigated the aerodynamic noise of the pantograph of a train and found that the main
noise source of pantograph was distributed in the pan-head [11]. Kim investigated the
influence of pantograph cavity on the aerodynamic noise of a train as well as the flow
around the train, and found that the pantograph cavity configuration could reduce the noise
of pantograph [12]. Although these studies provide effective methods and suggestions for
the resistance reduction or noise reduction of high-speed trains, the designs in these studies
are essentially optimum seeking methods. In this method, some conceptual configurations
are first drawn up, then compared and selected through experiments and/or simulations,
and finally improved according to the operating conditions. This optimum seeking method
relies too much on engineering experience, and the final design is usually not optimal.

To resolve this, a direct optimization method is developed. The optimization design
variables are obtained through parametric modeling of train shape, which can be auto-
matically updated by the optimization algorithm, so as to obtain the optimal train shape.
Muñoz-Paniagua established a parametric model of the train nose and obtained the optimal
train nose shape with the lowest aerodynamic resistance through genetic algorithms [13].
Zhang optimized the train shape based on the Kriging model with the goal of reducing the
resistance and lift [14]. Wang considered aerodynamic resistance and lift as optimization
objectives and used partial differential equation (PDE) parametric modeling to optimize
the train shape [15]. These multi-objective or single-objective direct optimizations for the
train head mentioned above are mainly aimed at drag reduction or lift reduction, without
considering noise reduction simultaneously. From the perspective of energy saving and
environmental protection, we take the aerodynamic resistance and dipole noise source of
head car as optimization objectives, and propose an efficient multi-objective optimization
method for streamlined train head. The three-dimensional parametric model of the train
head is first established. The train aerodynamic model is then described and verified. The
optimal Latin hypercube sampling (OLHS) is adopted for uniform sampling in the design
space of optimized design variables. An approximate calculation model of train aerody-
namics is then set up based on radial basis function (RBF) neural networks. At last, the
shape optimization of the streamlined train head is conducted with the NSGA-II algorithm.

2. Multi-Objective Optimization Process
2.1. Method

The multi-objective optimization problem usually consists of n design variables, m
objective variables, and k constraint equations. Its mathematical expression can be ex-
pressed as

min y = ( f1(x), f2(x), . . . , fm(x))
s.t. gi(x) ≤ 0, i = 1, 2, . . . , k

(1)

where
x = (x1, x2, . . . , xn) ∈ X
y = (y1, x2, . . . , ym) ∈ Y
X = {(x1, x2, . . . , xn)|`i ≤ xi ≤ ui, i = 1, 2, . . . , n}
L = (`1, `2, . . . , `n)
U = (u1, u2, . . . , un)

(2)

where X are design variables; L are lower bounds; U are upper bounds; Y are objective variables.



Appl. Sci. 2022, 12, 10146 3 of 15

Multi-objective optimization often has mutually concurrent objectives. The promotion
of one optimization objective might lead to deterioration of other optimization objectives.
To solve multi-objective optimization problem is to make trade-offs and compromises
among the optimization objectives, so that each optimization objective can be optimized to
the greatest extent. To achieve this, V. Pareto put forward the concept of Pareto’s optimal
solution set. Suppose x ∈ X, if another x’ ∈ X does not exist, which makes fm

(
x’) ≤ fm(x),

m = 1, 2, . . . , M, and at least one of these strict inequalities holds, x is then called a Pareto
optimal solution, the set of which is called the Pareto-optimal solution set. The image of the
Pareto optimal solution set in the objective function space is called the Pareto optimal front.

2.2. Calculation Procedure

The automatic multi-objective optimization design process of a train head is shown
in Figure 1a. In each iteration step, the three-dimensional parametric geometric model
is updated on the basis of design variables. The computational mesh is then generated,
and the train aerodynamic calculation is conducted so as to acquire the objective variables.
After that, the convergence of objective variables is judged. If convergence is achieved,
the multi-objective optimization calculation is stopped; and if not, the multi-objective
optimization algorithm will be used to update the design variables and conduct calculation
of the next iteration step.

As can be seen from the optimization process, the train aerodynamic calculation is
required in each optimization iteration step, which is very time-consuming. Aiming at
reducing design time of shape optimization, less computational effort of train aerodynam-
ics is required. An approximate calculation model of train aerodynamics, which meets
the requirements of engineering accuracy, needs to be developed. Then in each iteration,
the approximate calculation model can be used to obtain the value of objective variables,
reducing the meshing time and aerodynamic calculation time, which can greatly reduce the
total calculation time of optimization design. Therefore, before optimization, an approx-
imate model for computing the train aerodynamics is constructed on the basis of OLHS
and RBF neural network in this study. Specifically, the OLHS is adopted to uniformly
sample in the optimization design variable space, and the parametric model is carried
out according to sampling points to obtain the train model file. According to the model
file, the computational grid is generated, and the grid file is obtained. Using the grid file,
the train aerodynamic calculation is carried out, and objective variables are obtained. An
approximate calculation model between the design variables and objective variables is
established by the RBF neural network. The design process of streamlined head shape
based on the aerodynamic approximate calculation model is shown in Figure 1b.

2.3. Optimal Latin Hypercube Sampling

To obtain a more accurate approximate calculation model, a set of uniformly dis-
tributed input variables is required so that the approximate calculation model can better
estimate the response of any point. The random Latin hypercube design that emerged in the
late 1970s allows for a more effective “space filling” through which more uniform design
space points can be obtained. Compared with the traditional experimental design method,
the random Latin hypercube design obtains test points that can better fill the entire design
space with a smaller number of test points. Nevertheless, the less uniform distribution
of design points still exists. Moreover, as the number of levels increases, it is prone to
losing some regions in design space. The OLHS improves the uniformity of random Latin
hypercube design, making the fitting of input variables and output variables more accurate
and realistic [16]. The OLHS enables all test points to be uniformly distributed, with great
space filling and equilibrium.
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The experimental design with N test points and M factors is noted as a n×m matrix
X = [X1, X2, . . . , Xn], each row XT

i = [xi1, xi2, . . . , xim] represents an experimental analysis,
and each column represents a factor, then the calculation process of OLHS is as follows:



Appl. Sci. 2022, 12, 10146 5 of 15

Step 1: An initial design matrix is generated using random Latin hypercube design.
In the n-dimensional space, each coordinate interval

[
xmin

k , xmax
k
]
(k ∈ [1, n]) is uniformly

divided into m intervals, and the i-the sub-interval is noted as
[

xi−1
k , xi

k

]
(i ∈ [1, m]). M

points are randomly selected to ensure that each level of each factor is studied only once,
which constitutes a random Latin hypercube design with M-dimensional space and N
samples, denoted as n×m LHD.

Step 2: Through the update operation of element exchange, a new design matrix
is generated.

Step 3: Calculate the optimal conditions for space filling. There are three optimal
criteria for space filling that can be selected. In this study, the mini-max distance criterion

min
1≤i,j≤n,i 6=j

d
(

xi, xj
)

is adopted. d
(
xi, xj

)
denotes the distance between sampling points xi

and xj, which can be calculated by

d
(
xi, xj

)
= dij =

√
m

∑
k=1

∣∣∣xik − xjk

∣∣∣2 (3)

Step 4: If optimal conditions are not satisfied, the improved stochastic evolution
algorithm is used to seek global optimal solution.

2.4. Radial Basis Function Neural Network

After obtaining the experimental design points of the input variables and correspond-
ing output variables using OLHS, the approximate calculation model between input vari-
ables and output variables can be established for the optimization design. The neural
network is a mathematical model that simulates the essential property of human brains or
natural neural networks. It is composed of a large number of nodes (also known as neurons)
that are connected to each other. The neural network achieves the purpose of information
processing through the interconnection between a large number of nodes. Neural network
models have good learning ability, associative storage ability, and high-speed optimization
seeking ability and they have been widely used in complex function approximation, pattern
recognition, dynamical systems, artificial intelligence, and function optimization. The RBF
neural network model has excellent properties in complex function approximation and
requires relatively fewer neurons to obtain good approximation results [16].

RBF neural network is a three-layer forward network including input layer, interme-
diate layer and output layer. The input signals are received by the input layer, and the
signals are output by the output layer. The intermediate layer has no direct relationship
with the input and output. The RBF neural network takes the Euclid norm of the points
to be measured and the sample points as the independent variables, and the radial func-
tion as basis function. The neural network model is then established through the linear
superposition method.

Suppose that the input layer contains N units, and the input signal x enters the RBF
neural network through the input layer; the intermediate layer contains p cells, and input
of the p-th unit is represented as hp = ‖x− cp‖; the output layer contains one unit. Then,
the input of the RBF neural network model can be calculated by:

g(x) =
p

∑
p=1

λp ϕp(x) + θ =
p

∑
p=1

λp ϕ
(
‖x− cp‖

)
+ θ (4)

where
{

cp
}P

p=1 ⊂ RN denotes the center of the basis function, cp denotes the center of the
p-th basis function, λ denotes the weight coefficient, ϕ denotes the nonlinear basis function,
and θ denotes the threshold.

The input layer to the intermediate layer is a fixed nonlinear transformation, through
which the input signal is mapped to a new space. This mapping relationship depends on the
central point of RBF. The intermediate layer to the output layer is a linear transformation.
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The output layer is combined in a new linear space with linear weights, where the weights
are adjustable parameters of the network.

The commonly used nonlinear basis function is the Gaussian basis function, which
has the following expression:

ϕp(x) = exp

(
‖x− cp‖2

2σ2
p

)
(5)

where the parameter σp denotes the “width” or “flatness” of the p-th Gaussian basis function
Rp(x), and its value is

σp =
1

Mp
∑ ‖x− cp‖2 (6)

where Mp denotes the number of samples in the p-th unit.

2.5. Optimization Algorithm

Normalized methods and non-normalized methods are the two main types of solutions
to multi-objective optimization problems. Normalized methods solve the multi-objective
problems by transforming into single objective problems, which are sensitive to the shape of
Pareto optimal front and have a low efficiency in solution. The non-normalized method is an
optimization technology that directly deals with multiple objectives using the Pareto mech-
anism. Hence, the drawbacks of the normalized method are solved. The non-normalized
method can make the front of the solution set close to the Pareto front. The representative
method of the non-normalized method is the multi-objective genetic algorithm.

The algorithm NSGA-II is adopted to perform the aerodynamic optimization of the
streamlined train head. NSGA-II employs non-dominated sorting with elite strategy, and
uses a simple crowding operator to maintain population diversity [17]. In the evolutionary
process, the population P is first genetically manipulated to obtain the population Q. After
merging the two populations, non-dominated sorting and crowding distance sorting are
carried out to form a new population P. This process is repeated until the end.

3. Train Aerodynamic Model
3.1. Parametric Model of Streamlined Head

Because of the good symmetry of the streamlined head shape, only half of the stream-
lined head needs to be parameterized. The streamlined head is very complex, which is
composed of several sub-surface pieces through certain continuous order splicing. In this
paper, the left half of the streamlined head shape is composed of B-spline surfaces. Control
points are firstly established on the streamlined head, 12 B-spline curves are established
from control points, and 7 B-spline surfaces are finally established from these 12 B-spline
curves. Thus, the left half of the streamlined head shape is established [18], which is
shown in Figure 2. On the basis of Figure 2, the three-car formation train model will be
easily established.

In Figure 2, five design variables are extracted, which correspond to the longitudinal
line C1, the horizontal contour lines C2 and C3, the central control line C4, the control line
of nose height C5.

Lines C1, C2, and C3 have similar deformation form. The deformation of C1 is
achieved by modifying values of vertical coordinates of control points, while the deforma-
tions of C2 and C3 are achieved by modifying values of horizontal coordinates of control
points. Specifically, increase vertical coordinate of the longitudinal midpoint of C1 by
x1(x1 > 0 indicating that this point moves upward, and x1 < 0 indicating that this point
moves downward), and vertical coordinates of both ends of C1 do not change. For points
between midpoint and endpoints, their vertical coordinates increase according to a linear
law. Similarly, the horizontal coordinates of the longitudinal midpoints of C2 and C3
increase by x2 and x3, respectively, where, x2 > 0 or x3 > 0 indicates that the point moves
inward. x2 < 0 or x3 < 0 indicates that the point moves outward.
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Figure 2. Left half of streamlined head.

The deformation of C4 is mainly a deformation of curve concavity and convexity. It is
necessary to make the two endpoints of the control line fixed. Meanwhile, the maximum
change happens at the midpoint of the control line. The following equation is used here
for deformation:

y4,new(i) = y4,old(i)×
(

1 +
x4 × (i− 1)× (n4 − i)

(i− 1)× (i− 1) + (n4 − i)× (n4 − i)

)
(7)

where n4 denotes the number of control points on C4, y4,old(i) denotes the value before
deformation, y4,new(i) denotes the value after deformation, and i denotes i-th control point.

For the change of nose height, it is only necessary to multiply the vertical coordinate of
the spline curve C5 by a factor x5, when x5 > 1.0, nose height becomes larger; when x5 < 1.0,
nose height becomes smaller.

It should be noted that curves associated with deformed curves should also be de-
formed accordingly to ensure continuity and smoothness of the surface.

When each optimization variable is specified, the coordinates of control points are
modified by the self-programming process to obtain a new streamlined head shape. Table 1
shows the value range of each optimization variable and the corresponding deformation.
The second row in Table 1 shows the streamlined head shapes for each optimization variable
at the lower bound, and the third row shows the ones at the upper bound.

3.2. Computational Model

The three-dimensional parametric model described in Section 3.1 is used to set up a
train model with three cars. The computational domain as well as the boundary conditions
is shown in Figure 3. The front of the computational domain is set as velocity inlet boundary,
and the rear is set as pressure outlet boundary. The two sides and top of the domain are set
as symmetry boundaries. The bottom of the domain is set as sliding wall boundary, and the
train is set as the stationary wall. The train speed in the present paper is 300 km/h. Thus,
the flow around the train is considered as in-compressible steady flow. The commercial
software Fluent is used to simulate the flow field of the train, the standard k-ε turbulence
model is used to resolve the turbulent flow, and the standard wall function is used to
resolve the boundary layer.
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Table 1. Range of design variables and corresponding deformation.

x1, [−400, 400]/(mm) x2, [−100, 200]/(mm) x3, [−200, 200]/(mm) x4, [−0.2, 0.4] x5, [−0.8, 1.2]
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The aerodynamic resistance of a train is directly obtained by aerodynamic calculation,
and the aerodynamic noise can be described by dipole noise source on the train surface.
Curle [19] analyzed the noise generated by gas flowing through solid surface, which can be
expressed as
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where y and z are the positions of near-field points and far-field points, respectively; yi and
zi are components of y and z; t is time; τ is delay time, τ = t− r/a0; p′ is sound pressure; a0
is sound velocity; S is solid surface; r is the distance between y and z; ni is the unit normal
vector component of S.

Based on Formula (8), the total acoustic power PA emitted from the entire body surface
can be computed from
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where Ac is the correlation region and I(y) is the dipole noise source on the solid surface,
which can be interpreted as the contribution of the noise per unit area of solid surface to
the total sound pressure.

The sound power level Lp is defined as

Lp = 10 log(PA/Pr) (10)

where Pr is reference sound power, Pr = 10−12W/m3.
After the flow filed of the train is computed, the broadband noise source module in the

commercial software Fluent is activated. Then, the dipole noise source on the streamlined
head can be obtained.

Grid-independence test is conducted aiming at eliminating the influence of grid density
on flow field simulation. Three sets of mesh with different grid density are generated, and
the information of grid setting and calculation results are shown in Table 2. The three meshes
have the same settings of boundary layers. The height of first layer is 2 mm, the growth ratio
is 1.1, and there are 8 layers in total. As presented in Table 1, when the maximum size of the
surface grid is densified from 250 mm (mesh1) to 200 mm (mesh2), the aerodynamic resistance
decreases by 4.55%, and the dipole noise source increases by 0.5 dB. When the maximum size of
the surface grid is densified from from 200 mm (mesh2) to 150 mm (mesh3), the aerodynamic
resistance increases by 0.86%, and the dipole noise source increases by 0.1 dB. Therefore, mesh2
is chosen for the subsequent aerodynamic calculations.

Table 2. Grid-independence tests.

Maximum Surface Grid Total Cells (Million) Aerodynamic Resistance(N) Dipole Noise Source(dB)

mesh1 250 4.18 3456.2 110.7
mesh2 200 5.92 3298.9 111.2
mesh 3 150 8.56 3327.3 111.3

4. Results

The OLHS was used to obtain experimental design points of each input variable, which
is shown in Figure 4. As plotted in Figure 4, each design variable has a relatively uniform
distribution in its design space. Figure 5 shows the objective variables corresponding to
the experimental design points, which are the aerodynamic resistance and the dipole noise
source of a high-speed train.

The RBF neural network was used to establish the approximate calculation model
between input variables and output variables. Figure 6 presents the differences between the
predicted and actual values of the aerodynamic resistance and dipole noise source, where
Figure 6a indicates the percentage error of aerodynamic resistance, and Figure 6b indicates
that of the dipole noise source. As shown in Figure 6, the percentage error between the
predicted values and actual ones of aerodynamic resistance is less than 1%, and that of the
dipole noise source is less than 3 dB. Thus, the approximate calculation model established
by the RBF neural network has a good approximation effect.

In the optimization calculation, the initial sampling points of the NSGA-II algorithm
are set to be 20, and 50 generations of genetic calculation are performed. Thus, the op-
timization is completed after completion of 1000 designs. Figure 7 depicts histories of
design variables during optimization, and the pattern “F” in the figure indicates the
Pareto optimal solution. As plotted in Figure 7, each optimization design variable shows
a convergence trend through the sampling of the optimization algorithm. The NSGA-II
algorithm will find the Pareto optimal design point that minimizes the objective value
through iterative computation. The variable x5 does not seem to converge. Nevertheless,
this variable is basically irrelevant to the aerodynamic resistance and dipole noise source
according to the correlation analysis.
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Figure 8 shows histories of objective variables. The pattern “F” indicates the value of
objective variable on the Pareto front. As plotted in Figure 8, through the sampling of the
optimization algorithm in the design space, the time histories of aerodynamic resistance
and dipole noise source show a decreasing trend. The streamlined head shape is gradually
improved towards the optimization of aerodynamic resistance and dipole noise source.
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The Pareto front is shown in Figure 9. The dot “•” in the figure denotes the aerody-
namic resistance and dipole noise source of the initial streamlined head shape. As depicted
in Figure 9, both the aerodynamic resistance and dipole noise source have been improved
through the optimization. In addition, the Pareto front obtained by the approximate calcu-
lation model is not much different from that obtained by the direct optimization, which
demonstrates that the approximate calculation model can achieve good optimization re-
sults. The optimal aerodynamic resistances for the optimization based on the approximate
calculation model and direct optimization are 3150.7 N and 3149.1 N, respectively, which
are very close to each other. The optimal dipole noise sources for the optimization based
on approximate calculation model and direct optimization are 108.5 dB and 107.2 dB, and
the error is 1.3 dB. The aerodynamic resistance is reduced by up to 4.5%, and the dipole
noise source is reduced by up to 3.9 dB through optimization, compared with the original
streamlined head shape.

Figure 10 presents a comparison between initial head shape and the one with the
lowest aerodynamic resistance/dipole aerodynamic noise, in which the black profile line
represents the original head type and the red profile line represents the optimized head
type. As presented in Figure 10, compared with initial head shape, line C1 of both op-
timal head shapes is concave downward, and the concave degree of the optimal head
shape with the lowest aerodynamic resistance is greater. Lines C2 and C3 move toward
the longitudinal symmetry plane, and the variation of the head shape with the lowest
aerodynamic resistance is more significant. The main differences between the two optimal
head shapes are the changes of C4 and C5. For line C4, the optimal head shape with the
lowest aerodynamic resistance does not vary much with respect to the initial shape, while
the optimal head shape with the lowest dipole noise source is more concave. For line C5,
the nose height of the optimal head shape with the lowest aerodynamic resistance becomes
lower, while the one with the lowest dipole noise source becomes higher.
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5. Conclusions

The streamlined head design is one of the core technologies of high-speed trains. In
the past, the streamlined head design was mainly based on the optimum seeking method.
Thus, it was often impossible to obtain the optimal streamlined head. In this study, the
streamlined head of a train model is divided into several B-spline surfaces, and five critical
lines are selected to construct the parametric modeling of the streamlined head. For the
purpose of energy saving and environmental protection, the aerodynamic resistance and
dipole noise source are taken as the objective variables. The aerodynamic approximate
calculation model was then established by the OLHS and RBF neural network, which
could greatly reduce the calculation amount of train aerodynamics. The multi-objective
optimization design of the streamlined head is carried out using the genetic algorithm
NSGA-II and several optimal streamlined heads with relatively superior performance
of both aerodynamic resistance and aerodynamic noise are obtained. The head shape
with the optimal resistance and the one with the optimal aerodynamic noise are finally
discussed, and the influence of design variables on the aerodynamic resistance and dipole
noise source is further explored. The influence of lines C1, C2, and C3 on aerodynamic
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resistance and aerodynamic noise is similar. Nevertheless, the influence of lines C4 and C5
on the aerodynamic resistance and aerodynamic noise is contradictory. The methodology
proposed in this study can greatly reduce the design cycle of the streamlined head, allowing
to obtain a streamlined head with better aerodynamic performance. After optimization, the
aerodynamic resistance is reduced by up to 4.5%, and the dipole aerodynamic noise source
is reduced by up to 3.9 dB.
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