
Citation: Zhou, Q.; Huang, C.; Duan,

L. Improving Deep Learning-Based

Recommendation Attack Detection

Using Harris Hawks Optimization.

Appl. Sci. 2022, 12, 10135. https://

doi.org/10.3390/app121910135

Academic Editors: Konstantinos

Rantos, Konstantinos Demertzis and

George Drosatos

Received: 16 September 2022

Accepted: 6 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Improving Deep Learning-Based Recommendation Attack
Detection Using Harris Hawks Optimization
Quanqiang Zhou * , Cheng Huang and Liangliang Duan

School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China
* Correspondence: zhouqiang128@126.com

Abstract: Recommendation attack attempts to bias the recommendation results of collaborative
recommender systems by injecting malicious ratings into the rating database. A lot of methods have
been proposed for detecting such attacks. Among these works, the deep learning-based detection
methods get rid of the dependence on hand-designed features of recommendation attack besides
having excellent detection performance. However, most of them optimize the key hyperparameters
by manual analysis which relies too much on domain experts and their experience. To address
this issue, in this paper we propose an approach based on the Harris Hawks Optimization (HHO)
algorithm to improve the deep learning-based detection methods. Being different from the original
detection methods which optimize the key hyperparameters manually, the improved deep learning-
based detection methods can optimize the key hyperparameters automatically. We first convert the
key hyperparameters of discrete type to continuous type according to the uniform distribution theory
to expand the application scope of HHO algorithm. Then, we use the detection stability as an early
stop condition to reduce the optimization iterations to improve the HHO algorithm. After that, we
use the improved HHO algorithm to automatically optimize the key hyperparameters for the deep
learning-based detection methods. Finally, we use the optimized key hyperparameters to train the
deep learning-based detection methods to generate classifiers for detecting the recommendation
attack. The experiments conducted on two benchmark datasets illustrate that the improved deep
learning-based detection methods have effective performance.

Keywords: collaborative recommender systems; recommendation attack; attack detection; Harris
Hawks Optimization

1. Introduction

Nowadays, the rapid growth of information aggravates the problem of information
overload. Collaborative recommender systems (CRS) [1], which can filter out the infor-
mation that users are interested in according to the user profiles, are designed to deal
with this problem. They have been successfully applied in many fields, such as prod-
uct sales (https://www.amazon.com/ (accessed on 15 July 2022)), multimedia services
(https://www.netflix.com/ (accessed on 15 July 2022)), and so on.

Open nature is an essential characteristic of CRS. For this reason, the CRS are vulnera-
ble to recommendation attack [2–4]. Fake profiles are injected into the rating database of
CRS by attackers to influence the recommendation results in the recommendation attack.
Fake profiles are usually called attack profiles.

The recommendation attack with the purpose of promoting or demoting the target
item is called push and nuke attack [5], respectively. At the beginning, attack models [5]
are used to construct attack profiles. Random, average, and bandwagon [2,6,7] attacks are
three representative attack models. Rich attack profiles with different attack strength can
be obtained by setting the attack strategy, attack size, and filler size of the attack model [5].
In recent years, attack profiles in the real scene are labeled from the Amazon Review
dataset [8]. This work further enriches the mode of the recommendation attack.

Appl. Sci. 2022, 12, 10135. https://doi.org/10.3390/app121910135 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app121910135
https://doi.org/10.3390/app121910135
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5649-579X
https://www.amazon.com/
https://www.netflix.com/
https://doi.org/10.3390/app121910135
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app121910135?type=check_update&version=2

Appl. Sci. 2022, 12, 10135 2 of 21

To detect the attack, a lot of unsupervised [9–16], semi-supervised [17,18], and super-
vised [19–27] detection methods have been proposed. One advantage of unsupervised
detection methods is that labeled user profiles are not required for the detection. It is for
this reason that unsupervised detection methods need some prior knowledge or some
assumptions to perform the detection. For example, PCA-based detection method [10]
takes the attack size as a prior knowledge. Clustering-based detection methods [12–16]
usually assume that the test sets contain both genuine and attack profiles. However,
above prior knowledge is usually hard to get and above assumption is not always true in
real application.

Semi-supervised detection methods first train weak classifiers with a few labeled
user profiles. Then, some unlabeled user profiles are used to improve the weak classifiers.
This type of method reduces the dependence on prior knowledge and assumptions. How-
ever, existing semi-supervised detection methods need extract hand-designed features of
recommendation attack which is a challenging task even for domain experts.

Supervised detection methods usually have good detection performance by training
the classifiers with labeled user profiles. They learn knowledge from the training samples
instead of depending on prior knowledge or assumptions for the detection. In particular,
the recently proposed deep learning-based detection methods [23–27] do not need the
hand-designed features and can automatically learn the features of recommendation attack
besides having excellent detection performance.

In the deep learning-based detection methods, there are usually many hyperparame-
ters need to be set. These hyperparameters can greatly affect the detection performance
of the detection methods. Although, some of the hyperparameters such as learning rate,
loss function, and so on can be well determined by referring to relevant research results,
the remaining hyperparameters such as activation function, epochs, and so on, which
are called key hyperparameters for ease of discussion, need to be optimized differently for
different CRS.

In most of the existing deep learning-based detection methods, however, the key
hyperparameters are optimized by manual analysis. That is, domain experts are employed
to determine the key hyperparameters by analyzing the detection performance of candidate
solutions. This way of determining key hyperparameters relies too much on domain
experts and their experience.

The swarm intelligence optimization algorithms have been effectively applied in
intrusion detection (ID) for many years [28–30]. For example, the Genetic Algorithm (GA)
is used to optimize features and parameters of the classifier which is used to identify attacks
in the ID systems [28,31]. The Particle Swarm Optimization (PSO) algorithm is combined
with some machine learning algorithms, such as k-means, to improve the performance of
anomaly detection [28,32]. The Ant Colony Optimization (ACO) algorithm is combined
with Decision Tree to build a multiple level hybrid classifier for classifying attacks in the ID
systems [28,33].

Inspired by these works, in this paper, to improve the deep learning-based detection
methods we propose an approach based on the Harris Hawks Optimization (HHO) al-
gorithm [34] for the recommendation attack. The improved detection methods replace
the manual optimization in the original detection methods by automatic optimization
for optimizing the key hyperparameters. Major contributions of this work are described
as follows.

• We proposed a hyperparameter type conversion algorithm to convert the key hyper-
parameters of discrete type to continuous type according to the uniform distribution
theory to expand the application scope of HHO algorithm.

• We reduced the optimization iterations by using the detection stability as an early stop
condition to improve the HHO algorithm. We proposed a hyperparameter automatic
optimization algorithm based on the improved HHO algorithm to automatically
optimize the key hyperparameters for the deep learning-based detection methods.
We proposed a detection algorithm for the recommendation attack by training the

Appl. Sci. 2022, 12, 10135 3 of 21

deep learning-based detection methods with the optimized key hyperparameters to
generate classifiers for the detection.

• We conducted a large number of experiments on two benchmark datasets to verify the
effectiveness of the proposed approach.

The remainder of this research is as follows. Section 2 reviews the related work and
describe the background of HHO algorithm. Section 3 details the proposed approach.
Section 4 shows the experimental results and analysis. Section 5 shows the conclusion and
future work.

2. Related Work and Background
2.1. Related Work

In unsupervised detection methods, several statistical based metrics are firstly pro-
posed by analyzing the difference of rating patterns among user profiles [9]. Attack profiles
with high filler sizes can be successfully detected by this method. By calculating the
principal components in the rating database, the PCA-based detection method [10] has
effective detection performance. However, this detection method assumes that attack size
is known. In practice, the prior knowledge such as attack size is not easy to get. Based
on the theory of Beta distribution, the Beta-Protection detection method is proposed [11].
This method can identify certain types of attack profiles. However, this method has poor
detection performance when facing recommendation attack with large-scale attack sizes.
The clustering-based detection methods [12–16] assume that the test sets contain both
genuine and attack profiles at the same time. Then, the test sets are clustered to different
clusters for the detection. However, in practical applications the test sets may only contain
genuine profiles or attack profiles. In these cases, the assumption of these methods can no
longer be satisfied.

In semi-supervised detection methods, a detection method based on Bayesian classifier
is firstly proposed [17]. After enhancement training with unlabeled user profiles, this
method has high recall but low precision when detecting the attack. After that, the ensemble
learning method is used to improve the detection performance [18]. However, these existing
methods require the features of user profiles which are extracted manually.

In supervised detection methods, three famous machine learning algorithms are firstly
trained to construct classifiers for detecting the attack [19]. Although, these methods have
high recall, they suffer from low precision. Based on a variant of AdaBoost algorithm, a
detection method RadaBoost is proposed. RadaBoost is used to improve the performance
for detecting the attack with imbalanced samples [20]. The SVM-based detection method
is proposed in paper [21]. In this work, the genuine and attack profiles are first balanced
before being used for training. The precision is improved by analyzing the target item
analysis. One drawback of this method is that it is a challenging task to determine the target
item since the rating database usually contains a large number of items. For improving the
detection performance of single classifier, the trust features are extracted and used to train
an SVM-based classifier [22]. However, this work also faces the challenge of determining
target items. Recently, the methods based on the technologies of deep learning are proposed
to detect the attack [23–27]. Deep neural networks, which contain single convolutional
layer, multiple convolutional layers, or hybrid layers, are designed to establish detection
methods, respectively. These deep learning-based detection methods do not require the
hand-designed features. Instead, they learn the features of recommendation attack, auto-
matically. Benefit from the strong learning ability of deep learning, most of these methods
usually have excellent detection performance. However, the key hyperparameters of the
existing deep learning-based detection methods are optimized by manual analysis which
relies too much on domain experts and their experience.

2.2. Background

HHO algorithm [34] is a gradient-free swarm intelligence optimization algorithm.
The main advantages of this algorithm include easy to implement, simple to use, and

Appl. Sci. 2022, 12, 10135 4 of 21

strong versatility. Research results in many applications show that the performance of
this algorithm, such as speed and accuracy, is the same as or better than these of famous
optimization algorithms, such as genetic algorithm, particle swarm optimization algorithm
and so on [34,35].

The Harris’ hawk belongs to a kind of raptors which lives in southern half of Ari-
zona, USA [34]. When hunting, they show good intelligence [34]. The HHO algorithm
simulates the hunting behavior of Harris’ hawks. Each hawk denotes a candidate solution.
Hawks approximate the optimal solution (a prey, such as a rabbit) with iteration through
cooperative foraging activities.

The same as most population-based optimization algorithms, the HHO algorithm
consists of two phases which are exploration and exploitation phases. The exploration phase
usually refers to the early step of the search process, which emphasizes the randomness of
the search behavior and strengthens the search process of the global range. The exploitation
phase usually focuses on searching the neighborhood of better solutions and strengthens
the search process of local area.

Details of the HHO algorithm is introduced in the following three subsections.

2.2.1. Exploration Phase

In the stage of initialization, Harris’ hawks randomly perch in some positions in the
search range [UB, LB]. UB and LB denote the search boundaries. In the stage of iteration,
the following two strategies are used to update the locations [34]:

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)|, q ≥ 0.5,
(Xrabbit(t)− Xm(t))− r3(LB + r4(UB− LB)), q < 0.5,

(1)

where, X(t + 1) denotes the position vector of a hawk in the (t + 1)th iteration, X(t) denotes
the position vector of a hawk in the tth iteration, Xrand(t) denotes a randomly selected
hawk, Xrabbit denotes the position vector of the rabbit, Xm(t) denotes the average position
of all the hawks, r1, r2, r3, r4, and q denote random numbers in the open interval from 0 to 1.

As shown in Equation (1), the first strategy determines the new position according
to the current position and a randomly selected position. The second strategy considers
the best location to date and the average position. At the same time, a randomly-scaled
component is also considered to increase the randomness of this strategy where r3 denotes
a scaling coefficient.

The average position of hawks is defined as follows [34]:

Xm(t) =
1
N

N

∑
i=1

Xi(t), (2)

where, t represents the current number of iterations, X represents a position vector, and N
represents the total number of hawks.

2.2.2. Transition from Exploration to Exploitation

During the escape of a prey, its energy will gradually decrease. At the same time,
HHO algorithm will transfer from exploration to exploitation. The follow equation is used
to model this process [34]:

E = 2E0(1−
t
T
), (3)

where, E denotes the escaping energy of the prey, T denotes the maximum number of
iterations, and E0 denotes the initial value of the energy. E0 is randomly selected from the
open interval from −1 to 1 at each iteration.

With the number of iterations t increases, E gradually decreases. When E ≥ 1, the
escaping energy of the prey is large. Hawks continuously monitor and locate the prey.
HHO algorithm is at the stage of exploration as shown in Section 2.2.1. When E < 1,

Appl. Sci. 2022, 12, 10135 5 of 21

the escaping energy of the prey becomes small. Hawks began to chase their prey. HHO
algorithm is at the stage of exploitation as shown in Section 2.2.3.

2.2.3. Exploitation Phase

In the phase of exploitation, the Harris’ hawks attack the prey found in the phase of
exploration. However, the prey often attempts to escape from danger. Therefore, the hawks
will perform different attack strategies according to the escaping behaviors of the prey for
each attack.

Let r denote the probability of successful escape (r < 0.5) or not successful escape
(r ≥ 0.5) before the prey is attacked. According to the value of E, the hawks execute different
attack strategies. When E ≥ 0.5, the hawks perform soft besiege. When E < 0.5, the hawks
perform hard besiege. Four different attack strategies proposed in HHO algorithm are
shown as follows.

(1) Soft besiege

When E ≥ 0.5 and r ≥ 0.5, although the prey has enough energy to escape, it fails to
escape. As the prey attempts to escape, the hawks slowly surround the prey to make the
prey exhausted. Then, the hawks launch an attack. The following rules are used to model
the above behaviors [34]:

X(t + 1) = ∆X(t)− E|JXrabbit(t)− X(t)|, (4)

∆X(t) = Xrabbit(t)− X(t), (5)

where, ∆X(t) denotes the difference between the position vector of the prey and the current
location in the tth iteration, J = 2(1− r5) denotes the random jump strength of the prey
when the prey escapes, and r5 denotes a random number in the open interval from 0 to
1. The value of J changes randomly at each iteration to simulate the randomness of the
prey motion.

(2) Hard besiege

When E < 0.5 and r ≥ 0.5, the prey is exhausted and lack of escaping energy. The
hawks perform the surprise pounce. In this situation, the positions are updated using the
following equation [34]:

X(t + 1) = Xrabbit(t)− E|∆X(t)| (6)

(3) Soft besiege with progressive rapid dives

When E ≥ 0.5 and r < 0.5, the prey has enough energy to escape successfully. The
Harris’ hawks will construct a soft besiege before the surprise pounce. In this process, the
hawks have two methods to update the positions as shown in Equations (7) and (8) [34],
respectively:

Y = Xrabbit(t)− E|JXrabbit(t)− X(t)|, (7)

Z = Y + S× LF(D), (8)

where, D denotes the dimension of problem, S denotes a random vector of 1× D size, and
LF denotes the Levy flight function which is used to simulate the irregular movement of
the hawks. In the process of chasing, this movement can deceive the prey. The LF function
can be calculated as follows [34]:

LF(x) = 0.01× µ× σ

|ϑ|
1
β

, σ =

 Γ(1 + β)× sin(πβ
2)

Γ(1+β
2)× β× 2(

β−1
2)

 1
β

, (9)

where, µ and ϑ denote random numbers in the open interval from 0 to 1, and β is a constant
which default value is 1.5.

Appl. Sci. 2022, 12, 10135 6 of 21

Based on above discussions, the positions of hawks are updated as follows [34]:

X(t + 1) =

{
Y, i f F(Y) < F(X(t))
Z, i f F(Z) < F(X(t)),

(10)

where, F denotes the fitness function.

(4) Hard besiege with progressive rapid dives

When E < 0.5 and r < 0.5, the prey has insufficient energy, but still successfully
escapes through random movement. In this situation, the Harris’ hawks will construct a
hard besiege before the surprise pounce to reduce the average distance between them and
their prey. The following rules are used to update the positions [34] :

X(t + 1) =

{
W, i f F(W) < F(X(t))
V, i f F(V) < F(X(t)),

(11)

W = Xrabbit(t)− E|JXrabbit(t)− Xm(t)|, (12)

V = W + S× LF(D). (13)

3. Proposed Approach

In this section, we first describe the basic structure of the proposed detection frame-
work. Then, we show the proposed detection algorithms.

3.1. Detection Framework

Figure 1 describes the basic structure of the proposed detection framework. As
shown in this figure, a hyperparameter type conversion algorithm is proposed to convert
the discrete key hyperparameters to continuous key hyperparameters. Based on the
improved HHO algorithm, a hyperparameter automatic optimization algorithm is proposed
to automatically optimize the key hyperparameters for the deep learning-based detection
methods. After the optimal hyperparameters are obtained, the training set is used to
train the deep learning-based detection method with these hyperparameters to generate a
classifier. This classifier will be used to detect the test sets for the detection.

Figure 1. Proposed detection framework.

3.2. Detection Algorithms

The original HHO algorithm is designed to search the optimal solution in the continu-
ous numerical interval. It cannot perform the search and optimization in discrete candidate
spaces. However, many key hyperparameters of the deep learning-based detection methods
belong to the discrete type.

To make HHO algorithm search and optimize discrete key hyperparameters, in this
paper we propose a hyperparameter type conversion algorithm to convert the key hyper-
parameters from discrete to continuous.

Appl. Sci. 2022, 12, 10135 7 of 21

As described in Section 2.2, the HHO algorithm randomly searches the optimal so-
lution in the way of equal probability. That is, all candidate solutions have the same
probability of being found. This constraint should also be satisfied when we map the
discrete key hyperparameters to the continuous key hyperparameters.

According to the probability theory, the probability density function of uniform distri-
bution of continuous random variables is defined as follows [36]:

f (x) =

{
1

b−a , a < x < b
0, else.

(14)

The uniform distribution has the following equal possibilities. If X ∼ U[a, b], then
the probability that X falls on any sub-interval [c, d] in interval [a, b] can be calculated as
follows [36]:

P(c ≤ x ≤ d) =
∫ d

c
f (x)dx =

∫ d

c

1
b− a

dx =
d− c
b− a

. (15)

As shown in Equation (15), the probability is only related to the length of interval
[c, d].

We assume that one key hyperparameter is a random variable with uniform distribu-
tion. Based on the uniform distribution theory, we only need to map the discrete candidate
values to the continuous numerical spaces which have the same intervals. Then, when
the HHO algorithm performs random search, the candidate values can be found with
equal probability.

According to above discussions, we propose a hyperparameter type conversion al-
gorithm to convert the key hyperparameter from discrete to continuous as shown in
Algorithm 1.

Algorithm 1 Hyperparameter type conversion algorithm for converting the key hyperpa-
rameter from discrete to continuous.
Require: candidate values of a discrete key hyperparameter {v1, . . . , vn}.
Ensure: search range of each candidate value for the discrete key hyperparameter Setcv,

search range of the discrete key hyperparameter Setdkh.
1: count← 0. //Set a counter.
2: Setcv ← ∅.
3: for each value v in {v1, . . . , vn} do
4: count← count +1.
5: LBv ← count −0.5. // Search range lower bound of v.
6: UBv ← count +0.5. // Search range upper bound of v.
7: Setcv ← Setcv ∪ {[LBv, UBv)v]}.
8: end for
9: LB← 0.5. //Search range lower bound of the discrete key hyperparameter.

10: UB← count +0.5. //Search range upper bound of the discrete key hyperparameter.
11: Setdkh ← {[LB, UB)}.
12: return Setcv, Setdkh.

We take the activation function as an example to further illustrate Algorithm 1. The
activation function is a key hyperparameter which is usually optimized manually in the
deep learning-based detection methods [23,25]. Suppose that the candidate values of
the activation function contain {linear, sigmoid, tanh, elu, relu, and selu}. These val-
ues are used as input of Algorithm 1. The corresponding outputs of Algorithm 1 are
{[0.5, 1.5)linear, [1.5, 2.5)sigmoid, [2.5, 3.5)tanh, [3.5, 4.5)elu, [4.5, 5.5)relu, and [5.5, 6.5)selu} and
{[0.5, 6.5)}. [0.5, 1.5)linear denotes the search range for the linear function. The meaning of
other intervals is similar to this meaning. The range [0.5, 6.5) denotes the entire search range
of the activation function. Obviously, all the candidate values have the same intervals.

Generally, it is not necessary to let the optimization algorithm continue to run after
the learning performance is stable. Driven by this idea, the early stop conditions have been

Appl. Sci. 2022, 12, 10135 8 of 21

successfully applied in many learning models to speed up training and optimization [37,38].
However, the original HHO algorithm has no early stop condition yet. Therefore, the
number of iterations performed by the HHO algorithm must be the maximum. Based on
this analysis, in this paper, to improve the original HHO algorithm we use the detection
stability as an early stop condition, as shown in lines 7 to 9 of Algorithm 2, to reduce the
optimization iterations of the HHO algorithm. From our experiments, it can be found that
this is a useful improvement. Benefit from this improvement the detection approach can
maintain good detection performance while the number of iterations is reduced greatly.

Algorithm 2 Hyperparameter automatic optimization algorithm based on the improved
HHO algorithm.

Require: training set Settrain, validation set Setvalidation, deep learning-based detection
method DLDM, key hyperparameters and their candidate values SetKH , the population
size N, and the maximum number of iterations T.

Ensure: The location of rabbit Xrabbit which denotes the optimal solution.
1: SetKH ← Call Algorithm 1 to convert the discrete key hyperparameters to continuous

key hyperparameters in SetKH .
2: Xi(i = 1, 2, . . . , N)← Initialize the population Xi(i = 1, 2, . . . , N), randomly. Each X

is a D-dimensional vector which element is randomly set by using SetKH . Each X is a
hawk.

3: Xrabbit ← X1.
4: while the number of iterations is less than T do
5: f itnessi(i = 1, 2, . . . , N) ← Train DLDM to generate classifiers by using Settrain

and each X. Use these classifiers to detect the Setvalidation, respectively. Calculate
f-measures according the detection results for each classifier. Take the f-measure as
fitness of each classifier.

6: Xrabbit ← Set Xrabbit as the location of rabbit. The classifier corresponding to Xrabbit
has the maximum fitness.

7: if the maximum fitness has not changed for m consecutive iterations then
8: return Xrabbit.
9: end if

10: for each hawk Xi do
11: Update the initial energy E0 and jump strength J.
12: Update E using Equation (3).
13: if |E|≥ 1 then
14: Update the location vector using Equation (1). //Exploration.
15: end if
16: if |E| < 1 then
17: // Exploitation.
18: if r ≥ 0.5 and |E| ≥ 0.5 then
19: Update the location vector using Equation (4).
20: else if r ≥ 0.5 and |E| < 0.5 then
21: Update the location vector using Equation (6).
22: else if r < 0.5 and |E| ≥ 0.5 then
23: Update the location vector using Equation (10).
24: else if r < 0.5 and |E| < 0.5 then
25: Update the location vector using Equation (11).
26: end if
27: end if
28: end for
29: end while
30: return Xrabbit.

Let Uu = [rating1, rating2, . . . , ratingIT] denote a rating vector of user u where IT
denotes the number of items in a recommender system. Let Settrain = {U1, U2, . . . , UTR}
denote the training set where TR denotes the number of users in the training set. Let

Appl. Sci. 2022, 12, 10135 9 of 21

Setvalidation = {U1, U2, . . . , UVA} denote the validation set where VA denotes the number
of users in the validation set. Let DLDM denote a deep learning-based detection method
which has a certain number of key hyperparameters. Let Kd denote the dth key hyper-
parameter with its candidate values derived from DLDM. Therefore, a solution X for
a DLDM can be denoted as [k1, k2, . . . , kd, . . . , kD] where D denotes the number of key
hyperparameters and kd is a candidate value of Kd. Taking the DL-DRA-HHO method
in our experiments as an example, D is set to 4 as shown in Table 5. K1, K2, K3, and K4
are set to size of the square, activation function, batch size, and epoch, respectively. The
candidate values of K1, K2, K3, and K4 are integers between [20, 100], elements in set {linear,
sigmoid, tanh, elu, relu, and selu}, integers between [8, 128], and integers between [3, 30],
respectively. Based on these descriptions and the improved HHO algorithm, we propose a
hyperparameter automatic optimization algorithm as described in Algorithm 2 to optimize
key hyperparameters for the deep learning-based detection methods.

In Algorithm 2, line 1 performs the data type conversion to meet the requirements
of HHO algorithm. Lines 2 and 3 initialize the population and the best solution. Line
4 sets the maximum number of iterations. Line 5 calculates the fitness for each solution.
F-measure is used as the fitness in this paper. Line 6 filters the optimal solution after each
iteration. Lines 7 to 9 add an early stop condition to improve the original HHO algorithm.
If the maximum fitness has not changed for m consecutive iterations, it indicates that the
current optimal solution has a certain stability. The iteration will be terminated. Moreover,
m is set to 5 in our experiments. Lines 10 to 28 execute the exploration and exploitation
operations to find the optimal solution. Line 30 returns the search result. In Algorithm 2,
line 1 performs the data type conversion to meet the requirements of HHO algorithm. After
this step, both discrete and continuous key hyperparameters can be optimized by the HHO
algorithm. Lines 2 and 3 initialize the population and the best solution. The algorithm
randomly generates initial positions. The number of initial positions is the same as the
size of population. Line 4 sets the maximum number of iterations. Line 5 calculates the
fitness for each solution. F-measure is the weighted adjusted average of precision and recall,
which can comprehensively reflect the classification performance of the detection model.
Therefore, F-measure is used as the fitness for each solution in this paper. Line 6 filters the
optimal solution after each iteration. The best solution in the current population will be
found in this step. Lines 7 to 9 add an early stop condition to improve the original HHO
algorithm. If the maximum fitness has not changed for m consecutive iterations, it indicates
that the current optimal solution has a certain stability. The iteration will be terminated.
Furthermore, m is set to 5 in our experiments. Lines 10 to 28 execute the exploration and
exploitation operations to find the optimal solution. In the phase of exploration, the random
factors r1, r2, r3, r4, and q in Equation (1) can effectively expand the scope of the global
search. Meanwhile, the search algorithm can avoid falling into the local optimal solution in
the early stage of the algorithm. In the phase of exploitation, the algorithm searches for
the local optimal solution through four attack strategies as shown in Equations (4), (6), (10)
and (11). Line 30 returns the search result. After this step, the optimal solution is obtained.

Based on the optimal key hyperparameters obtained from Algorithm 2, we propose
Algorithm 3 to detect the recommendation attack.

As shown in Algorithm 3, user profiles in the set of detection result are classified into
two categories: genuine profile or attack profile.

Algorithm 3 Recommendation attack detection algorithm with the optimized key hyperpa-
rameters.
Require: training set Settrain, test set Settest, deep learning-based detection method DLDM,

and the optimal key hyperparameters Xrabbit.
Ensure: detection result set Setresult.

1: Classifier← Train DLDM to generate a classifier by using Settrain and Xrabbit.
2: Setresult ← Detect Settest using the generated classifier.
3: return Setresult

Appl. Sci. 2022, 12, 10135 10 of 21

4. Experiments and Analysis

The details of settings for the experiments are first described in this section. Secondly,
we show the key hyperparameters and their optimization process. Then, we set the
comparative experiments. Finally, we show the results of the comparative experiments and
discuss them.

4.1. Experimental Data and Settings

MovieLens 10 M [39] and Amazon [8] used in our experiments are two benchmark
datasets in the fields of CRS. MovieLens 10 M contains only one type of user profiles, i.e.,
genuine profiles. Attack profiles are constructed by attack models and injected into this
dataset for training and testing. We can build test sets with multiple attack combinations to
verify the detection performance of the detection methods. Amazon dataset contains both
types of user profiles. We can use this dataset to verify the detection performance in the
real-world scenario.

MovieLens 10 M consists of 71,567 user profiles and 10,681 movies. The number of
ratings which are rated by users on the items is 10,000,054. Numbers and types of user
profiles used in the training set based on this dataset are shown in Table 1. Three common
attack models are used to construct various attack profiles. The genuine profiles are selected
from the dataset in a random manner.

Table 1. Numbers and types of user profiles which constitute the training set for MovieLens
10 M dataset.

Filler Size (%)
Genuine Random Average Bandwagon

10,000

1 200 200 200
3 200 200 200
5 200 200 200
10 200 200 200

Except for the number of samples, the validation set is constructed in the same way as
the training set as described in Table 2.

Table 2. Numbers and types of user profiles which constitute the validation set for MovieLens 10 M.

Filler Size (%)
Genuine Random Average Bandwagon

2000

1 10 10 10
3 10 10 10
5 10 10 10
10 10 10 10

To verify the detection performance of the detection methods, we establish a large
number of test sets in our experiments. Each test set contains 1000 genuine profiles which
are randomly selected from the remaining MovieLens 10 M dataset. Three common attack
models with various attack sizes and filler sizes are used to generate attack profiles as
shown in Section 4.5.

Users whose number of ratings is less than 5 are removed from the Amazon dataset.
The remaining samples are used to build the training, validation, and test sets for our
experiments as shown in Table 3.

Appl. Sci. 2022, 12, 10135 11 of 21

Table 3. Numbers and types of user profiles used in the experimental sets for Amazon dataset.

Type of User Profiles Training Validation Test

Genuine 1000 200 1075
Attack 1000 200 308

In our experiments, recall, precision, and AUC [40,41] which are three standard
metrics are used to evaluate the detection results. F-measure [40,41] is used as the fitness in
Algorithm 2.

4.2. Deep Learning-Based Detection Methods and Their Key Hyperparameters

CNN-SAD [23] and DL-DRA [25] are two representative deep learning-based detec-
tion methods. They consist of one layer and two layers of convolutional neural network,
respectively. Both have excellent performance when detecting various types of recommen-
dation attack. The reason for choosing these two methods to improve in our experiments
are shown as follows. The key hyperparameters are manually and clearly analyzed and
determined in both methods. These operations provide a basis for our experiments to select
which key hyperparameters to optimize automatically.

In CNN-SAD algorithm, a rating vector is reshaped into a rectangle as the input of the
network. The length of the rectangle denotes the number of items in a recommender system.
As a key hyperparameter, the size, i.e., the long side and the short side, of the rectangle is
confirmed by manual analysis. Since the long side can be determined by the short side for
a rectangle with a fixed perimeter, the short side is selected as one key hyperparameter for
the automatic optimization in our experiments.

In DL-DRA algorithm, the rating vector is resized into a square as the input of the
network using the bicubic interpolation technique. The size of the square is a key hyperpa-
rameter as shown in the DL-DRA algorithm. In our experiments, we select the size of the
square as one key hyperparameter for the automatic optimization.

In both CNN-SAD and DL-DRA algorithms, the activation function, batch size, and
epochs are three key hyperparameters which are manually optimized. The settings and
combinations of these hyperparameters can greatly affect the detection performance of the
detection algorithms. Therefore, we also set them as key hyperparameters for the automatic
optimization in our experiments.

Based on above discussions, key hyperparameters with their search spaces used in
our experiments for automatic optimization are shown in Tables 4 and 5.

Table 4. Key hyperparameters and their search spaces based on CNN-SAD.

Hyperparameter Search Space

Length of the short side Integers between [20, 100].
Activation function linear, sigmoid, tanh, elu, relu, and selu.
Batch size Integers between [8, 128].
Epoch Integers between [3, 30].

Table 5. Key hyperparameters and their search spaces based on DL-DRA.

Hyperparameter Search Space

Size of the square Integers between [20, 100].
Activation function linear, sigmoid, tanh, elu, relu, and selu.
Batch size Integers between [8, 128].
Epoch Integers between [3, 30].

Appl. Sci. 2022, 12, 10135 12 of 21

4.3. Automatic Optimization Process of Key Hyperparameters

We use CNN-SAD-HHO to denote the CNN-SAD method after being improved by the
proposed hyperparameter automatic optimization algorithm. That is, CNN-SAD method is
used as the DLDM of Algorithm 2 for automatically optimizing the key hyperparameters.
Similarly, we use DL-DRA-HHO to denote the DL-DRA method after being improved by
Algorithm 2.

Except for the key hyperparameters described in Section 4.2, other settings in CNN-
SAD-HHO and DL-DRA-HHO are the same as these in the CNN-SAD and DL-DRA,
respectively. In Algorithm 2, N is set to 30 and T is set to 500 which are the default settings
of HHO algorithm.

The automatic optimization process of key hyperparameters for CNN-SAD-HHO and
DL-DRA-HHO when performing Algorithm 2, which uses the training and validation sets
of MovieLens 10 M dataset as its input, are shown in Figures 2 and 3, respectively.

1 2 3 4 5

Number of iterations

0

0.2

0.4

0.6

0.8

1

F
it
n

e
s
s

Maximum fitness after each iteration

Fitness of each solution

Figure 2. Automatic optimization process of key hyperparameters for CNN-SAD-HHO on MovieLens
10 M dataset.

1 2 3 4 5 6

Number of iterations

0

0.2

0.4

0.6

0.8

1

F
it
n

e
s
s

Maximum fitness after each iteration

Fitness of each solution

Figure 3. Automatic optimization process of key hyperparameters for DL-DRA-HHO on MovieLens
10 M dataset.

As shown in Figure 2, we record the fitness of all solutions in the automatic optimiza-
tion process. After the iteration is completed, the optimal solution corresponding to the
maximum fitness is (97, linear, 39,12). As shown in Figure 3, after the iteration is completed,
the optimal solution corresponding to the maximum fitness is (20, linear, 8, 3).

The automatic optimization process of key hyperparameters for CNN-SAD-HHO and
DL-DRA-HHO when performing Algorithm 2, which uses the training and validation sets
of Amazon dataset as its input, are shown in Figures 4 and 5, respectively.

Appl. Sci. 2022, 12, 10135 13 of 21

1 2 3 4 5 6

Number of iterations

0

0.2

0.4

0.6

0.8

1

F
it
n

e
s
s

Maximum fitness after each iteration

Fitness of each solution

Figure 4. Automatic optimization process of key hyperparameters for CNN-SAD-HHO on
Amazon dataset.

1 2 3 4 5 6 7 8

Number of iterations

0

0.2

0.4

0.6

0.8

1

F
it
n

e
s
s

Maximum fitness after each iteration

Fitness of each solution

Figure 5. Automatic optimization process of key hyperparameters for DL-DRA-HHO on
Amazon dataset.

As shown in Figure 4, after the iteration is completed, the optimal solution correspond-
ing to the maximum fitness is (84, tanh, 87, 25). As shown in Figure 5, after the iteration is
completed, the optimal solution corresponding to the maximum fitness is (84, elu, 14, 15).

As shown in Figures 2 and 4, CNN-SAD method is sensitive to the key hyperparam-
eters. The fitness fluctuates greatly with the change of key hyperparameters. Compared
with CNN-SAD, DL-DRA method has better robustness as shown in Figures 3 and 5. The
fitness of DL-DRA tends to be more stable. The reason for this phenomenon may be that
DL-DRA method, which is an improvement of CNN-SAD method, uses more convolu-
tion and pooling layers to construct more reasonable neural network for the detection of
recommendation attack.

Although, the maximum number of iterations T is set to 500 in our experiments, only
5, 6, 6, and 8 iterations are performed as shown in Figures 2–5. The number of iterations
is much less than 500. This is due to the proposed early stop condition set in line 7 of
Algorithm 2. When the fitness tends to be stable, the iteration stops. The results indicate
that the optimization algorithm used in this paper is very successful and effective, and can
quickly search the optimal solution.

4.4. Settings of Comparative Experiments

Two groups of comparative experiments are used to verify the effectiveness of the
detection methods.

(1) In the first group, we compare the original methods CNN-SAD [23] and DL-DRA [25]
with the improved approaches CNN-SAD-HHO and DL-DRA-HHO.

• The CNN-SAD and DL-DRA methods employ manual analysis to determine
the key hyperparameters. During the manual analysis, one key hyperparameter
is used as a variable while other key hyperparameters are fixed. The detection
results on the validation set are observed manually. The candidate solution cor-
responding to the best detection performance is judged as the optimal solution.

Appl. Sci. 2022, 12, 10135 14 of 21

• CNN-SAD-HHO and DL-DRA-HHO approaches employ Algorithm 2 to auto-
matically optimize the key hyperparameters. With the output of Algorithm 2,
the Algorithm 3 is used to generate classifiers and detect the test sets.

(2) In the second group, we compare the following representative detection methods
with the improved approaches CNN-SAD-HHO and DL-DRA-HHO.

• PCA-VarSelect [10]: This is one of the representative works in unsupervised
detection methods. In this method, the PCA technique is used to compute the
covariance among users for the detection.

• SSADR-CoF [18]: This is a representative semi-supervised detection method. The
ensemble learning is used to reduce the dependence of the training model on
labeled user profiles.

• CNN-LSTM [24]: This is a hybrid supervised detection method based on two
types of deep neural networks CNN and LSTM.

4.5. Experimental Results and Analysis

In this section, we describe and analyze the experimental results of the two groups of
comparative experiments.

4.5.1. Comparison with Original Methods

The performance comparison of multiple detection methods when detecting the test
sets injected with random, average, and bandwagon attack on Movielens 10 M dataset are
shown in Figures 6–8, respectively. As shown in Figures 6–8, the four detection methods
have good detection performance overall. Through further observation, it can be found
that the DL-DRA, CNN-SAD-HHO, and DL-DRA-HHO methods maintain high detection
performance on most of the test sets. The strong learning and recognition ability of deep
learning are well developed and demonstrated in these methods. The comparison results
show the success of the proposed approach.

1% 2% 5% 10%

Attack size

(a) Filler size=1%

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

1% 2% 5% 10%

Attack size

(b) Filler size=3%

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

1% 2% 5% 10%

Attack size

(c) Filler size=5%

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

1% 2% 5% 10%

Attack size

(d) Filler size=10%

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

1% 2% 5% 10%

Attack size

(e) Filler size=1%

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

1% 2% 5% 10%

Attack size

(f) Filler size=3%

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

1% 2% 5% 10%

Attack size

(g) Filler size=5%

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

1% 2% 5% 10%

Attack size

(h) Filler size=10%

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

1% 2% 5% 10%

Attack size

(i) Filler size=1%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(j) Filler size=3%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(k) Filler size=5%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(l) Filler size=10%

0

0.2

0.4

0.6

0.8

1

A
U

C

CNN-SAD DL-DRA CNN-SAD-HHO DL-DRA-HHO

Figure 6. Performance comparison of the four detection methods when detecting the test sets injected
with random attack on Movielens 10 M dataset.

Appl. Sci. 2022, 12, 10135 15 of 21

1% 2% 5% 10%

Attack size

(a) Filler size=1%

0

0.2

0.4

0.6

0.8

1
R

ec
al

l

1% 2% 5% 10%

Attack size

(b) Filler size=3%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(c) Filler size=5%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(d) Filler size=10%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(e) Filler size=1%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(f) Filler size=3%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(g) Filler size=5%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(h) Filler size=10%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(i) Filler size=1%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(j) Filler size=3%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(k) Filler size=5%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(l) Filler size=10%

0

0.2

0.4

0.6

0.8

1

A
U

C

CNN-SAD DL-DRA CNN-SAD-HHO DL-DRA-HHO

Figure 7. Performance comparison of the four detection methods when detecting the test sets injected
with average attack on Movielens 10 M dataset.

1% 2% 5% 10%

Attack size

(a) Filler size=1%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(b) Filler size=3%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(c) Filler size=5%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(d) Filler size=10%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(e) Filler size=1%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(f) Filler size=3%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(g) Filler size=5%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(h) Filler size=10%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(i) Filler size=1%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(j) Filler size=3%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(k) Filler size=5%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(l) Filler size=10%

0

0.2

0.4

0.6

0.8

1

A
U

C

CNN-SAD DL-DRA CNN-SAD-HHO DL-DRA-HHO

Figure 8. Performance comparison of the four detection methods when detecting the test sets injected
with bandwagon attack on Movielens 10 M dataset.

In terms of recall and AUC, CNN-SAD and CNN-SAD-HHO have similar performance.
However, in terms of precision the performance of the improved approach CNN-SAD-
HHO is better than that of the original method CNN-SAD. This is because although both
methods can effectively identify attack profiles, more genuine profiles are identified as
attack profiles in the original method.

The performance comparison of multiple detection methods when detecting the test
set on Amazon dataset are shown in Table 6.

Appl. Sci. 2022, 12, 10135 16 of 21

Table 6. Performance comparison of the four detection methods when detecting the test set on
Amazon dataset.

Metrics CNN-SAD DL-DRA CNN-SAD-
HHO DL-DRA-HHO

Recall 0.795 0.931 0.941 0.951
Precisioin 0.819 0.797 0.812 0.839

AUC 0.872 0.932 0.939 0.949

As shown in Table 6, most detection results of the improved methods are better
than those of the original methods on the dataset of real scene. The DL-DRA-HHO
method has the best detection performance. The experiments show the success of the
proposed approach.

To illustrate the cost of time, we record the training time of the multiple detection
methods with the key hyperparameter optimization process as shown in Table 7. The com-
puter configuration for running the experiments is as follows: NVIDIA GeForce RTX2080,
32 G RAM, Win 10 OS. Python 3.7 (https://www.python.org/ (accessed on 15 July 2022))
and Tensorflow 2.4 (https://www.tensorflow.org/ (accessed on 15 July 2022)) are employed
for coding.

Table 7. Training time (measured in minutes) of the multiple detection methods with the key
hyperparameter optimization process.

Dataset CNN-SAD DL-DRA CNN-SAD-
HHO DL-DRA-HHO

Movielens 10 M 217.5 10.5 72.5 54
Amazon 210 2.9 84 20

As shown in Table 7, CNN-SAD method has the longest training time. DL-DRA
method has the shortest training time. The training time of the proposed methods CNN-
SAD-HHO and DL-DRA-HHO is at the middle level.

4.5.2. Comparison with Representative Methods

The performance comparison of multiple detection methods when detecting the test
sets injected with random, average, and bandwagon attack on Movielens 10 M dataset are
shown in Figures 9–11, respectively.

As shown in Figures 9–11, the PCA-VarSelect has low performance when detecting
the bandwagon attack. The possible reason is that there are many common ratings, which
correspond to the popular items, between attack profiles and genuine profiles. The prin-
cipal component analysis technology determines some of the attack profiles as principal
components. Therefore, the performance of PCA-VarSelect decreases.

The CNN-LSTM method has poor detection performance for small filler sizes. The
reason for this phenomenon might be that attack profiles with small filler sizes contain a few
ratings. The detection method CNN-LSTM cannot effectively capture enough knowledge
for recognizing the patterns of attack profiles.

The SSADR-CoF, CNN-SAD-HHO, and DL-DRA-HHO have good detection perfor-
mance for most of the test sets. The experimental results fully show the effectiveness of the
proposed approach.

The detection results of PCA-VarSelect, SSADR-CoF, CNN-LSTM, CNN-SAD-HHO,
and DL-DRA-HHO on the test set of Amazon dataset are shown in Table 8.

https://www.python.org/
https://www.tensorflow.org/

Appl. Sci. 2022, 12, 10135 17 of 21

1% 2% 5% 10%

Attack size

(a) Filler size=1%

0

0.2

0.4

0.6

0.8

1
R

e
c
a

ll

1% 2% 5% 10%

Attack size

(b) Filler size=3%

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

1% 2% 5% 10%

Attack size

(c) Filler size=5%

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

1% 2% 5% 10%

Attack size

(d) Filler size=10%

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

1% 2% 5% 10%

Attack size

(e) Filler size=1%

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

1% 2% 5% 10%

Attack size

(f) Filler size=3%

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

1% 2% 5% 10%

Attack size

(g) Filler size=5%

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

1% 2% 5% 10%

Attack size

(h) Filler size=10%

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

1% 2% 5% 10%

Attack size

(i) Filler size=1%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(j) Filler size=3%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(k) Filler size=5%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(l) Filler size=10%

0

0.2

0.4

0.6

0.8

1

A
U

C

PCA-VarSelect SSADR-CoF CNN-LSTM CNN-SAD-HHO DL-DRA-HHO

Figure 9. Performance comparison of the five detection methods when detecting the test sets injected
with random attack on Movielens 10 M dataset.

1% 2% 5% 10%

Attack size

(a) Filler size=1%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(b) Filler size=3%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(c) Filler size=5%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(d) Filler size=10%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(e) Filler size=1%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(f) Filler size=3%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(g) Filler size=5%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(h) Filler size=10%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(i) Filler size=1%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(j) Filler size=3%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(k) Filler size=5%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(l) Filler size=10%

0

0.2

0.4

0.6

0.8

1

A
U

C

PCA-VarSelect SSADR-CoF CNN-LSTM CNN-SAD-HHO DL-DRA-HHO

Figure 10. Performance comparison of the five detection methods when detecting the test sets injected
with average attack on Movielens 10 M dataset.

Table 8. Performance comparison of the five detection methods when detecting the test set on
Amazon dataset.

Metrics PCA-VarSelect SSADR-CoF CNN-LSTM CNN-SAD-HHO DL-DRA-HHO

Recall 0.207 0.961 0.951 0.941 0.951
Precision 0.207 0.795 0.605 0.812 0.839

AUC 0.490 0.945 0.886 0.939 0.949

Appl. Sci. 2022, 12, 10135 18 of 21

1% 2% 5% 10%

Attack size

(a) Filler size=1%

0

0.2

0.4

0.6

0.8

1
R

ec
al

l

1% 2% 5% 10%

Attack size

(b) Filler size=3%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(c) Filler size=5%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(d) Filler size=10%

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1% 2% 5% 10%

Attack size

(e) Filler size=1%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(f) Filler size=3%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(g) Filler size=5%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(h) Filler size=10%

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

1% 2% 5% 10%

Attack size

(i) Filler size=1%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(j) Filler size=3%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(k) Filler size=5%

0

0.2

0.4

0.6

0.8

1

A
U

C

1% 2% 5% 10%

Attack size

(l) Filler size=10%

0

0.2

0.4

0.6

0.8

1

A
U

C

PCA-VarSelect SSADR-CoF CNN-LSTM CNN-SAD-HHO DL-DRA-HHO

Figure 11. Performance comparison of the five detection methods when detecting the test sets injected
with bandwagon attack on Movielens 10 M dataset.

As shown in Table 8, the performance of PCA-VarSelect decreases greatly on the real
dataset. The reason for this phenomenon might be that the real dataset usually contains
multiple groups of attack profiles. The groups of attack profiles interfere with the principal
component analysis and reduce the detection performance.

The methods SSADR-CoF, CNN-LSTM, CNN-SAD-HHO, and DL-DRA-HHO have
certain detection performance on the real dataset. Benefit from ensemble learning, the
SSADR-CoF method has the largest recall. The improved method DL-DRA-HHO has the
largest precision and AUC. Note that, the recall of DL-DRA-HHO is only 0.01 less than that
of SSADR-CoF. The comparison results fully illustrate the success of the proposed approach.

As a nonparametric test method, Friedman test uses rank to determine whether there
is significant difference between multiple population distributions [42]. In our experi-
ments, we use this method to measure the stability of the proposed detection method.
We independently run the DL-DRA-HHO method with the Amazon dataset in the real
scene for 30 times. Meanwhile, the detection results of recall, precision, and AUC for each
time are recorded. The null hypothesis is that there is no significant difference among
the 30 detection results. The alternate hypothesis is that there is significant difference
among the 30 detection results. One group of each detection result can be described as
[recallt, precisiont, AUCt] where t denotes the tth detection result and t is an integer be-
tween [1, 30]. The p-value of Friedman test for all the 30 groups is 0.08 which is larger than
0.05. Therefore, we can accept the null hypothesis. The test results verify the stability of the
proposed approach.

4.6. Discussions

The original HHO algorithm can only search and optimize on the continuous numeri-
cal intervals. However, in practical application many variables are belong to the discrete
type, such as the activation function in our experiments. Therefore, the original HHO
algorithm has great limitations in the application scope. In this paper, a type conversion
algorithm is proposed to convert the variables from discrete to continuous according to the
uniform distribution theory. As a result, the HHO algorithm can deal with the discrete and
continuous search space at the same time. The proposed Algorithm 1 effectively expands
the application scope of HHO algorithm.

As shown in Figures 6–8 and Table 6, the improved detection methods outperform
the original detection methods on many test sets. This is because the proposed automatic
optimization algorithm used in the improved methods can find more appropriate key

Appl. Sci. 2022, 12, 10135 19 of 21

hyperparameters for the detection. During the manual analysis of original detection meth-
ods, one of the key hyperparameters is set as a variable while others are fixed. Therefore,
only one optimal key hyperparameter is found each time. Finally, the single found key
hyperparameters are simply combined into a solution. The problem with this method of de-
termining key hyperparameters is that the simple combination of key hyperparameters may
not be the optimal solution. Being different from the above manual analysis, the proposed
automatic optimization algorithm directly takes the combination of key hyperparameters as
the optimization goal. Therefore, the improved method can find more appropriate solution
for the detection.

Generally, there are many key hyperparameters in the deep learning-based detection
methods. Which key hyperparameters are selected from them for the automatic optimiza-
tion is a topic worthy of study. This is where our work needs to be further explored.

5. Conclusions and Future Work

In this paper, an approach based on the HHO algorithm is proposed for improving
the deep learning-based recommendation attack detection methods. A hyperparameter
type conversion algorithm is proposed for converting the discrete key hyperparameters
to continuous type according to the uniform distribution theory. With this proposed algo-
rithm, the application scope of HHO algorithm is extended from only continuous type to
both continuous type and discrete type. An early stop condition is proposed by using the
detection stability for improving the original HHO algorithm. With this condition, the opti-
mization iterations of the improved HHO algorithm are greatly reduced. A hyperparameter
automatic optimization algorithm is proposed based on the improved HHO algorithm to
automatically optimize the key hyperparameters for the deep learning-based detection
methods. This algorithm reduces the dependence of deep learning-based detection meth-
ods on the domain experts and their experience when optimizing the key hyperparameters.
A detection algorithm is proposed based on the deep learning-based detection method and
the optimized key hyperparameters. This algorithm can successfully detect the recommen-
dation attack. Experiments on two benchmark datasets demonstrate that the improved
deep learning-based detection methods have good detection performance. On some test
sets, the improved detection methods are better than the original detection methods. On
most of the test sets, the improved detection methods are the same as or better than the
representative methods.

In future work, it is worth studying how to introduce more intelligent optimization
algorithms into the deep learning-based detection methods.

Author Contributions: Conceptualization, Q.Z. and L.D.; methodology, Q.Z.; software, C.H.; validation,
Q.Z.; formal analysis, C.H.; investigation, L.D.; resources, C.H.; data curation, Q.Z.; writing—original
draft preparation, Q.Z.; writing—review and editing, Q.Z.; visualization, C.H.; supervision, L.D.; project
administration, Q.Z.; funding acquisition, Q.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Shandong Provincial Natural Science Foundation of China
under grant number ZR2020QF044.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in the paper are benchmark and public datasets
which can be easily downloaded from the Internet.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 10135 20 of 21

References
1. Bobadilla, J.; Dueñas, J.; Gutiérrez, A.; Ortega, F. Deep variational embedding representation on neural collaborative filtering

recommender systems. Appl. Sci. 2022, 12, 4168. [CrossRef]
2. Lam, S.K.; Riedl, J. Shilling recommender systems for fun and profit. In Proceedings of the 13th International Conference on

World Wide Web, New York, NY, USA, 17–20 May 2004; pp. 393–402. [CrossRef]
3. Zhang, S.; Ouyang, Y.; Ford, J.; Makedon, F. Analysis of a low-dimensional linear model under recommendation attacks. In

Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information, Seattle, WA,
USA, 6–11 August 2006; pp. 517–524. [CrossRef]

4. Rezaimehr, F.; Dadkhah, C. A survey of attack detection approaches in collaborative filtering recommender systems. Artif. Intell.
Rev. 2021, 54, 2011–2066. [CrossRef]

5. Mahony, M.O.; Hurley, N.; Kushmerick, N.; Silvestre, G. Collaborative recommendation: A robustness analysis. ACM Trans.
Internet Technol. 2004, 4, 344–377. [CrossRef]

6. Burke, R.; Mobasher, B.; Zabicki, R.; Bhaumik, R. Identifying attack models for secure recommendation. In Beyond Personal-
ization: A Workshop on the Next Generation of Recommender Systems; ACM: New York, NY, USA, 2005; pp. 347–361. Available
online: https://www.semanticscholar.org/paper/Identifying-Attack-Models-for-Secure-Recommendation-Burke-Mobasher/
68e3c286a65321620f74a12bbdf55c682b0983e9 (accessed on 15 July 2022).

7. Barbieri, J.; Alvim, L.G.M.; Braida, F.; Zimbrão, G. Simulating real profiles for shilling attacks: A generative approach. Knowl.-Based
Syst. 2021, 230, 107390. [CrossRef]

8. Xu, C.; Zhang, J.; Chang, K.; Long, C. Uncovering collusive spammers in Chinese review websites. In Proceedings of the 22nd
ACM International Conference on Information & Knowledge Management, San Francisco, CA, USA, 27 October–1 November
2013; pp. 979–988. [CrossRef]

9. Chirita, P.A.; Nejdl, W.; Zamfir, C. Preventing shilling attacks in online recommender systems. In Proceedings of the 7th Annual
ACM International Workshop on Web Information and Data Management, Bremen, Germany, 4 November 2005; pp. 67–74.
[CrossRef]

10. Mehta, B.; Hofmann, T.; Fankhauser, P. Lies and propaganda: Detecting spam users in collaborative filtering. In Proceedings of
the 12th International Conference on Intelligent User Interfaces, Honolulu, HI, USA, 28–31 January 2007; pp. 14–21. [CrossRef]

11. Chung, C.Y.; Hsu, P.Y.; Huang, S.H. βP: A novel approach to filter out malicious rating profiles from recommender systems. Decis.
Support Syst. 2013, 55, 314–325. [CrossRef]

12. Lee, J.S.; Zhu, D. Shilling attack detection-A new approach for a trustworthy recommender system. INFORMS J. Comput. 2012, 24,
117–131. [CrossRef]

13. Yang, Z.; Sun, Q.; Zhang, Y.; Zhang, B. Uncovering anomalous rating behaviors for rating systems. Neurocomputing 2018, 308,
205–226. [CrossRef]

14. Zhang, Z.; Zhang, Z.; Zhang, P.; Wang, S. UD-HMM: An unsupervised method for shilling attack detection based on hidden
markov model and hierarchical clustering. Knowl.-Based Syst. 2018, 148, 146–166. [CrossRef]

15. Cai, H.; Zhang, F. BS-SC: An unsupervised approach for detecting shilling profiles in collaborative recommender systems. IEEE
Trans. Knowl. Data Eng. 2021, 33, 1375–1388. [CrossRef]

16. Zhang, F.; Wang, S. Detecting group shilling attacks in online recommender systems based on bisecting k-means clustering. IEEE
Trans. Comput. Soc. Syst. 2020, 7, 1189–1199. [CrossRef]

17. Wu, Z.; Wu, J.; Cao, J.; Tao, D. HySAD: A semi-supervised hybrid shilling attack detector for trustworthy product recommendation.
In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China,
12–16 August 2012; pp. 985–993. [CrossRef]

18. Zhou, Q.; Duan, L. Semi-supervised recommendation attack detection based on Co-Forest. Comput. Secur. 2021, 109, 102390.
[CrossRef]

19. Williams, C.A.; Mobasher, B.; Burke, R. Defending recommender systems: Detection of profile injection attacks. Serv. Oriented
Comput. Appl. 2007, 1, 157–170. [CrossRef]

20. Yang, Z.; Xu, L.; Cai, Z. Re-scale adaboost for attack detection in collaborative filtering recommender systems. Knowl.-Based Syst.
2016, 100, 74–88. [CrossRef]

21. Zhou, W.; Wen, J.; Xiong, Q.; Gao, M.; Zeng, J. SVM-TIA a shilling attack detection method based on SVM and target item analysis
in recommender systems. Neurocomputing 2016, 210, 197–205. [CrossRef]

22. Xu, Y.; Zhang, F. Detecting shilling attacks in social recommender systems based on time series analysis and trust features.
Knowl.-Based Syst. 2019, 178, 25–47. [CrossRef]

23. Tong, C.; Yin, X.; Li, J.; Zhu, T.; Lv, R.; Sun, L.; Rodrigues, J. A shilling attack detector based on convolutional neural network for
collaborative recommender system in social aware network. Comput. J. 2018, 61, 949–958. [CrossRef]

24. Ebrahimian, M.; Kashef, R. Detecting shilling attacks using hybrid deep learning models. Symmetry 2020, 12, 1805. [CrossRef]
25. Zhou, Q.; Wu, J.; Duan, L. Recommendation attack detection based on deep learning. J. Inf. Secur. Appl. 2020, 52, 102493.

[CrossRef]
26. Li, H.; Gao, M.; Zhou, F.; Wang, Y.; Fan, Q.; Yang, L. Fusing hypergraph spectral features for shilling attack detection. J. Inf. Secur.

Appl. 2021, 63, 103051. [CrossRef]

http://doi.org/10.3390/app12094168
http://dx.doi.org/10.1145/988672.988726
http://dx.doi.org/10.1145/1148170.1148259
http://dx.doi.org/10.1007/s10462-020-09898-3
http://dx.doi.org/10.1145/1031114.1031116
https://www.semanticscholar.org/paper/Identifying-Attack-Models-for-Secure-Recommendation-Burke-Mobasher/68e3c286a65321620f74a12bbdf55c682b0983e9
https://www.semanticscholar.org/paper/Identifying-Attack-Models-for-Secure-Recommendation-Burke-Mobasher/68e3c286a65321620f74a12bbdf55c682b0983e9
http://dx.doi.org/10.1016/j.knosys.2021.107390
http://dx.doi.org/10.1145/2505515.2505700
http://dx.doi.org/10.1145/1097047.1097061
http://dx.doi.org/10.1145/1216295.1216307
http://dx.doi.org/10.1016/j.dss.2013.01.020
http://dx.doi.org/10.1287/ijoc.1100.0440
http://dx.doi.org/10.1016/j.neucom.2018.05.001
http://dx.doi.org/10.1016/j.knosys.2018.02.032
http://dx.doi.org/10.1109/TKDE.2019.2946247
http://dx.doi.org/10.1109/TCSS.2020.3013878
http://dx.doi.org/10.1145/2339530.2339684
http://dx.doi.org/10.1016/j.cose.2021.102390
http://dx.doi.org/10.1007/s11761-007-0013-0
http://dx.doi.org/10.1016/j.knosys.2016.02.008
http://dx.doi.org/10.1016/j.neucom.2015.12.137
http://dx.doi.org/10.1016/j.knosys.2019.04.012
http://dx.doi.org/10.1093/comjnl/bxy008
http://dx.doi.org/10.3390/sym12111805
http://dx.doi.org/10.1016/j.jisa.2020.102493
http://dx.doi.org/10.1016/j.jisa.2021.103051

Appl. Sci. 2022, 12, 10135 21 of 21

27. Wang, S.; Zhang, P.; Wang, H.; Chao, J.; Zhang, F. A shilling group detection framework based on deep learning techniques. Secur.
Commun. Netw. 2022, 2022, 2323132. [CrossRef]

28. Thakkar, A.; Lohiya, R. Role of swarm and evolutionary algorithms for intrusion detection system: A survey. Swarm Evol. Comput.
2020, 53, 100631. [CrossRef]

29. Nasir, M.H.; Khan, S.A.; Khan, M.M.; Fatima, M. Swarm intelligence inspired intrusion detection systems—A systematic literature
review. Comput. Netw. 2022, 205, 108708. [CrossRef]

30. Nayak, J.; Vakula, K.; Dinesh, P.; Naik, B. Significance of particle swarm optimization in intrusion detection: Crossing a decade.
In Proceedings of International Conference on Application of Robotics in Industry Using Advanced Mechanisms, Bhubaneswar,
India, 16–17 August 2019; pp. 187–202. [CrossRef]

31. Binitha, S.; Siva Sathya, S. A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. 2012, 2, 137–151. Available
online: https://www.oalib.com/paper/2760442 (accessed on 15 July 2022).

32. Karami, A.; Guerrero-Zapata, M. A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric
networks. Neurocomputing 2015, 149, 1253–1269. [CrossRef]

33. Rajeswari, L.P.; Kannan, A.; Baskaran, R. An escalated approach to ant colony clustering algorithm for intrusion detection system.
In Proceedings of the International Conference on Distributed Computing and Networking, Kolkata, India, 5–8 January 2008;
pp. 393–400. [CrossRef]

34. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

35. Alabool, H.M.; Alarabiat, D.; Abualigah, L.; Heidari, A.A. Harris hawks optimization: A comprehensive review of recent variants
and applications. Neural Comput. Appl. 2021, 33, 8939–8980. [CrossRef]

36. Dekking, F.M.; Kraaikamp, C.K.; Lopuhaa, H.P.; Meester, L.E. A Modern Introduction to Probability and Statistics: Understanding
Why and How; Springer: London, UK, 2005; pp. 60–61.

37. Kim, D.G.; Choi, J.Y. Optimization of design parameters in LSTM model for predictive maintenance. Appl. Sci. 2021, 11, 6450.
[CrossRef]

38. Chen, J.F.; Do, Q.H.; Hsieh, H.N. Training artificial neural networks by a hybrid PSO-CS algorithm. Algorithms 2015, 8, 292–308.
[CrossRef]

39. Harper, F.M.; Konstan, J.A. The MovieLens datasets: History and context. ACM Trans. Interact. Intell. Syst. 2015, 5, 1–20.
[CrossRef]

40. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
41. Si, M.; Li, Q. Shilling attacks against collaborative recommender systems: A review. Artif. Intell. Rev. 2020, 53, 291–319. [CrossRef]
42. Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937,

32, 675–701. [CrossRef]

http://dx.doi.org/10.1155/2022/2323132
http://dx.doi.org/10.1016/j.swevo.2019.100631
http://dx.doi.org/10.1016/j.comnet.2021.108708
http://dx.doi.org/10.1007/978-3-030-30271-9_18
https://www.oalib.com/paper/2760442
http://dx.doi.org/10.1016/j.neucom.2014.08.070
http://dx.doi.org/10.1007/978-3-540-77444-0_41
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1007/s00521-021-05720-5
http://dx.doi.org/10.3390/app11146450
http://dx.doi.org/10.3390/a8020292
http://dx.doi.org/10.1145/2827872
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1007/s10462-018-9655-x
http://dx.doi.org/10.1080/01621459.1937.10503522

	Introduction
	Related Work and Background
	Related Work
	Background
	Exploration Phase
	Transition from Exploration to Exploitation
	Exploitation Phase

	Proposed Approach
	Detection Framework
	Detection Algorithms

	Experiments and Analysis
	Experimental Data and Settings
	Deep Learning-Based Detection Methods and Their Key Hyperparameters
	Automatic Optimization Process of Key Hyperparameters
	Settings of Comparative Experiments
	Experimental Results and Analysis
	Comparison with Original Methods
	Comparison with Representative Methods

	Discussions

	Conclusions and Future Work
	References

