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Abstract: The rapid development of the civil aviation industry has increased the pressure on airspace
resources in China. The traditional sector capacity assessment method does not take into account
the impact of bad weather, resulting in flight plans often deviating markedly from the predicted
plans, causing flight delays and affecting the punctuality rate of flights. To solve this issue, we
propose a novel evaluation method based on an improved Weather-Impacted Traffic Index (WITI)
model to calculate sector capacity. The WITI model is optimized in order to calculate the weather-
influence coefficients under different types of bad weather. These coefficients were also considered in
a controller workload model. Finally, the model was trained using a deep-neural-network algorithm,
which is combined with a linear regression algorithm to calculate sector capacity under different bad
weather conditions. The novel approach leads to the output results being within a specified error
range, which greatly improves their accuracy. This method was applied to the actual case data of
Yinchuan Hedong International Airport to consider different types of bad weather and quantify their
severity, which more specifically assesses the sector capacity under the condition of bad weather.

Keywords: WITI model; bad weather; controller workload; sector capacity; deep neural network

1. Introduction

The rapid development of civil aviation is resulting in increased air traffic flows. In
order to correctly manage air traffic and also improve its efficiency and safety, a method for
reliably evaluating sector capacity has recently become a focus of research. According to
statistics, the most serious factor affecting the flight irregularity rate in 2019 was weather [1].
Bad weather can greatly reduce the ability of a sector to accommodate flights, and flights
in the affected airspace often choose to divert, detour, or return in order to avoid adverse
outcomes [2]. All of these factors increase the workload of air traffic controllers and
flight delays, and in broader terms, seriously affect the development of the civil aviation
transportation industry [3]. Therefore, evaluating the sector capacity based on bad weather
is both necessary and meaningful.

Sector capacity has been studied since 1970. Janic and Tosic established a simple
mathematical model that took into account the sector structure of the airspace, traffic
flow characteristics, and control rules [4]. The initial research into sector capacity only
involved theoretical analyses. The gradual development of the civil aviation industry has
increased the required airspace capacity [5], and more scholars are now studying practical
sector capacities. Tofukuji predicted the maximum capacity at Tokyo Airport in the actual
operating environment by analyzing whether the controller’s workload was the limiting
factor of capacity [6,7], which enhanced the practicality of capacity assessments.

Developments in machine learning are allowing neural network algorithms to be
used to improve controller workload evaluation models and thereby also the accuracy of
workload evaluations [8]. Amitabh develops GEOSECT software that assesses controller
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workload and assists in the delineation of control sectors based on GEOSECT assess-
ments [9]. In the same year, a sector capacity evaluation model based on the complexity of
the airspace established using the k-means algorithm divided the workload of the controller
into radar and non-radar control work [10]. Yang divided the controller workload into
four types based on static sector coupling and dynamic sector coupling: background load,
base load, cyclic load, and conflict load, and obtained an improved four-element controller
workload model under the condition of multisector coupled operation [11]. Aiming at the
problem that sector capacity assessment is independent of each other, Li gave a capacity
assessment method under the condition of sector coupling [12].

Most of the popular control sector capacity assessment methods consider only the
controller’s speech, operation, and cognitive load. Moreover, current sector capacity
evaluation models only include the number of aircrafts that can be accommodated in a
sector under normal circumstances, and rarely consider the influence of the weather. There
are a few methods for quantitatively describing the influence of weather on sector capacity,
but they are difficult to use as a reference factor for sector capacity evaluation. In 2011,
RA used the airway convective weather avoidance model to convert the airspace that the
aircraft could not pass into the weather avoidance area, and then used the airway congestion
algorithm to calculate the flow control area. Then the simple average method is used to
converge into the blockage of a single flow control area. The capacity of the flow control
area is defined as: a 100-blocking value, which provides a new idea for the prediction
of sector dynamic capacity under bad weather [13]. Chen proposed a new algorithm
to solve the uncertainty problem of airport capacity under bad weather by using the
opportunity-constrained optimization method. Based on the existing deterministic integer
programming optimization model of airport capacity under bad weather, he established a
chance-constrained model that includes probabilistic sector capacity constraints. Then, in
order to effectively solve such a large-scale opportunity-constrained optimization problem,
a method based on polynomial approximation is adopted [14].

The FAA established the Weather-Impacted Traffic Index (WITI) concept and model in
2004 based on live weather information and traffic demand, and this was developed by the
MITRE company to measure the impact of weather on traffic flow in the US national airspace
system. The WITI is widely used in airspace capacity predictions, and representative
prediction models include capacity prediction using WITI based on traffic flow, predictive
analysis of WITI and flight delays, and capacity prediction methods using WITI to build
scenario trees [15]. However, the classic WITI model only includes the impact of weather on
sector capacity under the influence of thunderstorms. In actual operation, there are many
other types of bad weather conditions that affect flight operations, and these different types
of bad weather will affect sector capacity to varying degrees. In 2019, Zhang proposed a
multi-sector dynamic capacity evaluation method to solve the problem that the existing
capacity evaluation technology is not comprehensive enough. Through the concept of
sector-capacity influencing factors and sector coupling, a workload model of the multi-
sector controller was established. Then, by quantifying the degree of congestion of the
airspace unit, the availability of multiple sectors in severe weather is obtained [16].

This paper proposes a new method to address this problem. We use a modified WITI
model to take into account different types of bad weather in the capability assessment
and identify and quantify the effects. This is then added as a variable to the controller’s
workload model, which is trained using the DNN (deep neural network) algorithm to
obtain more accurate predictions of the sector capacity. This approach leads to the output
results being within a specified error range, which greatly improves their accuracy. In short,
this new method takes into account different types of bad weather, quantifies their severity,
and, more specifically, assesses the sector capacity under the condition of bad weather.

The remainder of this paper is organized as follows: Section 2 optimizes the WITI
model based on the Gaussian mixture clustering algorithm, classifies different types of bad
weather according to different intensities of meteorological radar echoes, and calculates the
weather-influence coefficient. Section 3 adopts the DNN algorithm, with input variables
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such as the selected sector flow, the number of commands, the command duration, the
optimized weather-influence coefficient, and the number of diverted flights used to generate
the controller workload as the output, so as to obtain a more accurate prediction of the
sector capacity. Section 4 presents numerical calculations and simulation experiments.
Finally, conclusions are drawn and ideas for further work are proposed in Section 5.

The architecture diagram of the overall system is shown in Figure 1.
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2. Improved WITI Model Considering Gaussian Mixture Clustering
2.1. Gaussian Mixture Clustering

The finite mixture model (FMM) is a method in which a complex density distribution
is assessed by combining multiple simple distributions. Based on the FMM, the Gaussian
mixture model is obtained by limiting all distributions to the Gaussian distribution [17].

We first perform a cluster analysis of bad weather. It is assumed that sample set
D = {x1, x2, . . . , xn} contains n unlabeled samples. Each sample xi = {xi1; xi2; . . . ; xim}
is a m-dimension feature vector containing echo intensity and weather data informa-
tion. The clustering algorithm divides sample D into k clusters {Cl |l = 1, 2, . . . , k}, where
Cl′ ∩l′ 6=l Cl = ∅ and D = ∪k

l=1Cl . Accordingly, aj ∈ {1, 2, . . . , k} is used to represent the
“cluster mark” of sample xj, xj ∈ Caj. Therefore, the clustering result can be represented by

a cluster label vector
→
a = {a1; a2; . . . ; an} containing n elements; this represents the final

classification result of bad-weather types.
The specific calculation formula is as follows:

P(x) =
k

∑
i=1

λi p
(
x
∣∣µi, ∑ i

)
, i = {1, 2, . . . , k} (1)
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where x is the vector in sample space D (i.e., echo intensity and weather phenomenon
data), λi is the mixing coefficient, and P(x |ui, ∑ i) is the i-th Gaussian distribution that
both points to ui and covariance ∑ i:

p(x|µi, ∑ i) =
exp[−1/2(x− µi)

T∑−1
i (x−µi)

(2π)n/2|∑ i|1/2 (2)

If the values of parameters λi, ui, ∑ i, and i are determined, Equation (2) can be used
to obtain the probability P(x |ui, ∑ i) of each Gaussian component generating sample X
and density p(x) of the Gaussian mixture distribution.

Let sample data set j be used to calculate the probability that the Gaussian component
of generated sample xn according to the Bayesian theorem, and record the largest Gaus-
sian component of γnj as the category of xn. This is based on the principle of Gaussian
mixture clustering.

The parameter estimation takes the maximum-likelihood estimation as the optimiza-
tion objective and uses the expectation maximization algorithm to solve the problem [18].
The initial parameters of Gaussian mixture clustering are set, and the posterior prob-
ability γnj that sample xn a belongs to Gaussian component j is calculated using the
current parameters:

γnj = p(cn = j
∣∣xn)

=
p(cn = j)p(x|µi, j)

P(xn)

=
λi p(xn

∣∣µj, ∑ j)
k
∑

i=1
λi p(x|µi, ∑ i)

(3)

Mean µj and covariance ∑ j are calculated as

λi =
1
N

N

∑
n=1

γnj (4)

µj =

N
∑

n=1
γnjXn

N
∑

n=1
γnj

(5)

∑ j =

N
∑

n=1
γnj(xn − xj)(xn − µj)

T

N
∑

n=1
γnj

(6)

The clustering results are then obtained by iterating to convergence.
The Gaussian mixture clustering model can be used to classify bad weather in the

sector according to the echo intensity and weather phenomenon. By inputting the sample
data of the echo intensity and weather types in the sector, the bad weather is combined
with the WITI model to measure the severity of the bad weather according to the echo
intensity, so as to realize the classification of bad weather and calculate different weather
types. The influence of bad weather on sector capacity can be quantified by using the
weather-influence coefficient according to different categories.

2.2. Improved WITI Model

The WITI has been used to measure the impact of weather on the traffic flow of the
national airspace system of the US, which has demonstrated that it is suitable for large-scale
and long-term weather impact analyses [19].



Appl. Sci. 2022, 12, 10114 5 of 19

In the original WITI model, the sector airspace within the research scope is divided into
several very small areas using a grid, where each area is a computing unit. It is assumed
that the sector airspace network has m rows and N columns, and the grid of the i-th row
and j-th column is denoted as grid ij. This approach means that the continuous sector
airspace system is discretized into grid points.

The weather information and traffic flow information in the grid are calculated and
superimposed on the research sector airspace system. The weather information on grid
ij is recorded as Wij, and the traffic flow information is recorded as Tij. Initially, weather
information refers to severe convective weather, which can be identified and gridded on
the weather radar. Traffic flow information refers to the number of flights passing through
the grid during the t-th time period. Based on the WITI model, the value of WITI (k) during
the k-th time period is

WITI(t) =
m

∑
i=1

n

∑
j=1

Tij(t)Wij(t) (7)

Traffic flow information Tij in the model refers to the number of aircraft flying through
grid ij during the t-th time period of the reference weather, while weather information
Wij(t) is a Boolean variable:

Wij(t) =
{

0, grid ij has no bad weather during time period t
1, grid ij has bad weather during time period t

The classical WITI model can only be used to calculate the effect of thunderstorm
weather on the sector capacity, in terms of the number of flights. However, in the actual
situation, there are many types of bad weather conditions that affect flight operation; that
is, this is not limited to thunderstorm weather. This problem is addressed by using a
Gaussian mixture clustering model to optimize the situation. According to the clustering
results, the bad weather is classified according to the echo intensity, and bad weather of
type a is obtained. By calculating the weather-influence coefficient Wij,a(t) under different
bad weather conditions, the optimized WITI model is obtained:

WITI′(t) =
m

∑
i=1

n

∑
j=1

Tij(t)Wij,a(t) (8)

Wij,a(t) =
F′ij(t)

Fp,ij(t)
(9)

where F′ij(t) is the number of affected aircraft and Fp,ij(t) is the number of scheduled flights
during the t-th time of grid ij.

3. Sector Capacity Evaluation Method Based on the DNN Algorithm
3.1. Route-Availability Model

The route-availability model is first used to identify the flights that need to be rerouted
due to bad weather in the sector. When the aircraft enters the control sector, rerouting,
returning, and forced landing will occur due to the weather. Resolving conflicts between
the rerouted aircraft requires the controller to issue multiple instructions to adjust flight
plans, which will increase the workload of the controller. In addition, the capacity of the
sector changes. The main task in this section is to statistically calculate the number of
rerouted aircraft under different types of bad weather conditions so that the corresponding
sector capacities can be calculated.

According to the theory of maximum flow and minimum cut, when the directions of
the traffic flow in a plane are the same, the maximum flow that can pass in that plane is
not based on the average value, but instead determined by the flow that can pass through
the narrowest place in the plane, that is, the plane bottleneck. Therefore, according to the
theory, it can be assumed that route L is connected to K rectangular regions at altitude level
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I, and the blocking probability of route l at this altitude is determined by the rectangle
with the largest blocking value among the K rectangular regions [20]. Thus, the blocking
probability of route l at altitude level I can be obtained as

qLi = max
1≤D≤k

qLi
D (10)

where qLi is the blocking probability of route L at altitude level i.
If there are m available altitude levels on route L, the blocking probability of route L

under the influence of bad weather can be expressed as

qL =
M
∑

i=1
qLi/M

=
M
∑

i=1
( max

1≤D≤k
qLi

D )/M

=
M
∑

i=1
max

1≤D≤k

[
32
∑

n=1

(
µLi

Dn
dLi

Dn×5.36

)]
/M

(11)

where qL is the blocking probability of route L.
The availability of route L in bad weather is expressed by RAr:

RAr = 1− qL

= 1−
M
∑

i=1
max

1≤D≤k

[
32
∑

n=1

(
µLi

Dn
dLi

Dn×5.36

)]
/M

(12)

In order to facilitate the subsequent calculations and enhance the visibility of the
available capacity of the route, different types of bad weather are classified into grades
1, 2, and 3, and the fuzzy mathematics method is used to classify them. Fuzzy mathematics
is a mathematical method used to investigate certain types of uncertain quantities. There is
no clear numerical boundary to define the grade that each weather type belongs to, which
makes the fuzzy mathematics method inherently suitable for solving this problem.

Fuzzy subsets are set up according to the following requirements: Let U be the universe
of discourse, called mapping µÃ : U → [0, 1] , a 7→ µÃ(a) ∈ [0, 1] , and determine a fuzzy
subset of u where µÃ(a) is called the membership degree Ã of a pair. When µÃ(a) is closer
to 0, it is less likely that a belongs to a, while when µÃ(a) is closer to 1, it is more likely
that a belongs to a; µÃ(a) = 0.5 represents the most-fuzzy condition, also known as the
fuzzy point.

Fuzzy subset Ã is uniquely determined by the membership function µÃ, so they are
considered to be equivalent. For simplicity, Ã and µÃ are usually represented by a.

The Zadeh representation of fuzzy subsets is used:

A =
A(a1)

a1
+

A(a2)

a2
+ . . . +

A(an)

an
(13)

where
A(ai)

ai
means that the membership of ai in fuzzy set a is A(ai).

The following operation steps were performed:

1. Input universe U, which contains 12 bad weather-influence coefficients Wij,a.
2. Fuzzy subset A1 = {bad-weather grade is 1}.
3. When the membership degree exceeds 0.65, the bad weather belongs to a.
4. Repeat steps 2 and 3 to calculate A2 = {bad-weather grade is 3}.

The actual capacity of a route in a sector being influenced by bad weather can be
calculated by using the availability model of the route. The simulation parameters can
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be set in the AIRTOP simulation model, and the flight-restricted area can be delimited to
simulate the actual operation in the sector under bad weather conditions so as to identify
the flights that need to be rerouted under this condition.

3.2. DNN Algorithm

Neural Network (NN) is made up of many human–neural connections that adaptively
change internal node parameters based on input characteristics. Modern NNs are nonlinear
statistical data modeling tools that are often used to model complex relationships between
inputs and outputs or to explore patterns in data [21].

A DNN can be regarded as a basic neural network model with multiple hidden layers
and can be divided into the input layer, hidden layer, and output layer. The layers are
interconnected, in that a neuron in layer i must be connected to a neuron in layer i + 1. The
overall DNN model is generally complicated and difficult to understand, but splitting it up
reveals that the whole structure comprises a single sensing mechanism; that is, the same
linear function z = ∑ wixi + b plus an activation function σ(z). Additional hidden layers
in the DNN model will result in a linear correlation coefficient w and the number of biases
b in the linear relationship of the DNN model increasing.

The 4-layer DNN model was introduced as follows in Figure 2.
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Where the number of input variables was set as 3, the node number at the hidden
layer was set as 4, the connection weight between each two node wk

ij at the k layer between
the i-th node and the j-th node at the next layer

To facilitate calculation, sigmoid is defined as the activation function

H(x) =
1

1 + e−x (14)

The entire model-building process is shown in the flow chart in Figure 3.
The above analysis and description indicate that the DNN algorithm provides a good

research model for studying the nonlinear relationship between multiple variables, and
more accurate results can be obtained through error correction of the algorithm. This
paper addresses the relationship between bad weather and the controller’s workload, for
which there is currently no perfect functional expression. Using the DNN algorithm model
can solve this problem because the relationship between variables does not need to be
preset, and the whole process from input variables to output results can be realized through
the characteristics of its own algorithm. Using the controller workload trained by the
model, the sector capacity under the influence of bad weather can be obtained by using
linear regression.

Input variables included sector flow (S), instruction times (N), instruction duration (I),
optimized weather-influence coefficient (W) calculated using Gaussian mixture clustering,
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and the number of diverted flights (C) calculated using the route-availability model. The
training form was the DNN algorithm, the time update unit was 1 h, and the output data
were the controller workload (L). The structure of the specific model is shown in Figure 4.
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4.1. Data Preparation

The analyzed research data were all of the bad-weather meteorological data of Yinchuan
Hedong International Airport in 2019 provided by the Ningxia Air Traffic Control Branch.
These data comprised meteorological radar echo charts, meteorological information, flight
information, and controller call records. The research data include the bad-weather radar
data of 2019, for which the data were refreshed every 6 min, giving a total of 15,840 data
points. In 2019 there were 97,820 flights at Yinchuan Hedong International Airport. There
are eight routes in the Yinchuan control sector: four approach routes and four departure
routes. The call records of controllers in bad weather during 2019 were extracted, resulting
in 20,460 pieces of data. Radar meteorological data include the date, time, range, and echo
reflectivity. After radar data processing, radar echo reflectivity can be converted into infor-
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mation about the severity of the bad weather. The types of bad weather can be determined
according to the meteorological information for particular days, and information on wind
speed, visibility, cloud base height, and other factors related to bad weather can be obtained
according to the collected METAR messages.

4.2. Results and Analysis
4.2.1. Weather-Influence Coefficient

According to the meteorological data extracted from the METAR messages, it was
determined that the types of bad weather affecting flight operations at Yinchuan Hedong
International Airport mainly include thunderstorms, rain, high-blowing dust, and clouds.
According to the meteorological type, the weather can be divided into three types of bad
weather: cloudy, sand dust (including high-blowing dust weather), and heavy precipitation
(including rain and thunderstorms).

According to the weather radar echo information, the echo colors of weather radar
echo intensities can be divided into a yellow/green system (≥31 and <45 dBZ), red system
(≥45 and <55 dBZ), and purple system (≥55 dBZ). Most of the echo intensity data for bad
weather exist between yellow/green and red systems, with yellow/green data accounting
for 63.26% and red data accounting for 35.87%. The echo intensities were therefore divided
into three grades (Table 1): low, moderate, and high.

Table 1. Echo intensity grades.

Echo Intensity Echo Color Echo Color

Low Light-yellow/green >30 and ≤35 dBZ
Moderate Deep-yellow/green >35 and ≤45 dBZ

High Red >45 dBZ

The weather-influence coefficient in the WITI model was optimized mainly by refining
the bad-weather types, and the severity of weather was expressed in the form of echo inten-
sity. However, there was no suitable measurement relationship between echo intensity and
bad-weather types to classify them. The relationship between the three bad-weather types
and radar echo intensities was investigated using a Gaussian mixture clustering model.

In cloudy weather, the severity of weather can be expressed by the cloud base height,
and so the clustering model used two indexes (cloud base height and echo intensity) in the
clustering analysis; the results are shown in Figure 5.
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According to the clustering results, rainy weather could be divided into four types:
high-cloud-base echo intensity, high-cloud-base echo intensity, middle-cloud-base echo
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intensity, and low-cloud base echo intensity; these types of weather accounted for 21.76%,
53.98%, 13.67%, and 9.59% of cases, respectively.

The visibility can be used to indicate the severity of sand-dust weather, and so the clus-
tering model used two indicators (visibility and echo intensity) in the clustering analysis;
the results are shown in Figure 6.
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According to the clustering results, dust weather could be divided into five types:
high visibility and low echo intensity, high visibility and moderate echo intensity, moderate
visibility and moderate echo intensity, moderate visibility and high echo intensity, and
low visibility and high echo intensity; these types of weather accounted for 7.32%, 37.62%,
33.45%, 12.60%, and 9.01% of cases, respectively.

The severity of bad weather can be expressed by the precipitation in heavy-precipitation
weather, and so the clustering analysis was performed using precipitation and echo inten-
sity; the results are shown in Figure 7.
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According to the clustering results, heavy-precipitation weather could be divided into
three types: low precipitation and low echo intensity, moderate precipitation and moderate
echo intensity, and high precipitation and high echo intensity; these types of weather
with low precipitation and echo intensity accounted for 29.72%, 49.67%, and 20.61% of
cases, respectively.

Therefore, bad weather could be divided into high cloud base and low echo intensity,
high cloud base and low–high echo intensity, middle cloud base and high echo intensity,
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low cloud base and high echo intensity, high visibility and low echo intensity, moderate
visibility and echo intensity, moderate visibility and high echo intensity, low visibility and
high echo intensity, and low precipitation and low echo intensity. There were 12 types
of bad weather with high precipitation and high echo intensity, for which the weather-
influence coefficient could be obtained by calculating the ratio of the numbers of affected
flights to planned flights, as listed in Table 2.

Table 2. Weather-influence coefficients for various types of bad weather.

Type of
Bad Weather (a) Specific Meaning Weather-Influence Coefficient (Wa)

1 High echo intensity and high cloud base (including cloudy weather) 0.19

2 High cloud base and low–high echo intensity (including
cloudy weather) 0.27

3 High echo intensity and middle cloud base (including
cloudy weather) 0.39

4 Low cloud base and high echo intensity (including cloudy weather) 0.51

5 High visibility and low echo intensity (including high blowing and
floating dust weather) 0.21

6 Echo intensity in high visibility (including high blowing and floating
dust weather) 0.32

7
Echo intensity in moderate visibility (including

high blowing and floating
dust weather)

0.41

8 Moderate visibility and high echo intensity (including high blowing
and floating dust weather) 0.48

9 Low visibility and high echo intensity (including high blowing and
floating dust weather) 0.59

10 Low precipitation and low echo intensity (including thunderstorms) 0.57
11 Echo intensity in moderate precipitation (including thunderstorms) 0.72
12 High precipitation and high echo intensity (including thunderstorms) 1

Our approach for optimizing the weather-influence coefficient in the WITI model
has overcome the deficiency of only being able to express the influence of thunderstorm
weather on aircraft flights. The severity of bad weather has been graded and quantified
according to the echo intensity, and so that the weather-influence coefficient can more
accurately and clearly reflect the type and influence of the severity of bad weather in the
study area.

4.2.2. Determination of the Number of Diverted Flights

The types of bad weather classified using a fuzzy mathematics calculation method are
presented in Table 3.

Table 3. Classification of severe-weather grades.

Bad Weather Rating Types of Bad Weather

1 11, 12
2 4, 8, 9, 10
3 1, 2, 3, 5, 6, 7

The route directions of routes are expressed by waypoints at critical points in each
sector. The relationship between the routes and the waypoints at Yinchuan Hedong
International Airport is presented in Table 4.
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Table 4. Route classification.

Route Path Number Path

R1 Exit in the direction of OPULI
R2 Exit in the direction of DOXED
R3 Exit in the direction of DOMVA
R4 Exit in BELIP direction
R5 Go in the direction of OPULI
R6 Advance in the direction of AGVEN
R7 Heading in the direction of IDGOB
R8 LUVKO heading in

The data for 2019 were imported into the AIRTOP software model on a daily basis for
the simulations. The air traffic flow in each route was determined, as was the flow distri-
bution ratio according to the flow passing through the inbound and outbound waypoints.
The statistical results are shown in Figure 8.
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Figure 8. Flow distribution for approach and departure. (a) Departure flow distribution, (b) Approach
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According to the statistical results, the inbound and outbound flights of Yinchuan
Hedong International Airport accounted for 51.21% and 48.79% of the total flights, re-
spectively. The flow distribution ratio on each route could be obtained by combining the
inbound and outbound flow distribution for each route waypoint. The specific distribution
is presented in Table 5.
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Table 5. Statistics of the proportion of route traffic in each route.

Route Path Number Path Proportion of Route Traffic

R1 Exit in the direction of OPULI 2.70%
R2 Exit in the direction of DOXED 13.11%
R3 Exit in the direction of DOMVA 24.80%
R4 Exit in BELIP direction 8.75%
R5 Go in the direction of OPULI 2.80%
R6 Advance in the direction of AGVEN 13.16%
R7 Heading in the direction of IDGOB 26.00%
R8 LUVKO heading in 8.68%

According to the position of the boundary points for the approach and departure
routes, the flight-restricted area of each route was determined in the AIRTOP model. Simu-
lations were performed based on the annual takeoff and landing operations at Yinchuan
Hedong International Airport in 2019, and different restricted areas were designed accord-
ing to the flow direction of the inbound and outbound routes. The specific design details
are shown in Figure 9.
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Figure 9. Schematic diagram of flight-restricted areas of the approach and departure routes.

The opening hours of restricted areas are set according to when bad weather occurs, and
the blocking degree of restricted areas is defined according to the route-availability values.
The flight arrivals and departures in 2019 were simulated according to the route-availability
values calculated under different grades of bad weather. When the restricted areas are opened
and run according to the system settings, the aircraft in the system that is scheduled to fly
over the restricted areas will be intercepted, and the intercepted aircraft will be those that
need to be diverted due to bad weather.

After using the data to train the simulation system, the number of diverted flights on
different routes in different bad-weather grades could be obtained. The specific results are
listed in Table 6.



Appl. Sci. 2022, 12, 10114 14 of 19

Table 6. Numbers of flights affected by bad weather on each route.

Path Number
Grade of Bad Weather

1 2 3

R1 6 3 2
R2 31 15 8
R3 59 29 14
R4 21 10 6
R5 7 4 3
R6 32 16 7
R7 62 31 16
R8 20 11 6

4.2.3. Calculation of Sector Capacity in Bad Weather

The main research data utilized were 20,460 data points extracted from the call records
of controllers in bad weather during mid-2019. The data for 24 June were selected as sample
data, and data for another 10 days were used in the model as training data. Yinchuan
Hedong International Airport is divided into two sectors: inner sector and outer sector.
The operation modes of these two sectors were implemented with a time update unit of 1 h.
The results are shown for sample data on 24 June as an example.

Sector flow (S), instruction times (N), instruction duration (I), and optimized weather-
influence coefficient (W) were calculated by Gaussian mixture clustering, and the number
of diverted flights (C) was calculated using the route-availability model. The training form
was the DNN algorithm, and the time update unit was 1 h.

Before the experiments, we compared the DNN algorithm with the Hybrid Kernel
SVM algorithm. We selected three groups of 360 pieces of data as test samples, and each
group of data is equipped with the evaluation criteria of air traffic control experts. Both
methods only take instruction times (N) and instruction duration (I) as input variables, and
the output is the controller workload.

In the Hybrid Kernel SVM Algorithm, we choose the convex combination form of the
Gaussian kernel function and polynomial kernel function as the hybrid kernel function,
which can theoretically improve the generalization ability and learning ability, and has the
characteristics of two basic kernel functions at the same time. The hybrid kernel function is
constructed as follows:

k(x, x′) = mkpoly(x, x′) + (1−m)krb f (x, x′) (15)

There are 4 parameters to be considered in the proposed hybrid kernel function: the
order d of the polynomial kernel function, the kernel width s of the RBF kernel, the weight
coefficient m and the penalty coefficient C. The final parameter optimization results are as
follows in Table 7.

Table 7. Parameter value result.

Parameter Value

the penalty parameter C 24

the RBF kernel parameter s 2–8

the order parameter d 3

the weight coefficient parameter m 0.57

In the DNN algorithm, according to the relationship between the input variable and
the output variable and the requirement of the target value of the model error, the number
of layers of the hidden layer is determined to be 2. The number of nodes in each layer
is determined by the formula in the range of [2–5], and the size of the evaluation mean
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square error value in each case is obtained according to the calculation. When the number
of hidden layers is 2 and the number of nodes is 3 and 4, respectively, the mean square error
of the system is the smallest 0.2267. Therefore, the model structure of the DNN algorithm
is 2-{3-4}-1. According to the comparison with the expert evaluation criteria, the results of
both methods are as follows in Table 8.

Table 8. Validation results obtained by two methods.

Method Validation Results

DNN algorithm 0.92529
Hybrid Kernel SVM algorithm 0.91835

It can be seen that the accuracy of the two methods is similar in this type of application.
Considering that in the follow-up experiments, the number of variables will increase. The
DNN algorithm can provide a good research model for studying the nonlinear relationship
between multiple variables, and it’s error correction of it can be used to obtain a more
accurate result. Therefore, we choose to use the DNN algorithm in this paper. Ten groups of
1200 pieces of data with input variables were trained using the DNN forward-propagation
algorithm. The input variables of each group were divided into sector flow, talk time of
controllers per hour, talk times, diverted trips, and optimized weather-influence coefficients.
There were 120 pieces of input sample data in each group. The workload of output variable
controllers was calculated, and the output sample data are presented in Table 9.

Table 9. Controller workload after model training.

Time Interval Controller Workload Time Interval Controller Workload

00:00–01:00 626.73 12:00–13:00 2030.94
01:00–02:00 142.99 13:00–14:00 1801.13
02:00–03:00 0 14:00–15:00 1002.32
03:00–04:00 0 15:00–16:00 1465.82
04:00–05:00 0 16:00–17:00 1332.77
05:00–06:00 0 17:00–18:00 1237.27
06:00–07:00 0 18:00–19:00 1576.34
07:00–08:00 932.00 19:00–20:00 2385.04
08:00–09:00 1465.82 20:00–21:00 1576.34
09:00–10:00 1688.11 21:00–22:00 1321.13
10:00–11:00 1702.43 22:00–23:00 1302.36
11:00–12:00 1576.34 23:00–24:00 1002.29

The model calculations have revealed the workload of controllers in the sector of
Yinchuan Hedong International Airport under the influence of bad weather on 24 June
2019. Regression analysis was carried out between controller workload and the number of
aircraft during this period, and the functional relationship between them was determined.
The corresponding sector capacity during this period was calculated by the workload of
controllers obtained in the model training. The calculation results are presented in Table 10.

Table 10. Sector capacities predicted by the model.

Time Interval Sector
Capacity/Route Time Interval Sector

Capacity/Route

00:00–01:00 12 12:00–13:00 22
01:00–02:00 16 13:00–14:00 23
02:00–03:00 20 14:00–15:00 20
03:00–04:00 23 15:00–16:00 20
04:00–05:00 26 16:00–17:00 14
05:00–06:00 27 17:00–18:00 22
06:00–07:00 27 18:00–19:00 24
07:00–08:00 26 19:00–20:00 23
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Table 10. Cont.

Time Interval Sector
Capacity/Route Time Interval Sector

Capacity/Route

08:00–09:00 26 20:00–21:00 16
09:00–10:00 27 21:00–22:00 12
10:00–11:00 27 22:00–23:00 14
11:00–12:00 24 23:00–24:00 16

4.3. Analysis

The capacity prediction results in Table 8 for the traditional WITI model and the actual
traffic verify the feasibility of the present research model. The results are compared in
Figure 10.

Appl. Sci. 2022, 12, 10114 17 of 20 
 

4.3. Analysis 
The capacity prediction results in Table 8 for the traditional WITI model and the ac-

tual traffic verify the feasibility of the present research model. The results are compared 
in Figure 10. 

 
Figure 10. Comparison of typical daily data. 

The time node of the comparison curve was selected from 09:00 to 23:00 on 24 June, 
during which six types of bad weather appeared. This began at 11:00, after which the sec-
tor capacity began to change accordingly; there was no influence of bad weather in the 
sector from 09:00 to 11:00. The predicted results for the traditional WITI model were con-
sistent with the actual observations, and the sector capacity was 27 operations/hour. At 
11:00 the sector capacity predicted by WITI model changed to 19 operations/hour and then 
remained constant. Meanwhile, the predicted results for the DNN model varied from 12 
to 27 operations/hour according to different sector capacities of severe-weather types. In 
order to further compare the prediction fit of the sector capacity between the traditional 
prediction model and the DNN model, representative time segments were selected from 
the database for data comparisons; the results are shown in Figure 11. 

 
Figure 11. Comparison of data over multiple days. 

It can be seen from Figure 11 that when bad weather occurred, the forecasting capac-
ity of the traditional forecasting model was 19 operations/hour, and this did not change 
with different types of bad weather. The forecasts of the DNN model varied from 12 to 23 
operations/hour according to different types of bad weather. This is because, in the tradi-
tional WITI model, the weather-influence coefficient only has a value of 1 or 0; that is, it 
can only identify whether or not there is bad weather in the sector, without quantifying 
its severity. The prediction result for the sector capacity was 19 operations/hour when bad 

Figure 10. Comparison of typical daily data.

The time node of the comparison curve was selected from 09:00 to 23:00 on 24 June,
during which six types of bad weather appeared. This began at 11:00, after which the
sector capacity began to change accordingly; there was no influence of bad weather in
the sector from 09:00 to 11:00. The predicted results for the traditional WITI model were
consistent with the actual observations, and the sector capacity was 27 operations/hour.
At 11:00 the sector capacity predicted by WITI model changed to 19 operations/hour and
then remained constant. Meanwhile, the predicted results for the DNN model varied from
12 to 27 operations/hour according to different sector capacities of severe-weather types.
In order to further compare the prediction fit of the sector capacity between the traditional
prediction model and the DNN model, representative time segments were selected from
the database for data comparisons; the results are shown in Figure 11.
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It can be seen from Figure 11 that when bad weather occurred, the forecasting capacity
of the traditional forecasting model was 19 operations/hour, and this did not change
with different types of bad weather. The forecasts of the DNN model varied from 12 to
23 operations/hour according to different types of bad weather. This is because, in the
traditional WITI model, the weather-influence coefficient only has a value of 1 or 0; that is,
it can only identify whether or not there is bad weather in the sector, without quantifying
its severity. The prediction result for the sector capacity was 19 operations/hour when
bad weather was present and 27 operations/hour when it was not present. The DNN
model adds the optimized weather-influence coefficient to predict the sector capacity under
corresponding conditions according to different types of bad weather, which makes the
prediction result closer to the actual operating situation.

By sorting and analyzing the training data, the sector capacity prediction results under
different types of bad weather could be obtained; the results are presented in Table 11.

Table 11. Sector capacities under different types of bad weather.

Type of Bad Weather (a) Specific Meaning Sector Capacity (Operations/Hour)

0 Normal weather 27

1 High echo intensity and high cloud base (including
cloudy weather) 22

2 High cloud base and low–high echo intensity (including
cloudy weather) 23

3 High echo intensity and middle cloud base (including
cloudy weather) 20

4 Low cloud base and high echo intensity (including
cloudy weather) 18

5 High visibility and low echo intensity (including high
blowing and floating dust weather) 24

6 Echo intensity in high visibility (including high blowing and
floating dust weather) 22

7 Echo intensity in moderate visibility (including high blowing
and floating dust weather) 23

8 Moderate visibility and high echo intensity (including high
blowing and floating dust weather) 23

9 Low visibility and high echo intensity (including high
blowing and floating dust weather) 16

10 Low precipitation and low echo intensity
(including thunderstorms) 16

11 Echo intensity in moderate precipitation
(including thunderstorms) 14

12 High precipitation and high echo intensity (including
thunderstorms and thunderstorms) 12

The input variables of the model are the sector flow, instruction times, instruction
duration, optimized weather-influence coefficient, and the number of diverted flights,
and the output variable is the controller workload. The first three input variables are
basic variables for calculating controller workload, while the weather-influence coefficient
reflects the actual sector capacity affected by weather during the specific time period,
and the number of diverted flights reflects that controllers need to issue instructions to
coordinate aircraft conflicts during this time period.

After model training, the controller workload involves predicting the sector capacity
for the day, and at the same time, the traditional controller model is used to predict the
sector capacity of the day. Comparing the two groups of data with the actual sector
values revealed that the results predicted by the controller workload model considering
the influence of bad weather were more consistent with the actual situation.
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5. Conclusions

This study analyzed a sector capacity model based on an improved WITI index under
the influence of bad weather with the aim of identifying the sector capacity for different
types of bad weather. Weather-radar echo charts and the controller’s call records were
taken as the research objects, and the WITI model was optimized by extracting weather
information data from these charts, so that it can quantify the adverse effects of different
types of bad weather. By combining a route-availability model and AIRTOP software
modeling, the aircraft operations that need to be diverted under bad weather conditions
were obtained through simulations. Finally, the DNN algorithm was used to calculate the
influence of bad weather and the number of diverted flights, so as to obtain the controller
workload in the presence of bad weather, and the sector capacity was calculated according
to the controller workload model.

This research paper has described a theoretical model for calculating the sector capacity
in bad weather. Most importantly, the model can be used to evaluate the sector capacity
more accurately for different types of bad weather. Providing data support for making flight
plans in bad weather will help to improve the punctuality rate of flights and travel efficiency.

At present, this paper studies the capacity of a single airport within a sector, and
the research on severe weather currently focuses on thunderstorms and floating dust.
In future work, we will consider airports with different levels of busyness in different
geographical locations, such as Shanghai Hongqiao International Airport and Chengdu
Shuangliu International Airport, and explore the impact of different bad weather types on
sector capacity.
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