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Abstract: Address matching, which aims to match an input descriptive address with a standard
address in an address database, is a key technology for achieving data spatialization. The construc-
tion of today’s smart cities depends heavily on the precise matching of Chinese addresses. Existing
methods that rely on rules or text similarity struggle when dealing with nonstandard address data.
Deep-learning-based methods often require extracting address semantics for embedded representa-
tion, which not only complicates the matching process, but also affects the understanding of address
semantics. Inspired by deep transfer learning, we introduce an address matching approach based
on a pretraining fine-tuning model to identify semantic similarities between various addresses. We
first pretrain the address corpus to enable the address semantic model (abbreviated as ASM) to
learn address contexts unsupervised. We then build a labelled address matching dataset using an
address-specific geographical feature, allowing the matching problem to be converted into a binary
classification prediction problem. Finally, we fine-tune the ASM using the address matching dataset
and compare the output with several popular address matching methods. The results demonstrate
that our model achieves the best performance, with precision, recall, and an F1 score above 0.98.

Keywords: semantic address matching; deep transfer learning; pretraining model; fine tuning

1. Introduction

Addresses are used to describe a unique spatial location on Earth and are usually
expressed in the form of an addressing system [1]. In recent years, with the rapid develop-
ment of location services, massive amounts of industry data based on addresses as spatial
information have started to emerge. Address matching is a crucial application in address
services, which compares addresses with the same location in different address databases
to obtain the best match with the search address and to determine position on a map [2].
Traditional address matching technology is challenged by the prevalence of high-precision
address matching in urban industries, such as logistics and online taxi services. Therefore,
an effective address matching method is required to facilitate the provision of accurate and
efficient intelligent spatial location services and to promote the development of smart cities.

The pattern of arrangement of address elements varies from country to country. For
instance, the US address pattern is “room number + street + state + country”, and it
performs well in creating a national geodatabase [3]. Japanese addresses, on the other
hand, are coded based on location and geographic relativity, with the overall order being
the opposite of the address pattern used in the US, and generally without “streets” [4]. In
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general, the address patterns of the above countries are nested and relatively standardized.
However, Chinese addresses are relatively more difficult to match due to their complex
context and rules, mainly due to the following reasons: (1) Chinese addresses are written
without separators; (2) Chinese addresses often contain landmarks or POI and topology
(e.g., road intersections); (3) different government departments manage addresses, leading
to confusion; and (4) address assignment and updating lags behind rapid urban renewal [5].
The data objects of this study are Chinese addresses.

Address matching is generally divided into matching based on rule-based or statistical
methods and semantic similarity matching based on machine learning and deep learning.
Character-based approaches match addresses by calculating their string similarity metrics
and then manually establishing a threshold or a particular classifier to identify a match [6,7].
String similarity metrics include edit distance and its variants [8–10], Jaccard similarity
metric [11], and Jaro distance and its variants [12,13]. Among them, Santos et al. compared
13 different string similarity metrics for place name matching and found that adjusting
the similarity threshold was the key to achieving good performance [14]. In addition, the
calculation of cosine similarity between embeddings based on N-grams is also a common
method [15,16]. This method has better performance compared with traditional metrics.
Recently, Yong et al. proposed a normalization method based on the Euclidean distance
between the address to be processed and the address in the standard library, but it is only
applicable to some specific datasets [17]. Another type of methods is address element based,
which segments out address elements by rules or statistical methods and then compares the
address elements and their hierarchy to determine whether they match [18–20]. Lin et al.
point out that the degree of matching of address elements depends on whether they can
be extracted correctly [21]. In general, dictionary queries [22], probability statistics such
as CRF [23] and HMM [24], and creating matching rules [25,26] are the basic ways for
retrieving address elements. Another common method is to construct a decision tree
consisting of matching rules, each corresponding to a path in the tree. Kang et al. proposed
an address matching tree model based on the analysis of the spatial constraint relationship
between address elements; this requirement makes the address model more complex [27].
Focusing on the wrong word separation problem, Luo and Huang suggested a method
based on a trie tree and finite-state machine [28]. The aforementioned techniques, however,
frequently struggle when dealing with nonstandardized (missing address elements or
represented by POI) and complexly structured addresses (such as the Chinese address
feature aforementioned).

In recent years, the area of artificial intelligence has seen tremendous progress in natu-
ral language processing (NLP), most of which is attributable to deep learning’s enhanced
performance. Word2vec [29], ELMo [30], GPT [31], BERT [32], XLNet [33], ERNIE [34], and
ELECTRA [35] are a few of these classical language models. Since addresses as special tex-
tual descriptions, more and more studies in address matching has also introduced natural
language models based on deep learning [36]. Cruz et al. analyzed 41 papers on address
matching published between 2002 and 2021 and discovered that most of the relevant studies
have used deep learning methods. Among them, consistent with the above in this paper,
due to the complexity of Chinese addresses, Chinese address matching accounted for half
of the studies [37].

Comber et al. used CRF and word2vec for address matching to extract the semantics
of addresses without designing complex rules [38]; Zhang et al. provides a convolutional
neural network (W-TextCNN) for Chinese address pattern classification [39]. With the
popularity of gating mechanism neural networks, address matching and normalizing based
on LSTM and GRU have been carried out by an increasing number of researchers [40–43].
Santos et al. used a deep neural network based on bidirectional GRUs for place name
matching [44]; Shan enriched the address context by collecting address data on the Internet
and trained an address representation model with two LSTMs and attention mechanisms
to extract address vectors [45]. While Li et al. incorporated the hierarchical relationship
between address elements into a neural network and proposed a BiLSTM-based multitask
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learning method [46], Chen et al. proposed a contrast learning address matching model
based on attention-Bi-LSTM-CNN networks (ABLC) [47]. Subsequently, more and more
researchers have used the attention mechanism in their address matching models [48–50].
With the popularity of pretrained language models, Lin et al. used the classical enhanced
sequence inference model (ESIM) [51] for address record pair modelling [21], whereas
Xu et al. and Qian et al. used the BERT model. Xu et al. proposed a BERT-based model
for extracting address semantic representations to achieve the fusion of address semantics
and geospatial information [36]; Qian et al. combined BERT and LSTM, and proposed a
hierarchical region-based approach for geolocation of Chinese addresses [52]. However,
all of the aforementioned methods require the extraction of address semantic features to
embedding, and this can affect the effectiveness of address semantic understanding, as has
been demonstrated in the field of NLP [32].

In summary, when dealing with nonstandardized addresses with complicated struc-
tures, the aforementioned approaches still lack a level of comprehension of address seman-
tics, which negatively impacts the accuracy of address matching.

To address the above problems, we use a deep transfer learning approach. First, we
pretrain an addresses corpus so that our address semantic model (abbreviated as ASM) can
learn unsupervised address contexts to better understand address semantics. Then, we
use the address-specific geospatial property to build a labelled address matching dataset,
allowing the matching problem to be converted into a binary classification prediction
problem. Finally, fine-tuning the ASM with the address matching dataset allows the model
to improve its performance significantly.

The contributions of this paper are as follows: (1) A neural network based on a
multihead self-attention mechanism and a permutation-based target task is used to train
the ASM for a large-scale corpus in an unsupervised automated manner. The ASM can learn
address semantics better. (2) A deep transfer learning approach is used to achieve semantic
address matching by fine-tuning the ASM, which improves the matching accuracy. (3) A
semantic address matching dataset construction method is proposed to convert address
matching into a classification prediction task. The method constructs an address matching
dataset with labels using location information as the inference condition. (4) Results
demonstrate that with the transfer learning approach, a better-performing downstream
task such as address matching can also be achieved with microsupervision.

The remainder of this paper is organized in four sections. Section 2 introduces the
materials used in our study, as well as the data processing procedures. The methodology
adopted is also demonstrated in Section 2, including the pretraining and fine-tuning based
on XLNet. The results of our experiments are analyzed in Section 3. Section 4 presents our
conclusions and the future work of this study.

2. Materials and Methods

In this section, we introduce a deep transfer learning approach in NLP and propose
a semantic address matching framework. First, we tokenize all address data to be used
as model input in the pretraining phase. Then, we use the XLNet model [33] to pretrain
the address corpus and make the model understand the address semantics by learning
contextual information. Finally, we construct a supervised dataset for semantic address
matching, fine-tune the pre-trained ASM for address matching, and compare it with
multiple models to evaluate the accuracy of the ASM.

2.1. Dataset

Address records for the raw data were manually collected in 2019 from various
government departments. The geographical area to which this data refers is Shangcheng
District, Hangzhou, Zhejiang Province, China. The address dataset contains a variety of
location description types, including standard addresses, nonstandard addresses, POIs,
road intersections, place name abbreviations, and so on. The preprocessed address dataset
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amounted to 1,552,532, consisting of three fields of address records, longitude, and latitude,
which served as the address corpus for the pretraining phase.

To use the address data for semantic address matching, we created a dataset of address
pairs with labels based on the address corpus. Based on the set of addresses filtered with
the same coordinates, we performed manual matching using a standard address database.
In addition, to give the model better prediction performance and generalization capabilities,
we augmented the dataset with easy data augmentation [51] methods for text classification
tasks, mainly using synonym replacement, address element deletion, and address element
insertion. To improve the robustness of the model, we constructed mismatched address
pairs in the set of address pairs with Jaccard similarity coefficients [11] greater than zero.
We finally obtained a dataset of 64,358 address pairs and corresponding labels, a sample
of which is shown in Table 1. The statistical features of the dataset used for semantic
address matching are shown in the Table 2, where we used the difference in the number
of characters, Levenshtein distance [8], and Jaccard similarity coefficient [11] to show the
similarity of address pairs in the dataset. Unmatched address pairs will perform worse in
terms of text similarity, in line with our common sense.

Table 1. Examples of some data in the labelled address dataset.

Address Sa Address Sb Label

Block 3, No. 15 Haiyue Road, Hangzhou
City (杭州市海月路15号3幢)

Block 3, Haiyue Garden Residential Unit,
Shangcheng District, Hangzhou

(杭州上城区海月花园3幢)
1

Block 3, No. 15 Haiyue Road, Hangzhou
City (杭州市海月路15号3幢)

Hangzhou Haiyue Bathing Centre
(杭州海月洗浴中心) 0

Table 2. Statistical characteristics of the labelled address dataset.

Statistical Characteristics Value

Total number of address pairs 64,358
Number of matching address pairs 32,179

Number of unmatched address pairs 32,179
Average length difference for all the address pairs 4.76

Average length difference for matching address pairs 3.73
Average length difference for unmatched address pairs 5.79
Average Levenshtein distance for all the address pairs 12.16

Average Levenshtein distance for matching address pairs 7.28
Average Levenshtein distance for unmatched address pairs 17.05

Average Jaccard similarity coefficient for all the address pairs 0.46
Average Jaccard similarity coefficient for matching address pairs 0.68

Average Jaccard similarity coefficient for unmatched address pairs 0.24

2.2. Semantic Address Matching Definition

In this paper, we study the address matching in the absence of a standard address
database, referred to as the semantic address matching task. The following description
defines semantic address matching:

Given the address dataset: D = {add1, add2, . . . , addn}, the goal of semantic address
matching is to find each address pair: (addi, addj), satisfying addi

.
= addj, where addi ∈ D,

addj ∈ D, i 6= j, and .
= represent the comparison operator. The operation objects on

either side of the comparison operator refer to the same real-world object with the same
coordinates. It is important to note that no information other than the string itself and its
corresponding geospatial information is utilized in this study to calculate the similarity
of two addresses. Therefore, the task addressed in this study focuses on the problem of
matching addresses with the same location instead of address disambiguation. In addition,
due to the many different representations of the same location, we believe that it is not pos-
sible to achieve a correct match without processing from a natural language understanding
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perspective. Therefore, in our study, “address semantic understanding” refers to the textual
understanding of the address corpus, while “address semantic reasoning” used for address
matching is based on the spatial relationship reasoning of addresses.

2.3. Pretraining Phase Using the Address Corpus Based on XLNet

This section presents a transfer learning-based pretraining model for address seman-
tics: address semantic model (ASM). The ASM is based on the characteristics of Chinese
addresses, combined with the advantages of semantic understanding in deep learning
natural language models. The model takes as input a single character of a Chinese address
that has been tokenized, and uses a multihead self-attention-based semantic extraction
module to help the model understand the semantics of the address with the objective
of permutation unknown character prediction. For the practical training problem result-
ing from the prediction objective, a two-stream self-attention structure for target position
representations is used. The overall structure of the ASM is shown in Figure 1.
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2.3.1. Tokenization of Address Characters

The conversion of Chinese addresses into input that can be received by the ASM is
the basis for training. Since Chinese addresses are not like alphabetic forms of languages,
such as English, they do not have delimiters. Therefore, most Chinese address studies
start with the segmentation of address elements. Due to the unique hierarchy of addresses,
partitioning addresses into various address elements is already a problem worth studying.
Our study, however, aims to convert the complex address matching into a classification
problem that can be automated for computer computation. Although the commonly used
SentencePiece method [53] in NLP can automate the segmentation of Chinese addresses
by counting high-frequency co-occurring characters combined into subword units and
constructing dictionaries, the subwords obtained by its segmentation are too long, and
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some of the segmented words do not conform to the common sense of Chinese addresses,
which will affect the semantic understanding during pretraining.

We therefore use the Basic Tokenizer, which tokenizes a character as a unit. It separates
words and symbols according to spaces. We first add blank characters before and after
each character of the address. Then the characters are matrix-transformed according to the
lookup table to become the input of the one-hot encoding, and the activated dimensions in
the one-hot encoding are the index number corresponding to the character in the dictionary
key–value pair. In this study, two dictionaries—one with non-Chinese characters and the
other with solely Chinese characters—are created once the individual characters from each
address have been obtained. These dictionaries have 9425 and 3491 characters, respectively.

2.3.2. Objective of Permutation Unknown Character Prediction and Two-Stream
Self-Attention Structure

The objective of permutation language modeling is derived from the XLNet model [30].
Without altering the character order of the original text, the target employs rearrangement
to sabotage the index order of text descriptions. This training target not only preserves
the high-order and long-range dependencies present in the text context, but also improves
on the disadvantages of past autoregressive language modeling’s targets that could only
exploit unidirectional contexts (forward or backward), enabling a pretrained model to
utilize deep, bidirectional contextual information more effectively. Addresses, as special
natural languages incorporating geospatial information and hierarchy, need to fully utilize
the bidirectional contextual information, so we use a permutation language model objective
for pretraining the address corpus.

Specifically, we assume that given an address record X of length T, there are a total of
T! sequences of permutations. If all permutations are traversed and the parameters of the
model are shared, then the model must be able to learn the context of all positions. We take
a simplified address record, for example, “Hangzhou Underwater World” (“Hang Zhou
Hai Di Shi Jie” in Chinese pinyin), and predict the third character “Hai” in a different order,
as shown in Figure 2. In Figure 2b, for instance, the address permutation is disordered as
3→2→4→1→6→5, so when predicting “Hai”, there is no address context character, and
the prediction can only be made based on the previous hidden state. For Figure 2f, the
“Hai” (3) character learns all five context characters except itself.

The objective function of XLNet is to maximize the log-likelihood function of the target
subsequence conditional on the nontarget subsequence:

max
θ

Ez∼ZT [log pθ(Xz>c|Xz≤c)] = Ez∼ZT

[ |z|

∑
t=c+1

log pθ(xzt |XZ<t)

]
(1)

where ZT denotes the set of all permutations of the index of an address record of length T;
z ∈ ZT is one of the sequences of indexed permutations, where zt denotes the t-th element
of the sequence of indexed permutations, and z<t denotes the first t-1 elements of z;
Ez∼ZT denotes the maximum Expectation; and pθ denotes the predicted probability. In
addition, XLNet used the partial prediction optimization. It slices a permutation z into two
subsequences, z≤c and z>c, where c is the slice point that slices the two subsequences into a
nontarget sequence and a target sequence, respectively.

While the above objective of permutation unknown character prediction works well
for understanding address semantic by removing ambiguity from the target prediction,
it creates the problem that the model does not know the position of the character to be
predicted in the original address record. Therefore XLNet [33] introduces a two-stream
self-attention structure to let the model know where the character to be predicted is located
explicitly, which consists of two sets of hidden representations instead of one. The two
streams of representations are updated with a shared set of parameters as follows:
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g(m)
zt ← Attention(Q = g(m−1)

zt , KV = h(m−1)
z<t ; θ), (query stream : use z but cannot see xzt) (2)

h(m)
zt ← Attention(Q = h(m−1)

zt , KV = h(m−1)
z≤t ; θ), (content stream : use both zt and xzt) (3)

where Q, K, V denote the query, key, and value in an attention operation [54]; hzt

denotes the content representation, which serves a similar role to the standard hidden
states in Transformer, and gzt denotes the query representation, which only has access to
the contextual information Xz<t and the position Xzt , but not the content Xzt .
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In addition, we employ Transformer-XL with a multihead self-attention mechanism
as an address semantic feature extractor [55]. Transformer-XL integrates two important
techniques, namely, the relative positional encoding scheme and the segment recurrence
mechanism. This allows for better adaptation to the two-stream attention permutation
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language model. As the number of semantic feature extraction structures affects the
performance of the model in subsequent experiments, each layer of the Transformer-XL
module is tentatively defined in this section as the address-transformer module.

2.4. Fine-Tuning for Semantic Address Matching

Fine-tuning is an implementation of deep transfer learning, which refers to adding
task-relevant structures and parameters to an already-trained model, and then retraining
on a task-relevant corpus [56]. We therefore used a newly constructed labelled address
matching corpus for the semantic address matching, adding a new neural network structure
for a fine-tuned learning model and training framework based on the classification task.
The network structure is first superimposed with a layer of fully connected feedforward
neural networks for nonlinear transformation, with an activation function of tanh, which is
mathematically formulated as follows:

t(x) =
ex − e−x

ex + e−x (4)

After obtaining the probability distribution features using the fully connected neural
network, we then connected the fully connected neural network without the activation
function for linear transformation. Since semantic address matching is a binary classification
task of whether to match, the output of this layer is two-dimensional. Finally, we passed the
output probability distribution score of this layer into the SoftMax normalization function
to predict the probability of matching or not matching the address pair, respectively. We
designed the deep semantic address matching model (abbreviated as DSAMM) with the
following objective function. Here, given that the size of the number of address string pairs
per batch iteration is batch_size, the predicted probability output is prob(batch_size,2), and
the true label sequence is label(batch_size), the true label probability for each address pair is
as follows:

true_prob(batch_size) = gather(prob, Label) (5)

The final objective function is obtained by taking logarithmic values of the probabilities
and then summing them (i.e., log transformation) and averaging them. The objective
function is specified below:

∑batch_size
i=1 log(true_prob[i])

batch_size
→ 0 (6)

The accuracy metrics used in this study include precision, recall, and F1 score [57].
Precision calculates the proportion of true positive samples out of those predicted to be
positive; recall reflects the rate at which positive examples in this are predicted to be
accurate and, in semantic address matching, refers to the percentage of correctly matched
pairs out of all address pairs that should be correctly matched; and the F1 score is the
harmonic mean of precision and recall.

3. Results and Discussion
3.1. Address Semantic Model Pretraining

We examine the semantic understanding effectiveness of the ASM by examining
the prediction accuracy of address characters for permutation language objective. In the
experimental design, we refer to the influencing factors of pretraining in a study by Xu et al.
and use the number of address-transformer modules and whether the numbers in the
address records are replaced with uniform identifiers as the independent variables for the
analysis of the pretraining hyperparameters [36]. The purpose of the experiments in this
section is to validate the effectiveness of the ASM without testing or predicting it, so only
the training set and the verification set are required for pretraining the model. Due to
the large address corpus, we set the proportions of training set and verification set to be
approximately 99% (1,537,532) and 1% (15,000), respectively.

The optimal values for the relevant hyperparameters were determined by drawing
on previous studies of pretrained language models and previous experiments. It is shown
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in Table 3. In terms of the number of address-transformer modules, we set the number
of modules to 6, 8, 10, and 12 to observe the performance of the target task in different
situations. As shown in Figure 3, the training loss gradient for different numbers of modules
decreases rapidly until about 40k steps, and then keeps decreasing slowly and gently in
the following iterations, and basically levels off in the last 40k steps, indicating that the
ASM instances have been adequately trained. Additionally, the comparison of each ASM
instance reveals that the positions of the four curves overlap more, which indicates that the
number of address-transformer modules has little influence on prediction performance. As
shown in Table 4, the accuracy of the model validation under the above four comparisons
ranged from 90.5% to 91.5%, and the target accuracy increased slightly with the number of
modules, indicating that the more the number of address-transformer modules, the better
understanding of address semantic. However, due to the tiny increase in accuracy and the
large increase in training time, building six layers of modules was the most cost-effective
option. The findings of this study are consistent with those of Xu et al. [36].

Table 3. Setting values for each hyperparameter of the ASM.

Hyperparameters
Are Numbers Replaced with “CODE|”

Replaced Not Replaced

num_address_transformer_module 12 6, 8, 10, 12
batch_size 32 32

hidden_size 768 768
num_head 4 4
dim_head 8 8

FFN_hidden_size 2048 2048
Dropout 0.1 0.1

K 3 3
sequence_len 32 32

mem_len 24 24
η 0.00005 0.00005

epoch 4 4
voc_size 3491 9425
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Table 4. Values for the ASM indicator for a different number of address-transformer modules.

Number of Address-Transformer Modules Training Time Training Loss Mean Evaluation Loss Accuracy

6 6 h 19 m 36 s 0.3864 0.3615 90.62%
8 8 h 21 m 54 s 0.3395 0.3258 90.98%
10 10 h 23 m 5 s 0.3016 0.3003 91.21%
12 12 h 32 m 45 s 0.2831 0.2793 91.47%

Considering that most of the numbers in the address records have only geospatial
property and no semantic information (e.g., “No. 116 Tianmushan Road” and “No. 226
Tianmushan Road”, there is no difference in their contexts other than numbers, so the model
cannot make accurate predictions at all. Therefore, we replaced all Arabic numerals in the
address corpus with a uniform identifier: “CODE”. Since Xu et al. [36] used BERT [32] to
construct the ALM for pretraining the address corpus, we used their method for comparison.
Figure 4 shows a comparison of the training loss gradient curves of the replaced and
unreplaced “CODE” corpus under the ASM. The training loss curve of the model with the
“CODE” replacement is always below the original address corpus, demonstrating that the
numbers confound the predictive target of the model and reduce the predictive power of
the model. As can be seen from Table 5, the prediction accuracy of the ASM increased by
approximately 7 percentage points after the replacement with “CODE”. In addition, when
compared with the ALM, our model’s prediction accuracies all improved, indicating that
the ASM performs better in understanding address semantics.
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Table 5. The prediction accuracy of the ASM and the ALM in the validation datasets.

Prediction Accuracy Without “CODE” Replacement “CODE” Replacement

ALM [40] 90.31% 97.22%
ASM 91.47% 98.53%

3.2. Fine-Tuning for Semantic Address Matching

To explore whether there is overfitting, we tested the validation dataset by fine-
tuning it while also spacing the number of iterations by 500, and determined the set of
hyperparameters that worked best. In this study, 80% of the data were randomly taken
as the training dataset and the remaining 20% as the validation dataset. The loss gradient
curves for training and validation are shown in Figure 5.
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Figure 5 shows that the training loss value of the DSAMM decreases rapidly before
the steps of training iterations are 1k, indicating the model’s excellent learning ability and
ability to make a good assessment of whether address pairs match even before the dataset is
entirely learned. This has inspired us to investigate whether better matching can be achieved
even with microsupervision, that is, with a small amount of supervised training data.

Between 2k and 6k training iteration steps, the training loss value decreases more gently
and steadily, indicating that the model is still learning the task objectives for the super-
vised data. Between the final 6k and 8k, the training loss values have largely flattened
out, demonstrating that the DSAMM instance has been sufficiently learned by that number
of iterations to warrant further training. The final training loss values ranged from 0.01
to 0.05, indicating that the fine-tuning training was effective, and the exact metric values
will be discussed further in the subsequent comparative experimental analysis. In addi-
tion, the trend of the loss values is like that of the training loss values, with a “high rate of
decline—slow decline—gradual levelling off”. The final loss values for the validation datasets
range from 0.04 to 0.05, indicating that there is no overfitting. We selected the optimal iteration
step of the validation datasets as the DSAMM instance after training 8 epochs.

We set up comparative experiments with various gradients of the proportion of train-
ing sets to examine whether the DSAMM only needs a limited number of labelled training
datasets to attain high matching precision. Figure 6 displays the matching prediction preci-
sion with 1%, 5%, 10%, 15%, and 20% of the original training datasets. When employing
only 15% of the initial training set of labelled address pairings, the DSAMM achieves
a matching precision of above 0.80, and 0.84 when using 20%. It demonstrates that the
DSAMM can perform well in weakly supervised learning, most likely due to the transfer
learning employed in our study. Our model has fully understood the address semantics
using self-supervised learning in the pretraining phase, and when then fine-tuned for
task-based learning using partially supervised data, it is able to combine the advantages of
the two phases mentioned above, allowing the model to perform at a high level on the task
with less supervised training data. This also coincides with the research that first proposed
the idea of pre-training [58].
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3.3. Comparative Experiment Analysis of the Address Matching

To evaluate the semantic address matching performance of the DSAMM we pro-
posed, several baseline models were selected for comparison. The methods compared
include character-based matching methods, machine-learning-based matching methods,
and deep-learning-based matching methods, where the character-based matching meth-
ods in this paper use Levenshtein distance [8], Jaccard similarity coefficient [11], and Jaro
similarity [12] to measure string correlation, followed by a random forest (RF) classifier [59]
and a support vector machine (SVM) classifier [60] to determine whether the address pairs
match. In terms of comparing machine-learning-based matching methods, we compared
with the method proposed by Comber et al. [38]. It uses CRF to label the address elements,
then uses word2vec for embedding, and applies RF and SVM for classification prediction.
In terms of deep-learning-based matching methods, we compared with the method pro-
posed by Lin et al. [21]. It uses a two-stage model, with the first stage using word2vec to
obtain embeddings of address pairs for use as input to the next stage of the deep neural
network, and the second stage using a typical deep learning model for interaction-based
text matching, ESIM [47], which is directly for address matching.

The results of the comparison of the three metrics for each method are shown in Table 6.
As the F1 score is the most representative and important evaluation metric, we present
the F1 scores for each method in the form of a bar chart for a more visual comparison.
As shown in Figure 7, the Jaccard similarity coefficient stands out when using a string-
similarity-based approach for the semantic address matching. The classifier employing RF
as the task regularly outperforms SVM, and this is also true for the other two groups using
machine learning techniques, according to performance comparisons.

When comparing the machine-learning-based matching methods, the CRF method
performs worse, probably because the pretraining corpus is more susceptible to influence.
In addition, the performance of the machine-learning-based matching methods did not
outperform the string-based matching methods, which may be since Comber et al. used
relatively generic English addresses, whereas Chinese addresses have their own uniqueness
and, therefore, lead to different conclusions [38].
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Table 6. Comparative evaluations of different address matching methods in precision, recall, and F1 score.

Comparison Methods
Predictive Results

Precision Recall F1 Score

Levenshtein distance + SVM 0.849 0.795 0.822
Levenshtein distance + RF 0.875 0.819 0.847
Jaccard similarity coefficient + SVM 0.890 0.881 0.885
Jaccard similarity coefficient + RF 0.914 0.911 0.912
Jaro similarity + SVM 0.902 0.807 0.854
Jaro similarity + RF 0.891 0.858 0.874
word2vec + SVM 0.832 0.762 0.797
word2vec + RF 0.910 0.879 0.895
CRF + word2vec + SVM 0.826 0.751 0.788
CRF + word2vec + RF 0.895 0.846 0.871
word2vec + ESIM 0.969 0.961 0.965
DSAMM 0.987 0.982 0.984
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The deep learning method of “word2vec + ESIM” outperformed the string-similarity-
based and machine-learning-based methods in a comparison of results, with all the three
evaluation metrics having values above 0.96. This shows how the deep learning framework
can significantly increase the accuracy of the semantic address matching. All the final
metric values attained by training the DSAMM instances in our study were above 0.98,
with the F1 value coming in at 0.984, which represents a notable improvement in prediction
evaluation values and the best metrics. This suggests that the migration learning model
used in this work can effectively increase the accuracy of semantic address matching.
Additionally, we constructed the model without segmenting the address text for elements,
which significantly increased the effectiveness of address matching.

4. Conclusions

In this study, we built the ASM with strong address semantic understanding using a
pretraining approach to semantic modelling of a vast and complicated address corpus. We
introduced a fine-tuning approach in deep transfer learning to achieve a high accuracy of
semantic address matching. The main conclusions of this study are as follows:
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1. The ASM was constructed using a self-supervised pretrained language model. The
experimental results demonstrate that the ASM can achieve a high level of accuracy
with the objective of predicting unknown characters.

2. The DSAMM was constructed using the fine-tuning approach in deep transfer learning.
The results of the comparison experiments showed that the DSAMM performed the
best, with all the metrics above 0.98.

3. It is shown that utilizing deep transfer learning, high address matching accuracy can
be attained with only a few labelled training datasets.

However, this study has some limitations. (1) We treated each address record as a
sentence, which resulted in the hierarchy of addresses being ignored; (2) our experimental
area was limited to a city, which ignored the ambiguity of place names. Therefore, in
a future work, we will consider, first, studying how to ensure the accuracy of address
matching when there are semantic similarities or ambiguities in addresses at a larger
regional scale, and, second, trying to introduce geographical information associated with
addresses and learning external knowledge to assist in achieving better address matching.
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