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Abstract: In recent years, the scale of knowledge graphs and the number of entities have grown
rapidly. Entity matching across different knowledge graphs has become an urgent problem to be
solved for knowledge fusion. With the importance of entity matching being increasingly evident, the
use of representation learning technologies to find matched entities has attracted extensive attention
due to the computability of vector representations. However, existing studies on representation
learning technologies cannot make full use of knowledge graph relevant multi-modal information. In
this paper, we propose a new cross-lingual entity matching method (called CLEM) with knowledge
graph representation learning on rich multi-modal information. The core is the multi-view intact
space learning method to integrate embeddings of multi-modal information for matching entities.
Experimental results on cross-lingual datasets show the superiority and competitiveness of our
proposed method.

Keywords: knowledge graph; cross-lingual entity matching; knowledge graph embedding; representation
learning

1. Introduction

Knowledge graphs [1] are attracting attention from both academics and industries
due to their power to model structured information and professional knowledge. In recent
years, many high-quality knowledge graphs have been built, such as Microsoft Concept
Graph [2], NELL [3], Zhishi.me [4], etc. Knowledge graphs have been widely used in many
vertical fields [5], e.g., finance, medical and e-commerce. Knowledge graphs and their
related technologies have gradually become indispensable basic technologies in the era of
artificial intelligence.

However, a knowledge graph can be freely constructed by any organization or individ-
ual according to their own needs and languages. Therefore, the data in a knowledge graph
can be multilingual and diverse, and there is a large amount of overlapping knowledge
and complementary information across different knowledge graphs. To better utilize such
various knowledge, knowledge graph matching has attracted the attention of more and
more researchers. The purpose of knowledge graph matching is to integrate different
knowledge graphs to form a global knowledge base and establish interoperability between
the applications based on different knowledge graphs, especially in the fields of information
retrieval, machine reading and knowledge base question answering [5].

The research of knowledge graph matching starts with traditional ontology match-
ing [6], namely matching classes and properties in the schema level of knowledge graphs.
More recently, with the fast development of knowledge graphs, the number of entities has
increased rapidly. As a result, the entity matching between different knowledge graphs is
becoming more and more important to overcome the heterogeneity problem. The process
of entity matching decides whether two entities from different knowledge graphs are the
same object or not. Owing to the growing number of multilingual knowledge graphs
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due to information globalization, entity matching across multilingual knowledge graphs
(namely, cross-lingual entity matching) is becoming an urgent sub-problem to be solved for
multilingual intelligent applications.

As part of the technologies on knowledge graph representation learning, cross-lingual
entity matching has become much easier since we only need to train vector representations
of entities from the knowledge graphs of different languages and then decide whether
two entities are matched by computing vector similarities. Most of existing studies on
cross-lingual entity matching with knowledge graph representation learning only use the
structural information of the knowledge graph, i.e, the relation triples in the form of entity,
relation, entity to learn the structural embedding of entities. For example, MTransE [7] uses
TransE to map two knowledge graphs into their respective vector spaces and then learns
the mapping relationship between knowledge graphs. IPTransE [8] and BootEA [9] use
iterative methods to continuously discover new matched entities with updated embeddings.
In addition to relation triples, some works also consider attribute triples, such as JAPE [10],
etc. In addition, KDCoE [11] and HMAN [12] use the text descriptions of entities as the
supplement of relation triples to realize entity matching. EVA [13] incorporates images as
the complement to align entities across different knowledge graphs.

Although the existing entity matching methods based on representation learning
have made remarkable achievements, they still have the following two problems. Firstly,
the existing entity matching methods cannot make full use of knowledge graph relevant
muti-modal information. Most of them only use the relation triples in knowledge graphs
but seldom use other modal information, such as attributes, texts, images, etc. Such
information has its own characteristics and can provide useful information for entity
representations from different perspectives. For example, text description can provide rich
textual context information for entities, and images can provide concrete visual information
for entities. Secondly, it is difficult for the existing entity matching methods to integrate
the representation learning methods from different modalities. Due to the heterogeneity of
cross-lingual knowledge graphs, the representations of entities, relationships, attributes
and images with the same meaning in different knowledge graphs may be completely
different. That means the entity representation learning from each single modality is
insufficient and complementary. Therefore, an effective entity matching method requires
dealing with this insufficiency and integrating the information from different modalities.

To address the above problems, we propose a new cross-lingual entity matching
method (called CLEM) using knowledge graph representation learning which integrates
the rich multi-modal information. The motivation is that the representation of one entity
from each single modality (called view) can only capture the partial entity information,
while different views describe different aspects of the entity and may share some common
redundant information. Therefore, the entity representations can be learned from each
particular view and jointly optimized to improve the representation learning (i.e., entity
embedding learning) performance. We first attempt to perform representation learning
on relation triples, attribute triples, entity text descriptions and images. Then we apply
multi-view intact space learning (MISL) [14] to combine multi-modal information of en-
tities and conduct entity matching on cross-lingual datasets. The main contributions are
summarized as follows:

• We leverage four views including relations, attributes, text descriptions and images
to learn entity representations, and each view corresponds to an independent learn-
ing model;

• We apply multi-view intact space learning to solve the insufficiency in each indi-
vidual view and integrate the multi-modal view information to obtain the entity
representation in the intact space;

• We perform experiments on cross-lingual datasets and evaluate our CLEM with
different evaluation metrics. The experimental results show that the proposed method
outperforms the state-of-the-art methods in most evaluation criteria.
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2. Related Work

We discuss two lines of works that are relevant to this paper.
Knowledge Graph Representation Learning. In recent years, knowledge graph rep-

resentation learning has attracted the attention of researchers. The current representation
learning models can be roughly divided into three categories, which are translation-based
models, semantic matching models and neural-network-based models. The typical meth-
ods of translation-based models are TransE [15] and its improved models TransH [16] and
TransR [17]. The core idea of TransE is to regard the relationship as the translation from
the head entity to the tail entity. For any relation triples in the knowledge graph, TransE
expects that the head entity vector plus the relation vector equals the tail entity vector.
The semantic matching models use similarity functions to infer relational facts, e.g., the
Hadamard product in ComplEx [18] and the circular correlation in HolE [19]. The neural-
network-based models exploit deep learning techniques for knowledge graph embedding.
For example, ConvE [20] is a multi-layer convolution neural network which learns the
representation through deep network structure and convolution operations; R-GCN [21]
is a relational graph convolution neural network which generates the representation by
convolving semantic information on the local graph structure. All the above models fo-
cus on relational facts and are mostly evaluated by the task of link prediction in a single
knowledge graph.

Entity Matching. With the emergence of various knowledge graphs in different
domains, entity matching, especially cross-lingual entity matching, is becoming more
and more important to solve the problem of heterogeneity. Entity matching decides
whether two entities of different knowledge graphs refer to the same object. Ref. [22]
transforms the entity matching problem based on attribute similarity scores into a multi-
classification problem, which is divided into matching, possible matching and mismatching,
and establishes the probability model of the entity matching problem. Although the above
method is simple and intuitive, it requires sufficient labeled matching entity pairs and
the corresponding annotation costs. Additionally, the calculation of feature similarities
is often interfered with by semantic heterogeneity among different knowledge graphs.
Recently, the use of the embedding models to match the entities across cross-lingual
knowledge graphs has attracted extensive attention. JE [23] uses the model TransE to
embed two independent knowledge graphs into the same vector space; MTransE [7] jointly
trains a translation embedding model to encode language-specific knowledge graphs
in separate embedding spaces and align counterpart entities across embeddings. Some
studies also consider other aspects of the entity for the matching task. Some of them
(e.g., MultiKE [24] and DAEA [25]) consider the name and structure of entities; others
(e.g., JAPE [10], GCN-Align [26], AttrE [27] and RAKA [28]) consider entity attributes;
some works (e.g., KDCoE [11] and HMAN [12]) consider the text descriptions of entities.
Moreover, EVA [13] incorporates images along with structures, relations and attributes to
align entities across different knowledge graphs.

3. Method
3.1. Problem Definition

In this paper, we study the cross-lingual entity matching using knowledge graph
representation learning, which aims to learn the multi-view entity embeddings based on
different modal perspectives (i.e., views). We consider four views for the entity embedding,
including relation view, attribute view, description view and image view. Based on these
views, we formalize a knowledge graph as a 6-tuple G = {E, R, A, L, X, I}, where E, R, A,
L, X and I are respectively employed to represent entities, relations, attributes, attribute
values, entity text descriptions and images of knowledge graph G.

The problem of entity matching based on knowledge graph representation learning
can be defined as follows: Assuming G1 and G2 are, respectively, employed to represent
two different knowledge graphs.
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G1 = {E1, R1, A1, L1, X1, P1} (1)

G2 = {E2, R2, A2, L2, X2, P2} (2)

S denotes the set of known equivalent entity pairs from G1 and G2, and ≡ denotes the
equivalent relation.

S = {(e1, e2)|e1 ∈ E1, e2 ∈ E2, e1 ≡ e2} (3)

We obtain the embedded representation of each entity from G1 and G2 by using the
representation learning model of different views and integrate the multi-modal information
from each view to generate the final entity representation. Assuming E1 and E2 respectively
represent the embedding matrix for the set of all entities E1 and E2, then, the function =
computes the similarities between the entity representations to find the equivalent entity
set M.

M = =(E1, E2) (4)

The purpose is to find a set M that contains all matched entity pairs which do not
belong to the known set S.

M = {(e1, e2)|e1 ∈ E1, e2 ∈ E2, e1 ≡ e2, (e1, e2) /∈ S} (5)

3.2. Overall Framework

Our framework is shown in Figure 1 and consists of two parts: entity representation
learning in different views and multi-view entity matching.

Figure 1. The framework of entity matching. G1 and G2 denote different knowledge graphs, MISL
means multi-view intact space learning, and we use MISL to integrate entity information from
different modalities.

Entity Representation Learning in Different Views. We make full use of the knowl-
edge graph, extracting the entity information from the relation view, the attribute view,
the description view and the image view.

Multi-view Entity Matching. Since the embedded representations of entities from a
single view only capture partial entity information, we employ multi-view intact space
learning to integrate the complementary information from each view, which obtains the
multi-view embedded representations. We utilize the K-nearest neighbor algorithm [29] to
find out all matched entity pairs.

3.3. Entity Representation Learning in Different Views

This part consists of the entity embedded representations from four views. We study
the embedding models for different views, respectively.
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3.3.1. Relation View

Relations are an important part of a knowledge graph, since the relation view describes
the structures among different entities. The translation-based knowledge graph embedding
model shows its power in characterizing such relational structures [30]. Therefore, we em-
ploy the TransE [15] model, which has good generalization capability, to embed knowledge
graphs from the relation view. Assuming G1 and G2 denote the two knowledge graphs to
match, the translation score could be obtained as below:

frel(h, r, t) = ||h + r− t||22 (6)

where T = (h, r, t) denotes a relation triple in G ∈ {G1, G2} such that h means the head
entity, t means the tail entity, and r means the relation. To learn the common embeddings
of entities and relations, we embed two different knowledge graphs into the same vector
space. The learning objective of the model can be achieved by minimizing the following
margin-based [31] loss function :

Lossrel = ∑
G∈{G1,G2}(h,r,t)∈G

|| frel(h, r, t)− frel(h̃, r, t̃) + γ||+ ∑
(e1,e2)∈S

||e1 − e2|| (7)

where (h̃, r, t̃) is the negative example obtained by randomly replacing the head entity or
tail entity in (h, r, t) with another entity, S means the known equivalent entity set, which is
defined in Section 3.1, and γ is the margin parameter describing the boundary between
positive and negative examples.

3.3.2. Attribute View

The attribute view characterizes attribute and attribute value information of entities.
There are word abbreviations in attributes and cross-lingual differences in attribute values,
which make entity matching based on the attribute view quite difficult. To leverage the
information of attributes and attribute values to help match entities, we use a graph
convolutional network (GCN) [32] to encode the neighbour attributes and attribute values
into the the low-dimensional representations of the given entities. GCN can perform feature
extraction on arbitrary graphs and will not be affected by the number of neighbour nodes
associated with entities.

Firstly, we construct the entity attribute graph. All attribute triples are classified based
on the head entity, i.e., attribute triples of the same head entity are grouped together. Then,
for an entity e, we collect all its attributes and attribute values. We combine each collected
attribute and its corresponding attribute value as a neighbour node of the entity node in
the entity attribute graph. Figure 2 shows an example of the entity attribute graph for the
entity “Donald Trump”.

Secondly, we adopt GCN to encode attributes and attribute values into the representa-
tions of entities. We initialize the vector representations of entities, attributes and attribute
values using the pre-training model BERT [33]. BERT is a multi-layer bidirectional Trans-
former encoder, and we use its original implementation, the BERT-base model. To obtain
the representation of each neighbour node for the entity node in the built entity attribute
graph, we perform element-wise multiplication between the vectors of attributes and at-
tribute values, respectively. Afterwards, GCN is utilized to conduct convolution operations
as follows:

H(l+1) = ReLU(D̂−
1
2 ÂD̂−

1
2 H(l)W(l+1)) (8)

where H denotes the feature matrix of all nodes, each row in H is the vector representation
of a node, A is an adjacency matrix showing the connectivity between nodes, Â = A + I, I
is the unit matrix, D̂ is the diagonal matrix of Â, W is the weight matrix, and l means the
l-layer. We choose ReLU = max(0, x) for the activation function.
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Figure 2. The example of the entity attribute graph for the entity “Donald Trump”.

Owing to the single-layer structure of the entity attribute graph, we assign a single-
layer GCN for each knowledge graph to encode attributes and attribute values into the
representations of entities. Specifically, given two knowledge graphs G1 and G2, the objec-
tive can be achieved by minimizing the following margin-based loss function:

Lossattr = ∑
(e1,e2)∈S

[ f (e1, e2)− γ1]+ + ∑
(e1
′ ,e2
′)∈S′

[γ2 − f (e1
′, e2
′)]+ (9)

where [x]+ means max{0, x}, f (x, y) means the L2 distance of vector x and vector y, (e1
′, e2
′)

is a negative example obtained by randomly replacing one of the two entities in (e1, e2)
with another entity, and γ1/2 is the margin parameter describing the boundary between
positive and negative examples.

3.3.3. Description View

The description view contains rich textual semantic information, which is difficult
to obtain from other views. To extract such semantic information from the description
view, we encode the entity text descriptions through two steps. Firstly, the embedded
representation of words in the entity text descriptions is obtained by using a pre-training
model. After pre-training, the description of each entity will be converted into a vector
sequence, which will be input to the description encoder, and then the encoder will output
the embedded representation of the entity text description. The details are as follows:

For the pre-training language model, we also use BERT which is proposed by De-
vlin et al. [33]. As for the encoder, we adopt gated recurrent unit (GRU) [34] since it can
model the sequential data well, while it is computationally more efficient than LSTM [35]
or other models. GRU is a kind of recurrent neural network (RNN), which is often used
to encode natural language text. It consists of two types of gating units, namely the reset
gate and the update gate, which are used to track the sequence status without using a
separate storage unit. In this paper, two stacked GRU layers are used to model entity
descriptions in different knowledge graphs. The input is the embeddings of an entity and
its descriptions obtained by BERT. We follow the standard method where the tokens are
surrounded by [CLS] and [SEP] on the left and right, respectively. For example, if the
input entity and description are “Trump” and “President Trump has insisted on a full-scale
convention.”, the input to our encoder would be: [CLS]+ “Trump” +[SEP]+ “President Trump
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has insisted on a full-scale convention.” + [SEP]. The output of the second GRU layer can be
obtained as follows:

te = ReLU(Wo[s1; s2; . . . ; sl ] + bo) (10)

where Wo denotes the mapping matrix, bo is the bias, and l is the length of the entity and
description sequence. We also choose ReLU as the activation function. Then, each te is
normalized to ||te||22 = 1. Finally, we can maximize the similarity (i.e., the dot product)
between the embeddings of descriptions for matched entities and minimize the dot product
between the embeddings of descriptions for irrelevant entities. This objective can be
achieved by minimizing the following loss function:

Losstext = − ∑
(e1,e2)∈S

{log(ReLU(tT
e1

te2)) +
k

∑
i=1

E
ei∼U(ei∈E2)

[log(ReLU(−tT
e1

tei ))]} (11)

where S means the known equivalent entity set, k is the number of negative entity examples,
and U is the distribution of the entities in the entity set E2.

3.3.4. Image View

The image view provides concrete images of entities, characterizing the visual infor-
mation of entities more intuitively and vividly. We can directly distinguish the president
“Donald Trump” from the physicist “John G. Trump” because the facial features are to-
tally different.

To extract image features, we obtain the embeddings of the entity images according to
the VGG16 [36] model. The VGG16 model was pre-trained on the ILSVRC 2012 dataset
which is derived from ImageNet [37]. The model we introduce has thirteen convolutional
layers, which are followed by three fully connected layers. To obtain the embeddings
of the entity images, we remove the softmax layer. Owing to the fact that the image
vectors generated from the VGG16 model do not share the same vector space with entity
embeddings, we use a map function to make them in the same space. Specifically, given a
pair of an entity and its corresponding image {(e, i)|e ∈ E, i ∈ I}, where E and I denote the
entity and image set in the given two knowledge graphs, respectively, we extract image
features as follows:

fim(e, i) = −||e− ReLU(map(i))||22 (12)

where i denotes the embedding of the entity image i, and each i is normalized to ||i||22 = 1.
ReLU is the activation function. Given the known equivalent entity set S, we can maximize
the similarity (i.e., the dot product) between the embeddings of images for matched entities
and minimize the dot product between the embeddings of images for irrelevant entities.
Thus, we define the following loss function:

Lossim = ∑
(e,i)∈{(e,i)|e∈E,i∈I}

log(1 + exp(− fim(e, i)))− ∑
(e1,e2)∈S

{log(ReLU(iT
e1

ie2))

+
k

∑
i=1

E
ei∼U(ei∈E2)

[log(ReLU(−iT
e1

iei ))]}
(13)

where k is the number of negative entity examples, and U is the distribution of the entities
in the entity set E2.

3.4. Multi-View Entity Matching

In Section 3.3, we introduce four representation learning models for modeling different
views. Each model can be trained to obtain the embedded representations of entities,
and the entity matching task can be completed by calculating similarities between entity
embeddings. However, the performance of entity matching cannot be maximized by only
using one of the models [14]. Therefore, it is crucial to combine the four representations for
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each entity, i.e., integrate the multi-modal information from each view to generate the final
entity representations.

3.4.1. Multi-View Intact Space Learning

The information from different views can provide different aspects of one entity.
For example, the attribute view can provide abstract attribute information of entities
themselves, and the relation view can provide the relational structures among different
entities. However, each view only captures the entity information from one aspect, and all
views may share the common redundant information. We adopt the multi-view intact space
learning (MISL) [14] to integrate multi-view entity representations to solve the insufficiency
problem when using each individual view .

We assume a multi-view training data set D = {zv
i |1 ≤ i ≤ n, 1 ≤ v ≤ m}, where zv

i
denotes the v-th view of the i-th entity embedding, n is the number of the entity, and m is
the number of the entity embedding views. Suppose that xi represents the embedding of
an entity in the intact space, so the loss function of the m-view space being reconstructed
by the intact space can be defined as follows:

LossMISL =
1

mn

n

∑
i=1

m

∑
v=1

log(1 +
||zv

i −Wvxi||2

c2 ) + C1

m

∑
v=1
||Wv||2F + C2

n

∑
i=1
||xi||22 (14)

where c is a constant scale parameter, C1 and C2 are non-negative constants, and Wv is
the v-th view generation matrix. The optimization problem can be decomposed into two
sub-problems over the view generation function W and the variable on entity embedding x
with the alternating optimization method. Given fixed view generation functions {Wv}m

v=1,
the loss function can be reduced as follows:

minx(LossMISL) =
1
m

m

∑
v=1

log(1 +
||zv −Wvx||2

c2 ) + C2||x||22 (15)

Setting the gradient of LossMISL with respect to x to 0, we can obtain the following
equations:

Qv =
1

||zv −Wvx||2 + c2
(16)

x = (
m

∑
v=1

WT
v QvWv + mC2)

−1
m

∑
v=1

WT
v Qvzv (17)

Given fixed entity embeddings {xi}n
i=1, the loss function can be reduced as follows:

minW(LossMISL) =
1
n

n

∑
i=1

log(1 +
||zi −Wxi||2

c2 ) + C1||W||22 (18)

We can set the gradient of LossMISL with respect to W to 0 and obtain the following
equations:

Qi =
1

||zi −Wxi||2 + c2
(19)

W =
n

∑
i=1

ziQixT
i (

n

∑
i=1

ziQixT
i + nC1)

−1 (20)

By constantly iterating the above formulas until the entity embedding x converges, we
can obtain the final integrated embedding for each entity (see Algorithm 1).

3.4.2. Entity Matching Algorithm

This section introduces the whole entity matching process in Algorithm 1. All ran-
dom initialization for the embeddings from the relation view is provided by the Xavier
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initializer [38], and the pre-training initialization for the attribute and description view is
provided by the BERT. The input of the algorithm is two knowledge graphs G1 and G2 to
be matched, the known equivalent entity set S and the number of iterations Q. We first
separately train the entity embeddings from the relation view, attribute view, description
view and image view until Q is reached. Then, we obtain the final multi-view entity
representations by MISL. Finally, we find matched entities by the K-nearest neighbor algo-
rithm [39] on the final entity representations. The output of the algorithm is the predicted
pairs of matched entities M across two knowledge graphs in different languages.

Algorithm 1 The Entity Matching Algorithm in CLEM.

Input: G1, G2, the known equivalent entity set S, and the number of iterations Q.
Output: The predicted matched entity pairs M.

1: for q = 1, 2, 3,. . . ,Q do
2: Minimize Lossrel under the relation view;
3: Minimize Lossattr under the attribute view;
4: Minimize Losstext under the description view;
5: Minimize Lossim under the image view;
6: end for
7: repeat
8: Iterate the Equations (16), (17), (19) and (20);
9: until The entity embedding x in the intact space converges

10: Find matched entities by the K-Nearest Neighbor algorithm on the final entity repre-
sentations;

11: return The predicted matched entity pairs M

4. Experiments

To verify the effectiveness of our proposed method, we used Python to implement our
approach with the aid of PyTorch (https://pytorch.org/) All reported experiments were
performed on one Linux server with Xeon CPU (2.10GHz) processor with 64 GB RAM and
one NVIDIA TITAN Xp GPU (8 GB).

4.1. Dataset

The experiments were performed on DBP15K [10], which is a subset of DBpedia
and a classic benchmark dataset for entity matching. DBpedia is a large multilingual
knowledge graph which extracts structured content from Wikipedia. We obtained entity
descriptions and entity images, respectively, from the “dbpedia-owl:abstract” and “dbpedia-
owl:thumbnail”. As for the missing entity images, we obtained the supplement from Google
Images (https://images.google.com) by querying entity names. DBP15K contains three
sub-datasets, i.e., Chinese–English (zh-en), Japanese–English (ja-en), and French–English
(fr-en) subsets, which contain language links between different language versions. Table 1
shows the details of DBP15K. Each subset contains the knowledge in two languages and
15,000 pairs of matched entities from DBpedia. In the experiment, the known matched
entity pairs were used for model training and testing.

Table 1. The details of the DBP15K dataset.

Sub-Dataset #Entity #Relation #Relation Triple #Attribute Triple

Chinese 66,469 2830 153,929 379,684
English 98,125 2317 237,674 567,755

Japanese 65,744 2043 164,373 354,619
English 95,680 2096 233,319 497,230

French 66,858 1379 192,191 528,665
English 105,889 2209 278,590 576,543

https://pytorch.org/
https://images.google.com
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4.2. Evaluation Measures

Link prediction is used to predict possible links in knowledge graphs or compute
link losses caused by incomplete data. Similar to MTransE [7] and subsequent related
works, we used link prediction as the evaluation method for entity matching. We applied
mean reciprocal rank (MRR) and Hits@n as the evaluation criteria. Given query samples Q,
the MRR and Hits@n are defined as follows:

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

(21)

where ranki is the rank of the correct answer in the response list for the i-th query.

Hits@n =
1
|Q|

|Q|

∑
i=1

Hit(qi, Li, n) (22)

where Hit(qi, Li, n) means that if the correct answer of the query qi is at the first n items for
the ranked list Li, then its value is one, otherwise, the value is zero.

Moreover, we also tried to record traditional evaluation metrics for entity matching
including precision, recall and F1-score. However, since the embedding-based methods
always return a list of candidates for each input entity, recall and F1-score are equal to
precision, and the precision actually equals Hits@1 [24].

4.3. Comparison Methods

We compared our method with the following baselines:

• MTransE [7]: MTransE is one representative work of multilingual knowledge graph
embedding for entity matching. MTransE combines monolingual models with a jointly
trained alignment model and achieves good results on the single relation view.

• JAPE [10]: JAPE is a joint embedding model on relation triples and attribute triples
for entity matching between knowledge graphs.

• KDCoE [11]: KDCoE is a semi-supervised entity matching method based on col-
laborative training which enhances multilingual knowledge graph embedding. It
iteratively trains the two parts of the embedding model on the relation triples and
entity descriptions in different languages, respectively.

• MultiKE [24]: Multi-KE is an entity matching framework based on multi-view knowl-
edge graph embedding. The underlying idea is to divide the various features of
knowledge graphs into multiple subsets, which are complementary to each other.

• EVA [13]: This research proposes the idea of entity alignment using visual information,
which incorporates images along with relations and attributes to align entities in
different knowledge graphs.

• DAEA [25]: DAEA utilizes graph convolutional networks (GCNs) to integrate the
information of entities, relations, attributes and entity name embeddings to learn a
unified latent representation to perform cross-lingual entity alignment.

Moreover, we performed the ablation experiment and the multi-view integration
experiment to evaluate the effectiveness of each view and our MIST method. For the
ablation experiment, we eliminated one of the four views to generate the CLEM variant each
time and denoted the CLEM variants without the image view, relation view, the attribute
view and the description view by CLEM-RAD, CLEM-ADI, CLEM-RDI and CLEM-RAI,
respectively. For the the multi-view integration experiment, we followed three multi-
view integration methods of the MultiKE model (i.e., weighted view averaging, shared
space learning, and in-training combination) to generate the CLEM variants which are
denoted by CLEM-WVA, CLEM-SSL and CLEM-ITC, respectively. In addition, the the
multi-view integration experiment included the CLEM variant which employs the vector
concatenation strategy to combine the view-specific embeddings. This CLEM variant is
denoted by CLEM-CAT.
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4.4. Experiment Settings

The following hyper-parameters were used in the experiments. Each training took
Q = 3000 epochs, and the proposed model used in our experiments was trained with
the Adam as optimizer, the batch size among {32, 64, 128, 256, 512}, the embedding di-
mension among {50, 75, 100, 125, 150}, the margin among among {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}
and the learning rate among {0.0001, 0.0005, 0.001, 0.005, 0.01}. The best hyperparameters
for “(batch size, embedding dimension, margin, learning rate)” vary in different sub-
datasets, and the details are given in Table 2. For the baseline models, we used the reported
results in their papers or ran their source codes on DBP15K. Specifically, for MTransE and
JAPE, we used the results given in [10] (page 639); for EVA and DAEA, we used the results
given in [13] (page 4261) and [25] (page 6), respectively; for MultiKE (https://github.com/
nju-websoft/MultiKE) and KDCoE (https://github.com/muhaochen/MTransE-tf), we
applied their published source codes to DBP15K to obtain evaluation results.

Table 2. The best hyper-parameters for different sub-datasets of DBP15K.

Dataset Batch Size Embedding Dimension Margin Learning Rate

zh-en 0.005 125 1 256

ja-en 0.005 125 1.5 256

fr-en 0.005 125 1.5 128

4.5. Results and Discussions

Table 3 shows the comparison results between CLEM and other entity matching
methods. We found that CLEM achieved the best performance on the three sub-data
sets. For example, on DBP15K zh-en, CLEM achieved the Hits@1 score 85.41% with
2.6% improvement compared to the second best method. The effectiveness of CLEM partly
comes from the integration of the multi-modal entity information. CLEM fuses the multi-
modal information from the relation view, attribute view, description view and the image
view. In contrast to that, MTransE, JAPE and KDCoE only use a part of the above four views.
Moreover, although MultiKE uses multi-view integration models to deal with each kind of
entity information equally, but the performance is not as good as ours (details are presented
in Figure 3). Instead, CLEM adopts multi-view intact space learning (MISL) to solve the
insufficiency problem of each individual view and integrate the multi-modal information
from all given views. As for DAEA and EVA, they perform relatively well. EVA uses the
additional visual embedding to characterise each entity in the embedding space, while EVA
ignores the importance of the text description. Although DAEA integrates multi-aspect
information to achieve good results, it neglects the use of entity images to eliminate the
ambiguity caused by text relevant modal information.

The Ablation Experiment. Table 4 shows the results of the ablation experiment.
As expected, the performance of different variants without the corresponding modal infor-
mation decreases obviously. The results show that each modal information is indispensable
and plays an important role in the task of entity matching. In addition, we noticed that
CLEM-RAD performed the worst among these variants. This phenomenon indicates that
CLEM-RAD lacks the most effective view of the four views, i.e., the image view. The ef-
fectiveness of the image view is attributed to the fact that we extracted visual features to
eliminate the ambiguity in the relation view, attribute view and text view, which is common
in heterogeneous knowledge graphs.

https://github.com/nju-websoft/MultiKE
https://github.com/nju-websoft/MultiKE
https://github.com/muhaochen/MTransE-tf
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Figure 3. The result of the multi-view integration experiment in terms of Hits@1.

Table 3. The comparison results between CLEM and other entity matching methods.

DBP15K zh-en ja-en fr-en

Methods Hits@1
(Prec.) Hits@10 MRR Hits@1

(Prec.) Hits@10 MRR Hits@1
(Prec.) Hits@10 MRR

MTransE 30.83 61.41 36.40 27.86 57.45 34.90 24.41 55.55 33.50

JAPE 41.18 74.46 49.00 36.25 68.50 47.60 32.39 66.68 43.00

KDCoE 43.42 75.77 52.70 39.48 70.75 50.50 33.59 69.52 44.70

MultiKE 50.87 57.61 53.20 39.30 48.85 42.60 63.94 71.19 66.50

EVA 76.10 90.70 81.40 76.20 91.30 81.70 79.30 94.20 84.70

DAEA 82.80 92.40 84.30 87.00 95.10 88.20 93.60 97.10 94.80

CLEM 85.41 93.45 87.90 88.48 95.81 90.40 93.60 97.64 95.20

Moreover, although we found that the image view is the most effective view, the entity
matching results rely on image quality to a certain extent according to our error analysis.
Since some images are missing in the DBpedia dataset, we collected images from Google
Images which also introduces some noise due to the color, background and brightness
differences. Such noisy images do cause a number of errors in the entity matching results.

Table 4. The comparison results of CLEM and its variants in the ablation experiments.

DBP15K zh-en ja-en fr-en

Models Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

CLEM-RAD 53.45 80.02 56.50 51.70 84.19 55.07 57.13 71.61 60.40

CLEM-ADI 64.45 83.41 68.20 74.37 80.38 77.90 74.25 80.40 76.20

CLEM-RDI 56.46 78.35 60.80 62.45 73.62 65.10 67.85 72.24 69.30

CLEM-RAI 61.87 80.29 64.70 69.09 82.64 74.30 71.99 78.20 74.50

CLEM 85.41 93.45 87.90 88.48 95.81 90.40 93.60 97.64 95.20

The Multi-View Integration Experiment. To verify the effectiveness of our multi-
view representation learning method, we conducted the multi-view integration experiment
in terms of Hits@1. Figure 3 shows the results. Compared with other variants, we observed
that the Hits@1 of our proposed method increased at least 10.22%. This is because com-
pared with the multi-view integration methods of MultiKE, our applied MISL handled
the relevance and complementarity between different modal entity information in the
intact space better. The use of the MISL method successfully integrates the multi-modal
information from each view to generate the final entity representation, which effectively
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improves the results of the entity matching. In addition, we found that the CLEM-CAT is
inferior to the other variants. This may be due to the fact that the concatenation method
does not have the training process, and the integration after training cannot fully consider
the association between different modalities.

5. Conclusions

In this paper, we proposed a cross-lingual knowledge graph embedding method
CLEM for entity matching, which extracts and integrates the rich multi-modal information
from different views, including the relation view, attribute view, description view and
image view. The multi-view intact space learning was adopted to generate the final multi-
view entity representations, which effectively solved the insufficiency problem of the single
modal information in cross-lingual entity matching. Our experiments on three real-world
datasets show the effectiveness of CLEM and our multi-view learning strategy.

As for future work, we plan to study the few-shot cross-lingual entity matching with
knowledge graph embedding when the known matched entities are quite few. Moreover,
we will explore a global matching method for align at least three knowledge graphs in
different languages simultaneously.
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