
Citation: Abasi, A.K.; Makhadmeh,

S.N.; Al-Betar, M.A.; Alomari, O.A.;

Awadallah, M.A.; Alyasseri, Z.A.A.;

Doush, I.A.; Elnagar, A.;

Alkhammash, E.H.; Hadjouni, M.

Lemurs Optimizer: A New

Metaheuristic Algorithm for Global

Optimization. Appl. Sci. 2022, 12,

10057. https://doi.org/10.3390/

app121910057

Academic Editor: Giancarlo Mauri

Received: 2 September 2022

Accepted: 29 September 2022

Published: 6 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Lemurs Optimizer: A New Metaheuristic Algorithm for
Global Optimization
Ammar Kamal Abasi 1,* , Sharif Naser Makhadmeh 2 , Mohammed Azmi Al-Betar 2, Osama Ahmad Alomari 3,
Mohammed A. Awadallah 4,5 , Zaid Abdi Alkareem Alyasseri 6,7,8 , Iyad Abu Doush 9,10 , Ashraf Elnagar 11,
Eman H. Alkhammash 12 and Myriam Hadjouni 13

1 Machine Learning Department, Mohamed bin Zayed University of Artificial Intelligence (MBZUAI),
Abu Dhabi P.O. Box 54115, United Arab Emirates

2 Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology,
Ajman University, Ajman P.O. Box 346, United Arab Emirates

3 MLALP Research Group, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
4 Department of Computer Science, Al-Aqsa University, Gaza P.O. Box 4051, Palestine
5 Artificial Intelligence Research Center (AIRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
6 ECE Department, Faculty of Engineering, University of Kufa, Najaf P.O. Box 21, Iraq
7 Information Technology Research and Development Center (ITRDC), University of Kufa, Najaf 54003, Iraq
8 Department of Business Administration, College of Administrative and Financial Sciences,

Imam Ja’afar Al-Sadiq University, Baghdad P.O. Box 9102, Iraq
9 Computer Science Department, Yarmouk University, Irbid P.O. Box 566, Jordan
10 Department of Computing, College of Engineering and Applied Sciences, American University of Kuwait,

Salmiya P.O. Box 3323, Kuwait
11 Department of Computer Science, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
12 Department of Computer Science, College of Computers and Information Technology, Taif University,

P.O. Box 11099, Taif 21944, Saudi Arabia
13 Department of Computer Sciences, College of Computer and Information Science, Princess Nourah bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
* Correspondence: ammar.abasi@mbzuai.ac.ae; Tel.: +971-50947-3679

Abstract: The Lemur Optimizer (LO) is a novel nature-inspired algorithm we propose in this paper.
This algorithm’s primary inspirations are based on two pillars of lemur behavior: leap up and dance
hub. These two principles are mathematically modeled in the optimization context to handle local
search, exploitation, and exploration search concepts. The LO is first benchmarked on twenty-three
standard optimization functions. Additionally, the LO is used to solve three real-world problems
to evaluate its performance and effectiveness. In this direction, LO is compared to six well-known
algorithms: Salp Swarm Algorithm (SSA), Artificial Bee Colony (ABC), Sine Cosine Algorithm (SCA),
Bat Algorithm (BA), Flower Pollination Algorithm (FPA), and JAYA algorithm. The findings show that
the proposed algorithm outperforms these algorithms in fourteen standard optimization functions
and proves the LO’s robust performance in managing its exploration and exploitation capabilities,
which significantly leads LO towards the global optimum. The real-world experimental findings
demonstrate how LO may tackle such challenges competitively.

Keywords: swarm intelligence; metaheuristic; optimization; stochastic optimization; benchmark; LO

1. Introduction

In real life, the optimization problem [1] can be normally classified as a “black box”
model which consists of three main components: input, model, and output as shown
in Figure 1. In case any component is unknown, a new problem type arises. When the
input and output are known and the model is unknown, this type of problem is called a
modeling problem where the solution is to find the function that maps the input to the
output. This type of problem can be heavily seen in data mining and machine learning
domain, especially in prediction and classification problems.
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When some inputs and models are known, and the target is to enter these input
conditions into the model to determine the output, this problem is known as a simulation
problem that can be used in engineering design problems, especially for forecasting. Finally,
when the model and the desired output are known and the target is to find the input, this
problem is known as the optimization problem. An example of optimization problems is the
creating an optimal image quality evaluator [2], feature selection [3], and scheduling [4,5],
additive manufacturing [6], renewable energy system [7], etc.

(a) modeling (b) simulation (c) optimization

Figure 1. “black box” models for real-life problems.

In general, optimization problems normally include a set of decision variables as
an input to the objective function as a model where the desired output is known or can
be measured. The main target is to find the optimal values for the decision variables
that results in the minimal or maximum value of the objective function [8]. Based on
their value ranges, the alternative combination of decision variables forms a huge search
space. The definition of the search space depends solely on the problem characteristics.
The problems have either unimodal modal or multimodal search space as can be shown in
Figure 2. The complexity of the problems is normally justified based on the search space
ruggedness and solution dimensions. The ruggedness of the search space can be related to
the problem constraints while solution dimensions can be related to the problem size.

(a) Unimodal (Step problem) (b) Multimodal (Generalized Schwefel’s problem)

Figure 2. 3D search space for optimization functions.

The constraints of the optimization problem determine the movement through the
search space. The earliest methods are based on mathematical theories such as inte-
ger/linear programming, Simplex Method, etc. The main advantage of these methods
for the optimization problem is that they can find the exact solution by conducting an
exhaustive search; however, they are normally unworkable with the optimization problem
of NP-hard and NP-Complete classes since the polynomial-time required is almost uncount-
able. As a result, heuristic-based approaches emerged to find an approximate solution for
the optimization problem in a reasonable time. The heuristic-based techniques are normally
problem-dependent where the problem-specific knowledge is embedded. Examples of
these heuristic-based approaches in traveling salesman problems such as 2-opt and 3-opt
moves. These heuristics indeed have efficiency in solving the optimization problems in
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a small amount of time, although they work as a constraint satisfaction method with less
concern for the solution quality.

A new metaphor in evolutionary computation is produced to deal with optimization
problems. A population of individuals who competes in an environment with limited
resources to survive is the imitation of evolutionary algorithms (EAs). In EAs, the fitter
individuals have a better chance to inherit their strong attributes to the next generations.
This is known as the Darwinian natural selection of survival-of-the-fittest principle. EAs
are general optimization templates that can be applied to a variety of optimization prob-
lems through efficient operators for sharing knowledge such as recombination, mutation,
and selection controlled by carefully initialized parameters until a “good-enough” indi-
vidual is obtained. The first generation EAs are Genetic Algorithm (GA) [9], Genetic
Programming [10], Evolution Strategy [11], and Biogeography-Based Optimizer [12]. These
methods are generated by taking into consideration the type of the problem (i.e., binary,
discrete, continuous, perpetration, or structured). In the second generation of EAs, only
one optimization template is available for almost all optimization problems. These includes
Differential Evolution (DE) [13], Particle Swarm Optimization (PSO) [14].

Nowadays, a plethora of EAs is mostly inspired by natural phenomena related to hu-
man behavior, physical wisdom, animal swarm survival strategies, and chemical principles.
These methods will be surveyed in the literature review section. The common features of
these methods can be summarized as follows: (i) they are population-based, (ii) they have
an iterative improvement process, (iii) They turned toward the optimal solution through
the special operator(s), (iv) they can explore several search space niches and exploit each
niche, (v) they embed the problem-specific knowledge mapping the phenotype to genotype,
and (vi) they can provide a suitable balance between diversification and intensification
of the problem search space. The main difference between them is their movement way
through the search space via their operators where their definitions of the search space
niches are varied.

Due to the complex nature of the optimization problem, where there is up-to-now a
superior EA can ultimately tackle all optimization problems and excel over all other EAs.
This is stated in a pioneer theorem in optimization named No Free Lunch (NFL) where
there is no single algorithm that performs better than others in every case or even for the
same problem in different instances [15]. Therefore, NFL opens the door for new innovation
theories to stem other natural phenomena and propose other intelligent EAs with the ability
to efficiently tackle optimization problems with rugged and huge search space.

Although there are many studies in the optimization field, there are still various
behaviors in nature that have not been studied yet [16,17]. One of these behaviors is
the behavior of lemurs animal in the movement to search for food or escape from other
predators. Lemurs can only be found in Madagascar and the neighboring Comoro Islands,
which are located off the coast of Mozambique, Africa.

In this paper, the Lemurs Optimizer (LO) is proposed as an evolutionary algorithm.
LO is stemmed by its behavior in locomotor behavior: leap up and dance-hup. The LO
behavior is formalized in terms of optimization context. LO is evaluated using twenty-
three standard optimization functions circulated well in the literature. In addition, some
real engineering problems are also used. Initially, the effect of some parameters in LO is
studied to decide which is the best configuration. Thereafter, the comparative evaluation is
conducted against six well-established methods. The results prove the superiority of LO
over other comparative algorithms. For statistical evaluation, the Wilcoxon Mann-Whitney
test shows the significance of LO results. In conclusion, LO is a new optimization algorithm
that can be applied to a large variety of global optimization problems efficiently.

This paper’s remaining subsections are organized as follows: The literature review
of the previous natural inspired evolutionary algorithms is summarized in Section 2.
The inspiration and procedural steps of the LO algorithm are proposed and described in
Section 3. The evaluation of the proposed LO is conducted and the experimental results
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are analyzed and compared in Section 4. Finally, in Section 5, the conclusion is presented,
as well as various scenarios for future development.

2. Literature Review

Evolutionary Algorithms (EA) are random search algorithms that are inspired by the
concept of natural evolution, where this inspiration concept re-formulates into a set of
optimization operators that combine to form an optimization algorithm. The population
of EA algorithms is a random set of solutions that are used as an initial point for the
algorithm, and after the growth of the generations, the genes of the parent individuals are
subjected to change or alternation in the process of producing new offspring individuals
by recombination and mutation processes, where the natural selection method utilizes
the survival-of-the-fittest principle to select these offspring. EA’s first natural evolution-
inspired algorithm is called GA, which is introduced in 1960 by John Henry Holland [18].

Swarm-based algorithms imitated the swarm collaboration behavior of animals. Par-
ticle Swarm Optimization (PSO) [14] is the most popular swarm-based algorithm, which
imitates the social behavior of birds. The optimization framework of the PSO algorithm is
developed based on the following assumptions. The particles (solutions) fly randomly for
the exploration of their environment (search space) and iteratively adjust their positions
according to PSO operators to allocate the optimal solution (global best). The best positions
located during the flying process toward the optimal position are stored. Other well-known
swarm-based optimizer are Ant Colony Optimization (ACO) [19] and Artificial Bee Colony
(ABC) [20]. Table 1 shows many others swarm optimization algorithms.

Physical-based algorithms are imitated by the physical phenomena that regulated and
appeared in the universe. Many algorithms fall under this category, for example, Simulated
Annealing (SA) which is inspired by the annealing process of metallurgy through putting
the metal in heating followed by slow cooling to approach the best solution Physical-based
algorithms are listed in Table 1. Other examples of algorithms that fall in this category are
listed in Table 1.

Eventually, the human-based algorithm is another type of optimization algorithm
that mimics human behavior and interactions in societies. An example of a human-based
algorithm is the Harmony Search Algorithm (HSA), which is inspired by the music players’
interactions with the notes of their instruments, they apply the best practices for approach-
ing the desired harmony (optimal solution) [21]. The Fireworks algorithm is another
example of human-based algorithms [22].

Conventionally, there is a bunch of nature-inspired algorithms which offer promising
good solutions for a diverse scale of optimization problems. As mentioned before, there
is no super optimization algorithm that can solve all classes of optimization problems
efficiently [15]. Furthermore, optimization problems classified as non-linearity and multi-
modality are arduous to be solved by deterministic algorithms. Therefore, researchers put
great efforts into developing metaheuristic algorithms with diverse intelligence features
from a wide variety of inspiration sources, to bring algorithms with robust optimization
capabilities that can solve complex optimization problems successfully.
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Table 1. Nature-inspired Metaheuristics.

Optimization
Algorithms Type Algorithms

Evaluation-based
algorithms

Biogeography-Based Optimizer [12], Genetic
Programming [10], Evolution Strategy [11], and Genetic

Algorithm (GA) [9].

Chemical-Based
algorithms Chemical reaction optimisation [23].

Human-Based algorithms

β-Hill Climbing (βHC) [24], Coronavirus herd immunity
optimizer (CHIO) [25], Fireworks algorithm [22], Group

search optimizer [26], Harmony Search Algorithm
(HSA) [21], Mine blast algorithm [27], Seeker optimization
algorithm (SOA) [28], Social-based algorithm (SBA) [29],
Tabu search (TS) [30], and Wisdom of artificial crowds

(WAC) [31].

Physical-based
algorithms

Big bang-big crunch (BBBC) [32], Charged system search
(CSS) [33], Electromagnetism-like mechanism (EM) [34],

Equilibrium optimizer (EO) [35], Gravitational search
algorithm (GSA) [36], Henry gas solubility optimization

(HGSO) [37], Water cycle algorithm (WCA) [38],
Multi-verse optimizer (MVO) [39] and Sine cosine

algorithm (SCA) [40].

Swarm-based algorithms

Ant colony optimization (ACO) [19], Ant lion optimizer
(ALO) [41], Artifical bee colony (ABC) [20], Artificial

fish-swarm algorithm (AFSA) [42], Bat algorithm (BA) [43],
Bird mating optimizer (BMO) [44], Butterfly optimization
algorithm (BOA) [45], Cat swarm optimization algorithm
(CSOA) [46], Crow search algorithm (CSA) [47], Cuckoo
search (CS) [48], Chicken swarm optimization (CSO) [49],
Dragonfly algorithm (DA) [50], Elephant search algorithm

(ESA) [51], Firefly algorithm [52], Flower pollination
algorithm (FPA) [53], Salp Swarm Algorithm (SSA) [54],

Moth-flame optimization algorithm (MFO) [55], Monarch
butterfly optimization (MBO) [56], Grey wolf optimizer
(GWO) [57], Fruit fly optimization algorithm (FOA) [58],

Glowworm swarm optimization [59], Harris hawks
optimization [60], Krill herd algorithm (KHA) [61],

PSO [14], Red deer algorithm [62], Pelican optimization
algorithm [63], Enhanced marine predators algorithm
(LEO-MPA) [64] and Whale optimization algorithm

(WOA) [65].

3. Lemurs Optimizer (LO)

In this section, the inspiration for the LO algorithm is first presented. After that,
the mathematical model and the LO algorithm are discussed in detail.

3.1. Inspiration

Lemurs are classified as prosimian primates, which includes all primates that are
neither monkeys nor apes [66]. Lemurs come in a diversity of varieties, but there are
just a few individuals of each species. Just a small portion of the world is home to these
primates. Many species have small populations that are dwindling. Lemurs can only be
found in Madagascar and the neighboring Comoro Islands, which are located off the coast
of Mozambique, Africa. They live in a variety of environments: mountains, wetlands, rain
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forests, spiny forests, and dry deciduous forests. The indri is the largest lemur species.
It can reach a weight of 15.5 to 22 pounds (7 to 10 kg) and a length of 24 to 35 inches
(60 to 90 cm). Madame Berthe’s mouse lemur is the tiniest of the lemurs, measuring 3.5 to
4 inches (9 to 11 cm) in length (not including the tail) [67].

Lemurs are highly social animals that live in groups known as troops. According
to National Geographic, the ring-tail lemur’s troop is led by a dominant female and can
consist of six to thirty species. The majority of lemurs spend their waking hours in trees.
Lemurs groom each other while they aren’t feeding. The Lemurs communicate in two
different ways. They communicate by vocalization and scent markings. Lemurs interact by
emitting low growls. Sometimes it is a warning to flee, and sometimes a warming welcome.
Soft purrs are used by mothers to communicate with their offspring. This also aids in the
formation of strong bonds.

The pitch of a Lemur’s shrill scream is extremely high. This is a warning signal that
can be received from a long distance. This may be a territorial symbol, warning other
Lemurs to stay away. Other times, it’s a way of alerting the family that they are in danger
and should seek shelter.

Lemurs have been observed meowing like cats. This form of sound is used to summon
the family to a central position or to flee from predators such as fossa (the risk is very high).
If they have spread out to search for food, this might be a way to get them all together
for nesting.

Lemurs use their scent glands to convey their location. To locate food, the family
groups may disperse. This may also assist dominant females in determining whether or
not an alien has entered their family group and poses a challenge.

Lemurs have a wide range of locomotor behavior. For the LO algorithm, we used two
main lemur behaviors as inspiration: leap up and dance-hup. In a leap up, the lemurs jump
into the air and sit upright on a nearby branch, both hands and feet grasping the trunk
closely. They have the potential to jump up to 10 m (33 ft) from tree trunk to tree trunk
in a matter of seconds. The dance-hup occurs when the space between trees becomes too
great, lemurs will descend to the ground and cross lengths of more than 100 m (330 feet) by
standing upright and jumping horizontally with arms extended to the side and waving up
and down from chest to head height, ostensibly for balance [68].

Figure 3 illustrates conceptual models of these two key lemur locomotor behaviors.
The two stages of optimization using metaheuristics, exploration and exploitation, are very
similar to these two Locomotor behaviors. The primary objective of the exploration phase
is for lemurs to leap up over various areas to locate the best lemur location in the search
space. However, lemurs in the dance-hub move into the best nearby lemur location and in
one direction, which is useful during the exploitation phase. The following subsection will
explain how the LO algorithm works conceptually and mathematically.

3.2. Mathematical Model of the Lemur Optimizer Algorithm

The search process is divided into two phases in the population-based algorithm,
as described in the previous section: exploration versus exploitation. In the exploration
phase, we utilize the dance-hup behavior. The leap-up behavior, on the other hand, aids LO
in exploiting the search space. We consider each solution to be a lemur, with each vector
representing a single one of the lemur’s coordinates. We also allocate the best location to
each solution that is related to the solution’s fitness function value. As a result, the lemurs
will change their place vectors and dance-hup towards the best neatest lemur or leap up to
the global best lemur. Figure 4 illustrates the conceptual model of dance-hup and leap-up
for the proposed algorithm.
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Figure 3. Lemur Optimizer Inspiration.

Figure 4. Leap Up and Dance Hub.

The set of lemurs is represented in a matrix since the LO algorithm is a population-
based algorithm. To do this, the following procedures are carried out. Assuming that we
have the population defined as the following matrix:

T =


l1
1 l2

1 · · · ld
1

l1
2 l2

2 · · · ld
2

...
...

...
...

l1
s l2

s · · · ld
s

. (1)

where T denotes the set of lemurs in a population matrix of size s× d, d denotes the decision
variables, and s denotes the candidate solutions.
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Typically, the decision variable j in solution i is randomly generated as follows:

l j
i = rand()× (ubj − lbj) + lb) ∀i ∈ (1, 2, . . . , n) ∧ ∀j ∈ (1, 2, . . . , d) (2)

where the function rand() produces a random distributed number in the range
(1, 2, . . . , MAX_INT), MAX_INT, where MAXINT is the largest integer number that
can be generated, and the discrete lower and upper bound limits of variable j are denoted
by [lbj, ubj].

The lemur that has a lower fitness value tends to change its decision variables from
the lemur that has a higher fitness value. This means that the overall fitness values of the
total lemurs improve with iterations. Lemurs are organized based on their fitness values in
each iteration, with one chosen as the global best lemur (i.e., gbl) and one chosen as the
best nearest lemur for each lemur (i.e., bnl).

In this direction, the decision variable j in the solution i is assigned a value each
iteration using two options: (a) the value is selected from the global best lemur, and (b) the
value is selected from the best nearest lemur. This is formulated as shown in Equation (3).

Lj
i =

{
l(i, j) + abs(l(i, j)− l(bnl, j)) ∗ (rand− 0.5) ∗ 2; rand < FRR,
l(i, j) + abs(l(i, j)− l(gbl, j)) ∗ (rand− 0.5) ∗ 2; rand > FRR,

(3)

where l(i, j) indicates j value of the current lemur, l(bnl, j) indicates j value of the best
nearest lemur for the the current lemur l(i, j), l(gbl, j) indicates the global best lemur, free
risk rate (FRR) indicates the risk rate of the all lemurs in the troops, and rand represents
random numbers between [0, 1]. Based on this formulation, it can be concluded that the
probability of the FRR is the main coefficient of the LO algorithm. The formula of this
coefficient is given in:

FRR = FRR(High_Risk_Rate)− CurrIter× ((High_Risk_Rate− Low_Risk_Rate)/MaxIter) (4)

where Low_Risk_Rate and High_Risk_Rate represent constant pre-defined values, MaxIter
is the maximum iterations’ number, and CurrIter denotes current iteration. Figure 5
illustrates the conceptual model of High-Risk Rate and Low-Risk Rate for the proposed
algorithm. Note that the purpose of Low_Risk_Rate and High_Risk_Rate is to determine
the minimum and the maximum value for FRR.

Figure 5. High-Risk Rate and Low-Risk Rate.
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Algorithm 1 shows the LO algorithm’s pseudocode, while the general steps are pre-
sented in Figure 6.

Algorithm 1 The LO algorithm’s pseudocode.

1: Set up the LO parameters (Number of iterations, Number of dimensions (Dim), Number
of solutions, Lower Bound (LB), Upper Bound (UB), Low-Risk Rate, High-Risk Rate).

2: Generate Lemurs population.
3: while the current iteration does not equal the number of iterations do
4: Evaluate the objective function for all Lemurs.
5: Calculate free risk rate (FRR) using Equation (4).
6: Update the Global Best Lemur (gbl).
7: for each lemur indexed by i do
8: Update the Best Nearest Lemur (bnl).
9: for each decision variable in Lemur i indexed by j do

10: Set random([0, 1]) to rand.
11: if rand < JumpingRrate then
12: Use Equation (3) case number one to update the decision variable j.
13: else
14: Use Equation (3) case number two to update the decision variable j.
15: end if
16:
17: end for
18: end for
19: end while
20: Return the Global Best Lemur.

Figure 6. Lemur Optimizer Flowchart.
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The LO algorithm begins by generating a swarm of lemurs randomly. At each iteration,
the decision variables of the neatest lemur with a better fitness value try to transfer towards
the lemurs with a lower fitness value via dance-hup.

In the LO algorithm, creating a set of random lemurs is the first step in the optimization
process. The FRR value starts close to Low_Risk_Rate, which means the lemur tends to
move toward the best neatest lemur via dance-hup. During the LO execution, the FRR will
decrease close to High_Risk_Rate , which means the lemur tends to move toward the best
global lemur via leap up. This procedure shall be iterated until an end condition is met.

The number of lemurs, iterations, and decision variables affects the algorithms’ com-
puting complexity. To summarise, the proposed algorithm has the following computational
complexity:

O(LO) = O(MaxIter× s× d) (5)

4. Experiments and Results

The proposed LO’s performance is evaluated using 23 standard test functions in
this section. Minimization optimization problems with various complexity and dimen-
sional search spaces are used in these test cases. These test functions are divided into
three categories, including unimodal, multimodal, and fixed-dimension multimodal func-
tions. The primary features of the three categories are presented in Tables 2–4. The ta-
bles show the function name, the function mathematical model, the range of the search
space’s boundaries, the functions dimension (n), and the functions’ optimum solution
f (x∗). The programming language MATLAB version 9.12.0 is used to conduct the exper-
iments, and the code is available in the “Lemurs-Optimizer” GitHub, available online:
https://github.com/ammarabbasi/Lemurs-Optimizer, accessed on 28 September 2022.

As mentioned previously, the test functions used in this section are divided into
unimodal, multimodal, and fixed-dimension multimodal functions. The multimodal and
fixed-dimension multimodal categories are similar but differ from each other to define the
number of decision variables. The fixed-dimensional test functions provide various search
spaces compared with multimodal test functions. However, tuning the decision variables
cannot be done using the fixed-dimensional test functions’ mathematical model. In this
evaluation section, the unimodal functions are utilized to investigate the proposed LO
exploitation ability, whereas the multimodal functions are utilized to examine and evaluate
the exploration side of the LO [37].

4.1. Comparative Analysis with the Swarm-Based Optimization Algorithms

The LO is compared with six robust optimization algorithms, including ABC, SSA,
SCA, BA, FPA, and JAYA to investigate and prove the proposed LO’s robust performance.
The population size and number of iterations used for all compared algorithms are 30 and
100,000, respectively. In addition, the low-scal0E-rate and high-scal0E-rate in LO are set to
be 0.5 and 0.7, respectively.

Table 2. The characteristics of unimodal benchmark functions.

Function Test Functions Range n C f (x∗)

F1 ∑n
i=1 x2

i xi ∈ [−100,100] 30 U 0
F2 ∑n

i=1 |xi|+ ∏n
i=1 |xi| xi ∈ [−10,10] 30 U 0

F3 ∑n
i=1

(
∑i

j−1 xj

)2 xi ∈ [−100,100] 30 U 0

F4 maxi{|xi|, 1 ≤ i ≤ n} xi ∈ [−100,100] 30 U 0
F5 ∑n−1

i=1

[
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
]

xi ∈ [−30,30] 30 U 0

F6 ∑n
i=1([xi + 0.5])2 xi ∈ [−100,100] 30 U 0

F7 ∑n
i=1 ix4

i + random[0, 1) xi ∈ [−128,128] 30 U 0

https://github.com/ammarabbasi/Lemurs-Optimizer
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Table 3. The characteristics of multimodal benchmark functions.

Function Test Functions Range n C f (x∗)

F8 ∑n
i=1−xi sin

(√
|xi |
)

xi ∈ [−500,500] 30 M −12,569.5

F9 ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

xi ∈ [−5.12,5.12] 30 M 0
F10 −20 exp(−0.2

√
1
n ∑n

i=1 x2
i )− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e xi ∈ [−32,32] 30 M 0

F11 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 xi ∈ [−600,600] 30 M 0

F12

π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+ ∑n

i=1 u(xi , 10, 100, 4)

yi = 1 + xi+1
4 u(xi , a, k, m) =


k(xi − a)m xi > a
0− a < xi < a
k(−xi − a)m xi < −a

xi ∈ [−50,50] 30 M 0

F13
0.1
{

sin2(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

∑n
i=1 u(xi , 5, 100, 4)

xi ∈ [−50,50] 30 M 0

Table 4. The characteristics of fixed-dimension multimodal benchmark functions.

Function Test Functions Range n C f (x∗)

F14
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
xi ∈ [−65, 65] 2 M 1

F15 ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
xi ∈ [−5, 5] 4 M 0.00030

F16 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 xi ∈ [−5, 5] 2 M −1.0316
F17

(
x2 − 5.1

4π2 x2
1 +

5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 xi ∈ [−5, 5] 2 M 0.398

F18

[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

xi ∈ [−2, 2] 2 M 3
×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)]

F19 −∑4
i=1 ci exp

(
−∑3

j=1 aij
(

xj − pij
)2
)

xi ∈ [1, 3] 3 M −3.86

F20 −∑4
i=1 ci exp

(
−∑6

j=1 aij
(

xj − pij
)2
)

xi ∈ [0, 1] 6 M −3.32

F21 −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1 xi ∈ [0, 10] 4 M −10.1532

F22 −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1 xi ∈ [0, 10] 4 M −10.4028

F23 −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1 xi ∈ [0.10] 4 M −10.5363

4.2. Evaluation of Exploitation Capability (Functions F1–F7)

Given that one global optimum exists for each of the unimodal functions (F1–F7), they
investigate the compared algorithms’ exploitation capability. Table S1 demonstrates that
the proposed LO shows high performance in optimizing the functions and reducing their
values, and achieving the best exploitation capability. Particularly, the proposed LO obtains
the best results in optimizing F1 and F2 in terms of best, worst, and mean and gets the
second-best results in most of the other functions (i.e., F3–F7). Accordingly, it is notable
that the proposed LO achieves the best exploitation capability.

4.3. Evaluation of Exploration Capability (Functions F8–F23)

The multimodal functions have several local optimums determined by the problem
size (i.e., decision variables), where the number of local optimums increases with increasing
the size of the problem. Accordingly, the multimodal functions play the primary role in
evaluating the optimization algorithm’s exploration capability. The results presented in
Table S2 prove the demonstration of the proposed LO against the compared algorithms,
where the LO obtains the best results in achieving the best in ten functions, including
F8, F10, F11, F14, F21, and F23, and Worst and Mean in 10 functions, including F10, F14,
F16–F19, and F23. These results prove the LO’s robust performance in managing its explo-
ration capability, which significantly leads LO towards the global optimum. The detailed
results can be found in the Supplemental Information in Tables S1 and S2.
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4.4. Analysis of Convergence Behavior

In the optimization process of LO, the search agents share their information and exploit
the best lemur to scan the search space effectively to reach the most promising regions in the
search space. The search agents in the early stage of optimization allocate abruptly positions
and then gradually converge. Researchers in [69] stated such behavior in other population-
based algorithms can lead to achieving the desired convergence. Convergence curves of LO,
ABC, SSA, BAT, FPA, and JAYA are plotted in Figure 7 based on the average best-so-far in
each iteration over 30 runs for some of the unimodal and multimodal benchmark functions
in this study. It can be observed that the convergence trend of LO is competitive with other
stat0E-of-th0E-art meta-heuristic algorithms.

F1 F4 F6

F10 F12 F14

F15 F16 F18

Figure 7. LO algorithm convergence plots with the other swarm−based algorithms.

Moreover, the convergence rate of LO based on best and average fitness is plotted in
Figures 8 and 9. There is a descending pattern in the average fitness throughout the growth
of the iterations in these figures’ second and fourth columns. The successful convergence
of LO in optimizing benchmark functions is owing to its search capabilities in terms of leap
up (exploitation) and dance hub (exploration) that attractively improve the trajectory of
lemurs toward optimality.

Further, the convergence curves in Figures 8 and 9 demonstrate that the LO algorithm
produces better quality solutions throughout the optimization iterations.
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Figure 8. Functions and convergence plots.
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Figure 9. Functions and convergence plots.
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Figure 10 illustrates the average rankings of the proposed algorithm and other com-
parative algorithms according to the average of the results. These rankings are calculated
using Friedman’s test. It should be noted that the lower value of the rankings, the better
performance. It can be seen that the LEO-MPA is placed first by getting the lowest rankings,
while the proposed LO is ranked third.

LEO−MPA

ABC

LO

FPA

JAYA

SCA

BA

SSA

0 1 2 3 4 5 6

4.1

4.5

4.8

4.9

4.9

5.3

Average rankings

4.0

3.8

Figure 10. Average rankings of all comparative methods on all test functions.

By following [55], the signed Wilcoxon statistical test [70] was used to determine if
there is a significant improvement between the LO algorithm and the other comparative
algorithms. For each algorithm, the best results of 30 runs are used in the Wilcoxon
signed rank with p value equal to 0.05. The proposed LO’s improvements were tested
to see whether they happened by chance, or were statistically significant using this test.
The p value was determined using the statistically signed Wilcoxon statistical test. Two
hypotheses, the null hypothesis, and the alternative hypothesis were considered in our
experiment. The null hypothesis states that the mean values of the LO and other algorithms
do not vary significantly (i.e., “−”). The alternative hypothesis, on the other hand, revealed
that the mean values of the LO and other algorithms (i.e., “+”) differ significantly. All other
algorithms and the LO pair-wise are shown in Tables 5 and 6, indicating whether the null or
alternative hypothesis is accepted. The proposed algorithm outperformed other algorithms
by the smallest p value. The detailed results can be found in the Supplemental Information
in Table S3.

Table 5. Comparative performance of the LO algorithm with swarm algorithms based on functions
F1–F7.

Function LO ABC Significantly SSA Significantly SCA Significantly BA Significantly

F1 0.0000 × 100 2.3350 × 10−16 + 3.6020 × 10−10 + 0.0000 × 100 − 5.8240 × 10−6 +
F2 0.0000 × 100 9.5130 × 10−16 + 1.4180 × 10−6 + 0.0000 × 100 − 1.0390 × 10−1 +
F3 1.3700 × 10−5 1.3010 × 100 + 3.1910 × 10−11 + 1.9590 × 10−29 + 1.9530 × 10−3 +
F4 5.1440 × 10−14 1.4670 × 10−2 + 2.9060 × 10−6 + 1.3770 × 10−46 + 1.3340 × 10−2 +
F5 3.4140 × 101 8.2800 × 10−3 + 9.1380 × 100 + 2.6760 × 101 + 3.0930 × 10−1 +
F6 9.7010 × 10−28 3.3340 × 10−16 + 2.8460 × 10−11 + 2.7520 × 100 + 9.6080 × 10−4 +
F7 5.8730 × 10−6 2.7370 × 10−2 + 6.0940 × 10−5 − 1.9790 × 10−4 − 2.8460 × 10−4 +

FPA JAYA LEO-MPA
F1 1.2930 × 10−68 + 0.0000 × 100 − 0.0000 × 100 −
F2 3.2560 × 10−47 + 0.0000 × 100 + 0.0000 × 100 +
F3 7.0320 × 10−31 + 6.1680 × 100 + 0.0000 × 100 +
F4 6.1330 × 100 + 8.5570 × 10−75 − 8.5256 × 10−49 −
F5 1.0630 × 100 + 7.1060 × 10−28 − 6.6720 × 10−22 −
F6 1.0270 × 10−33 − 1.7170 × 100 + 1.3482 × 100 +
F7 7.0020 × 10−3 + 8.0060 × 10−4 + 2.8813 × 10−4 +
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Table 6. Comparative performance of the LO algorithm with swarm algorithms based on functions
F8–F23.

Function LO ABC Significantly SSA Significantly SCA Significantly BA Significantly

F8 −1.1930 × 104 −1.2570 × 104 + −3.3000 × 103 + −4.8300 × 103 + −1.2570 × 104 −
F9 3.0340 × 101 0.0000 × 100 − 1.1410 × 101 + 0.0000 × 100 − 3.4020 × 10−2 +

F10 6.8090 × 10−15 2.8480 × 10−14 + 2.1420 × 10−6 + 4.7440 × 100 + 2.2490 × 10−2 +
F11 0.0000 × 100 0.0000 × 100 + 2.4430 × 10−1 + 0.0000 × 100 − 3.8230 × 10−3 +
F12 6.3590 × 10−30 3.0070 × 10−16 + 2.0440 × 10−13 + 2.3450 × 10−1 + 8.0380 × 10−6 +
F13 2.8610 × 10−24 2.9820 × 10−16 + 1.1170 × 10−12 + 1.7140 × 100 + 1.2240 × 10−3 +
F14 9.9800 × 10−1 9.9800 × 10−1 + 9.9800 × 10−1 + 9.9800 × 10−1 + 9.9800 × 10−1 +
F15 3.6590 × 10−4 3.4470 × 10−4 + 5.5170 × 10−4 + 3.0990 × 10−4 + 3.0750 × 10−4 +
F16 −1.0320 × 100 −1.0320 × 100 + −1.0320 × 100 + −1.0320 × 100 + −1.0320 × 100 +
F17 3.9790 × 10−1 3.9790 × 10−1 + 3.9790 × 10−1 + 3.9790 × 10−1 + 3.9790 × 10−1 +
F18 3.0000 × 100 3.0000 × 100 + 3.0000 × 100 + 3.0000 × 100 + 3.0000 × 100 +
F19 −3.8630 × 100 −3.8630 × 100 + −3.8630 × 100 + −3.8560 × 100 + −3.8630 × 100 +
F20 −3.3180 × 100 −3.3220 × 100 + −3.2150 × 100 + −2.9250 × 100 + −3.2820 × 100 +
F21 −9.9040 × 100 −1.0150 × 101 + −1.0150 × 101 + −3.3210 × 100 + −1.0150 × 101 +
F22 −1.0400 × 101 −1.0400 × 101 + −1.0400 × 101 + −5.3910 × 101 + −1.0150 × 101 +
F23 −1.0540 × 101 −1.0540 × 100 + −1.0000 × 101 + −6.2120 × 101 + −1.0150 × 101 +

FPA JAYA LEO-MPA
F8 −1.2530 × 104 + −1.2410 × 104 + −1.2289 × 104 +
F9 1.7350 × 101 + 4.1040 × 101 + 0.0000 × 100 +
F10 2.0940 × 100 + 1.0480 × 10−14 + 4.4409 × 10−16 +
F11 2.2510 × 10−2 + 9.6030 × 10−3 + 0.0000 × 100 −
F12 3.1100 × 10−2 + 8.0000 × 10−1 + 1.5705 × 10−29 +
F13 2.1660 × 10−3 + 1.0990 × 10−3 + 1.3498 × 10−32 +
F14 9.9800 × 10−1 + 9.9800 × 10−1 + 9.9800 × 10−1 −
F15 3.0750 × 10−4 + 3.3800 × 10−4 + 3.0789 × 10−4 +
F16 −1.0320 × 100 + −1.0320 × 100 + −1.0316 × 100 −
F17 3.9790 × 10−1 + 3.9890 × 10−1 + 3.9789 × 10−1 +
F18 3.0000 × 100 + 3.0000 × 100 + 3.0000 × 100 +
F19 −3.8630 × 100 + −3.8630 × 100 + −3.8628 × 100 +
F20 −3.3220 × 100 + −3.2670 × 100 + −3.3061 × 100 +
F21 −1.0150 × 101 + −8.1430 × 100 + −1.0153 × 101 +
F22 −1.0400 × 101 + −8.5510 × 101 + −1.0626 × 101 +
F23 −1.0540 × 101 + −9.9950 × 101 + −1.0636 × 101 +

Figure 11 shows the time-average rankings of the proposed lo and other comparative
algorithms according to the average time of all 30 runs. This figure clearly shows that
the proposed LEO-MPA takes more time to finish than other algorithms. In contrast,
the proposed LO is ranked first.

Figure 11. Time average rankings of all comparative methods on all test functions.

The results of this section revealed various characteristics of the proposed LO algo-
rithm. The location updating mechanism of lemurs using Equation (3) case number one is
responsible for LO’s high exploration ability. During the initial steps of the iterations, this
equation allows lemurs to move around the best nearest lemur. The rest of the iterations
emphasize high exploitation and convergence, which come from Equation (3) case number
two. This equation enables the lemurs to quickly reposition themselves around or step
towards the current global best lemur. It is worth mentioning here that the exploration and
exploitation phases are completed separately, and the LO exhibits convergence speed and
high local optima avoidance at the same time. Besides, the LO is utilized one formula to
manage these two phases and update the position of lemurs. The performance of LO in
real engineering problems is verified in the following section.



Appl. Sci. 2022, 12, 10057 17 of 24

4.5. Engineering Optimization Problems in the Real World

In this section, three well-known real-world problems, presented at (IEE0E-CEC 2011)
the 2011 IEEE Congress on Evolutionary Computation, are addressed to evaluate the effi-
ciency of the proposed LO algorithm [71]. In this regard, transmission network expansion
planning (TNEP), the bifunctional catalyst blend optimal control (BCBOC), and Parameter
estimation for frequency-modulated (FM) sound waves (PEFMSW) problems are utilized.
Table 7 shows the characteristics of these real-world problems in terms of the problem
dimension and the value range of decision variables.

Table 7. The characteristics of three real-world problems.

Problem Value Range Dimension

PEFMSW xi ∈ [−6.4, 5.35],where 1 ≤ i ≤ 6 6

TNEP
x1, x2 ∈ [0, 4], x3 ∈ [0, π], xi ∈ [−4 − 1

4b
i−4

3 c, 4 +
1
4b

i−4
3 c], where 4 ≤ i ≤ 30

30

BCBOC x1 ∈ [0.6, 0.9] 1

It should be noted that the parameter settings for the proposed LO algorithm are as
follow: the number of runs is 30, the number of iterations is 150,000 and the population size
is 30. These settings are under the IEE0E-CEC2011 rules [71]. These settings are suggested
to make a fair comparison with thirteen other comparative algorithms. These comparative
algorithms include CHIO (i.e., coronavirus herd immunity optimizer) [25], APS (i.e., adap-
tive population-based simplex algorithm) [72], ADE (i.e., adaptive differential evolution
algorithm) [73], CDASA (i.e., continuous differential ant-stigmergy Algorithm) [74], DE
(i.e., differential evolution) [75], D0E-RHC [69], GA-MPC [76], HDE [77], HMA (i.e., hy-
brid EA-D0E-memetic algorithm) [78], IMO (i.e., intellects-masses optimizer) [79], ABC
(i.e., artificial bee colony) [80], AABC (i.e., accelerated artificial Bee colony algorithm) [80],
and KHABC [81].

4.6. Transmission Network Expansion Planning (TNEP) Problem

The TNEP problem entails finding the lowest cost transmission assets that can be
installed in a power system to meet predicted demand over a specified time horizon [82].
Because TNEP has a long-term effect on system operation, it is a key strategic decision in
power systems. Additionally, TNEP is a non-linear, non-convex, and multi-modal opti-
mization problem that is classified as NP-hard in terms of computing complexity. Different
models and strategies for solving the TNEP problem have been developed in the existing
literature. To address the TNEP problem in its various manifestations, heuristic and meta-
heuristic have been developed. While heuristic techniques are simple to use, they typically
become stuck in locally optimal solutions. Metaheuristic techniques are more efficient
search algorithms that are capable of finding better solutions than conventional heuristic
techniques at the cost of increased processing time. Table 8 compares the performance
of the proposed LO algorithm with eleven different comparison algorithms. In this table,
the experimental results of each comparative algorithm are summarized in terms of the
best, mean, worst, median, and standard derivations across 30 runs. From Table 8, it is clear
that the proposed LO algorithm performance is similar to all other algorithms by obtaining
the same results (i.e., it reached the optimal solution).
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Table 8. The performance of the LO algorithm against other comparative algorithms on transmission
network expansion planning problems.

Algorithm Best Mean Median Worst Stdv

LO 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104

HMA 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104

DE 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104

APS 9 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104

D0E-RHC 0.0220000 × 104 0.0220000 × 104 N/A 0.0220000 × 104 0.0220000 × 104

CHIO 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104

HDE 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104

ADE 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104

IMO 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104

KHABC 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104

CDASA 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 1.43290 × 101 0.0220000 × 104

GA-MPC 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104 0.0220000 × 104

4.7. The Bifunctional Catalyst Blend Optimal Control Problem

The experimental results of the proposed LO algorithm, as well as the results of ten of
the comparative algorithms, are recorded in Table 9. It can be observed from the results in
Table 9 that the performance of the LO algorithm is similar to other algorithms by obtaining
the same best results.

Table 9. The performance of the LO algorithm against other comparative algorithms on the bifunc-
tional catalyst blend optimal control problem.

Algorithm Best Mean Median Worst Stdv

LO 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 4.53430 × 10−20

HMA 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 9.97110 × 10−19

DE 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 2.00390 × 10−19

APS 9 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 4.80700 × 10−19

D0E-RHC 0.0115150 × 10−3 0.0115150 × 10−3 N/A 0.0115150 × 10−3 0.00000 × 100

CHIO 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 4.53430 × 10−10

HDE 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 6.10870 × 10−18

ADE 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 3.80430 × 10−19

IMO 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 0.00000 × 100

CDASA 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 1.68850 × 10−24

GA-MPC 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 0.0115150 × 10−3 0.00000 × 100

4.8. Parameter Estimation for Frequency-Modulated (FM) Sound Waves

The experimental results of running the proposed LO algorithm are recorded in
Table 10. In the same table, these findings are compared to those of thirteen different
comparative algorithms. From Table 10, it can be shown that the LO algorithm performs
similarly to five of the other compared algorithms in terms of attaining optimal outcomes
when solving such problems. Furthermore, the LO algorithm is obtained the same best
results at all times of runs, and this is similar to the GA-MPC algorithm. Thus, the effective-
ness of the proposed LO in handling complex optimization problems is demonstrated.
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Table 10. The performance of the LO algorithm against other comparative algorithms on Parameter
estimation for frequency-modulated (FM) sound waves.

Algorithm Best Mean Median Worst Stdv

LO 0.000000 × 100 0.000000 × 100 0.000000 × 100 0.000000 × 100 0.000000 × 100

HMA 1.167400 × 10−11 2.094900 × 100 6.084700 × 10−10 1.137400 × 101 4.306400 × 100

DE 0.000000 × 100 6.044800 × 10−13 1.085400 × 10−27 1.312700 × 10−11 2.638800 × 10−12

APS 9 0.000000 × 100 1.193500 × 101 1.481300 × 101 1.869800 × 101 6.516900 × 100

D00E-RHC 5.020000 × 10−20 8.910000 × 100 N/A 1.560000 × 101 6.370000 × 100

CHIO 9.057300 × 100 1.831100 × 101 1.706000 × 101 4.023300 × 101 8.153800 × 100

HDE 7.209300 × 10−15 8.769700 × 10−1 1.236200 × 10−11 1.175700 × 101 3.043900 × 100

ADE 0.000000 × 100 3.852600 × 100 0.000000 × 100 1.702100 × 101 5.690000 × 100

IMO 0.000000 × 100 8.989400 × 10−1 0.000000 × 100 1.230600 × 101 3.126600 × 100

CDASA 3.278900 × 10−18 0.01151500 × 10−3 1.137600 × 101 2.117100 × 101 7.095500 × 100

GA-MPC 0.000000 × 100 0.000000 × 100 0.000000 × 100 0.000000 × 100 0.000000 × 100

KHABC 1.231000 × 101 2.231000 × 101 N/A 2.779000 × 101 3.530000 × 100

AABC 3.669600 × 10−1 N/A N/A N/A N/A
ABC 2.772500 × 100 N/A N/A N/A N/A

All of the previous experiments and observations support the proposed algorithm’s
ability to solve complex problems with unknown search spaces. As a result, this efficient
optimization algorithm is being provided to be utilized for optimization problems in various
fields. It is worth mentioning that other well-defined optimization problems such as text
documents clustering [83,84], EEG signals denoising [85–87], feature selection [88–91], and
scheduling problems in smart home [92–95] can be handled by the proposed algorithm.

5. Conclusions and Future Works

In this study, an innovative evolutionary optimization technique inspired by the
locomotor behavior of lemurs was developed. The proposed algorithm is called Lemur
Optimizer (LO) which included one operator to simulate how lemurs escape from predator
attacks and search for food. The proposed algorithm is investigated from different aspects
which are: convergence behavior, exploitation, and exploration. The conclusion can be
summarized as follows:

• An exhaustive analysis was performed on 23 mathematical benchmark functions.
In contrast to other state-of-the-art metaheuristic algorithms, LO is found to be suffi-
ciently competitive.

• Three structural engineering problems (i.e., Transmission network expansion planning
(TNEP) problem, The bifunctional catalyst blend optimal control problem, and Param-
eter estimation for frequency-modulated (FM) sound waves) are studied and used to
evaluate the performance of the proposed algorithm.

• The results show that LO is very competitive when compared to other metaheuris-
tic algorithms.

As a future direction, we will develop a multi-objective version of the LO algorithm.
Another future work can be introducing a binary version LO algorithm.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app121910057/s1, Table S1: Comparative performance of the LO
algorithm with swarm algorithms based on functions F1–F7; Table S2: Comparative performance
of the LO algorithm with swarm algorithms based on functions F8–F23; Table S3: p_values of the
Wilcoxon statistical test between the proposed LO algorithm and ABC, SCA, BA, FPA, JAYA, and
LEO-MPA.

https://www.mdpi.com/article/10.3390/app121910057/s1
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