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Abstract: Against the background of the gradual deepening of China Railway’s market-oriented
reform, and in order to improve the revenue and competitiveness for high-speed railway (HSR)
passenger transport, this paper studies the joint optimization problem of the high-speed railway
ticket pricing and allocation considering the dynamic demand characteristics of passengers during
the pre-sale period. Firstly, we use the compound non-homogeneous Poisson process to describe
the passengers’ ticket-purchasing process and use the sparse method to simulate the passengers’
ticket demand during the pre-sale period. Secondly, taking the ticket pricing and allocation as the
decision variables and considering the full utilization of the train seat capacity, a stochastic nonlinear-
programming mathematical model is established with the goal of maximizing the train revenue.
A particle swarm algorithm is designed to solve the model. Finally, this study takes the G19 train
running on the Beijing–Shanghai HSR in China as a case study to verify the effectiveness of the model
and algorithm. The results show that the joint optimization scheme of ticket pricing and allocation
considering dynamic demand yields a revenue of CNY 601,881, which increases the revenue by
1.01% with a small adjustment of the price compared with the fixed ticket price and pre-allocation
scheme. This study provides scientific support for the decisions made by railway transportation
enterprises, which is conducive to further increasing the potential ticket revenue and promoting
sustainable development.

Keywords: high-speed railway; dynamic pricing; ticket allocation; passenger ticket pre-sale period;
revenue management

1. Introduction

In recent years, China’s HSR system has been developing rapidly. With the increase
in the railway’s running mileage, the scale of passenger transport is also enlarging. By
2021, China’s Railway running mileage was 150,000 km, including 40,000 km of high-
speed railway, accounting for 26.7% of the total. With the COVID-19 pandemic under
effective control, China’s Railway passenger traffic volume rebounded to 2.533 billion in
2021, an increase of 16.9% year-on-year, among which the number of passengers sent by
the high-speed Electric Multiple Units (EMU) accounted for more than 70% of the total
passenger volume. According to the Medium and Long Term Railway Network Plan
(2020–2035), China’s Railway network will extend to 200,000 km by 2035, including 70,000
km of high-speed railway, and cities with a population of 500,000 or more will be accessible
by a high-speed railway [1].

With the further expansion of the railway network, railway transport enterprises
are gradually moving towards marketization. In 2013, China Railway implemented a
separation of the enterprise from administration, which officially opened the prelude to
the market-oriented reform of the railway transport market [2]. In 2016, the ticket-pricing
power of the high-speed railway was handed over to transport enterprises, signaling that
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the enterprises had gained the power to adjust ticket prices according to market supply,
demand, and competition. At the end of 2020, to solve the contradiction between supply
and demand and promote the market-oriented development of the Beijing–Shanghai HSR,
it was decided to adjust the ticket price, with the actual ticket price implemented as the
base price.

Although the market-oriented reform of railway transport has begun to bear fruit,
it still faces the following severe challenges [3]. (1) The imbalance between revenue and
expenditure. The railway has the characteristics of a high construction cost and a long
payback period, especially the HSR. Although the transport revenue has increased year
by year in recent years, it is still far below the investment. (2) The supply and demand
mismatch. Due to the insufficient grasp of passengers’ demand, the uneven allocation
seriously hinders the further increase in transport revenue. (3) It is difficult to consider both
ticket revenue and the train seat capacity utilization. In the context of the market-oriented
reform of the HSR, due to the differences in passengers’ ability to accept ticket prices, if
transport companies adjust ticket prices by more than the acceptable level of passengers, it
may affect passengers’ demand for tickets, thus affecting the train seat capacity. According
to the law of passenger flow fluctuation, the method by which to jointly optimize the
existing ticket pricing and allocation and make full use of the train seat capacity while
increasing transport revenue is a difficult problem that needs to be solved urgently in the
current market-oriented reform of railway transport enterprises.

In the final analysis, the lack of an accurate grasp of passenger dynamic demand in
ticket pricing and allocation is the main reason that causes the waste of train seat capacity
and lower revenue. Although China Railway has gradually liberalized the independent
pricing power of China’s high-speed railway and tested it in some respects, it is still in
the exploratory period. The current ticketing organization work still adopts the fixed
ticket price and pre-allocation scheme during the pre-sale period. This scheme not only
lacks the consideration of the dynamic demand characteristics of passengers during the
pre-sale period, but also ignores that ticket pricing and allocation is an interconnected and
inseparable whole. In conclusion, to improve the competitiveness and efficiency for HSRs’
passenger transport, it is necessary to study the joint optimization of ticket pricing and
allocation on the HSR based on dynamic passenger demand during the pre-sale period.

The remainder of this paper is organized as follows. Section 2 summarizes the litera-
ture on ticket allocation, dynamic pricing, and their joint optimization. Section 3 studies
the joint optimization of ticket pricing and allocation with respect to the HSR from three
aspects: the problem’s description, a passenger dynamic demand analysis, and the model’s
formulation. In Section 4, a particle swarm optimization algorithm is designed to solve the
model. Section 5 describes the case analysis. In Section 6, the research results are discussed.
Finally, Section 7 presents the conclusion.

2. Literature Review
2.1. Ticket Allocation Problem

A reasonable train operation plan for railway passenger transport should jointly
optimize the service quality and railway operator’s revenue. Zhang et al. developed an
integrated model to maximize the operator’s revenue and minimize passengers’ general
cost, which is applied to optimize the train frequencies, stopping patterns, and ticket
allocation dynamically [4]. Based on the revenue management theory and against the
background of price regulation, Yuan and Nie [5] believed that the optimal ticket allocation
scheme was the only way for China Railway’s transport system to improve profits from
ticket sales. Ongprasert [6] and Han [7] conducted different studies on the cooperative
optimization of the HSR’s stopping plan and ticket allocation. In the research field of
multi-train ticket allocation, Song et al. [8] established a multi-train ticket allocation joint
model considering the ticket-purchasing process and passenger demand during the pre-
sale period, and Yan et al. [9] set up a ticket allocation model for HSR passenger transport
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based on a flexible train composition. Wang et al. [10] proposed an optimization method of
multi-class price and ticket allocation under a high passenger demand.

2.2. Dynamic-Pricing Problem

Littlewood is the originator of revenue management theory research. In 1972, he intro-
duced the application of revenue management theory that was based on the example data
in the aviation field for the first time [11]. As the relevant theories and methods of revenue
management continue to mature, scholars in some developed countries such as the UK, the US,
and Japan have started to introduce the dynamic-pricing method into the railway field [6,12,13].
However, in developing countries such as China, where a fixed ticket price policy had been
used for a long time, although floating pricing reform has been started in recent years, it is still
in the experimental stage, so it is necessary to pay attention to the research results concerning
dynamic pricing. Low and Lee’s examination of the interacting relationships between the
presence of HSR transportation and other important dimensions of city development in deter-
mining land prices could help policy-makers devise ways to curb the escalation of property
prices while enjoying the benefits of a HSR [14]. In recent years, due to the increasingly fierce
competition with air transport, scholars have studied the dynamic pricing model of HSRs
while considering the competitive situation [15–17]. Some scholars studied different types of
passenger groups and decided to set more attractive prices to expand railway passenger flow,
and finally increased the profit of enterprises [18,19]. To optimize HSR ticket prices based on
passenger choice behavior, it is necessary to analyze the arrival patterns of the passengers and
the change patterns of passenger demand in the pre-sale period, and to reasonably quantify
the influencing factors [20–23]. Yu et al. [24] proposed a data-driven ticket dynamic pricing
methodology for a railway service provider. Qin et al. [25] considered that passenger demand
is sensitive to the generalized travel cost and that the train’s stopping plan can affect the travel
time and passenger distribution. Then, a mixed-integer non-linear optimization model was
proposed for the joint problem of ticket pricing and trains’ stop planning to maximize the
HSR’s transport revenue and minimize passengers’ travel time.

2.3. Joint Optimization of Ticket Allocation and Dynamic Pricing

Based on the revenue management theory, Wu et al. [26] proposed a joint model that
introduced the ticket allocation decision into the dynamic-pricing problem of the HSR. The
objective of the model is to maximize the total revenue under the price cap constraint. Deng
et al. [27] studied multilevel pricing and ticket allocation for high-speed multi-train services
with multiple origins and destinations. Qin et al. [28] formulated the co-optimization
problem of HSR ticket pricing and allocation as a mixed integer nonlinear-programming
model, which can properly capture the choice behavior of passengers. Considering the
sensitivity of demand to price, Qin et al. [29] took elastic passenger flow demand and
the optimal ticket price as decision variables and studied the cooperative optimization of
railway ticket pricing and allocation; Xu et al. [30] considered that the demand was sensitive
to the ticket price, and a non-concave and non-linear mixed integer optimization model
was then formulated for the ticket-pricing and allocation problem to maximize the railway
ticket revenue; Song et al. [31] considered the time distribution law of passengers’ ticket-
purchasing behavior during the pre-sale period and considered the randomness of demand,
and then introduced a robust optimization method to solve the model. However, Bo Li [32]
and Zhu et al. [33] established different joint decision models of dynamic pricing and
ticket allocation for the HSR, aiming at solving some problems wherein ticket prices were
fixed during the pre-sale period and the revenue could not be increased. Fang et al. [34]
innovatively took the high-speed freight electric multiple unit train as a research object,
applied the revenue management theory to the research of high-speed railway express
product under the competitive environment, and proposed a comprehensive decision
model based on a sharing rate model.
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2.4. Research Ideas

Surrounding revenue management theory, scholars have explored and tested the
core methods of revenue management in many fields, such as dynamic pricing and seat
control strategies in air and railway transport. As the research progresses, the application
of revenue management in railway transport mainly focuses on dynamic pricing and
ticket allocation. However, within the existing literature, the research on the characteristics
of China’s HSR transport is not comprehensive enough, and the shortcomings can be
summarized as follows.

(1) The existing dynamic pricing studies mainly focused on the characteristics of uneven
distribution of passenger flow throughout a given year, with differential pricing for
high and low seasons or differential pricing for the same Origin–Destination (OD)
parallel train service index, ignoring the law of the distribution of passenger demand
during the pre-sale period. In addition, because the intensity of passenger demand
for tickets varies in different periods of the pre-sale period, the existing studies only
considered the overall situation of passenger demand, and seldom considered the
characteristics of dynamic passenger demand for tickets in different periods of the
pre-sale period.

(2) The existing ticket pricing and allocation joint optimization studies rarely considered
the feedback relationship between the two. The dynamic adjustment of the ticket
price will directly affect the passenger demand and, consequently, affect the ticket
allocation scheme. In addition, the ticket pre-allocation scheme is also the basis for
the implementation of dynamic pricing.

To summarize, this paper analyzes the characteristics of dynamic passenger demand
by combining the past ticket-purchasing data of passengers in each OD section during the
pre-sale period. Aiming at maximizing train revenue and considering the full utilization of
trains’ seat capacity, a joint optimization method of ticket pricing and allocation for a single
train was innovatively proposed.

3. Mathematical Model
3.1. Problem Description
3.1.1. Problem Analysis

It is supposed that a high-speed railway line consists of m stations and H segments.
Each train running on the line has a different stop schedule, thus forming many different
ticket-purchasing Origin–Destination (OD) sections for corresponding passengers to choose,
as shown in Figure 1.
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In general, railway transport enterprises carry out ticket pre-allocation before the pre-
sale period; that is, they mainly combine the past passenger flow data and distribution law
to make a short-term passenger flow forecast and allocate a certain number of tickets to each
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OD section. However, sometimes this ticket pre-allocation scheme cannot meet passengers’
dynamic demand during the pre-sale period, resulting in the imbalance between supply
and demand in some OD sections, thereby hindering the increase in train revenue.

The main problem solved in this paper is as follows. Based on the ticket pre-allocation
scheme, and according to the distribution characteristics of ticket-purchasing demand at
different times in the pre-sale period, we jointly optimize ticket pricing and allocation with
the goal of maximizing the single train revenue, considering the full utilization of the train
seat capacity.

3.1.2. Assumptions

To simplify the problem, we make the following reasonable assumptions:

(1) Only the single train problem is studied, and the transfer of passenger demand
between the single train and other trains is not considered.

(2) The ticket-purchasing behaviors of passengers in each OD section in each period in
pre-sale period are independent of each other.

(3) Since the current railway pre-sale period is only 15 days, passengers do not have
much time to analyze the future trend of ticket prices. Therefore, it is assumed that
passengers in each period of pre-sale period are short-sighted.

(4) There is no overselling strategy, and the passenger behavior of refund and ticket
change is not considered.

(5) There is a standby ticketing mechanism during the pre-sale period, and when the
number of tickets do not meet passenger demand, a passenger can book the standby
tickets. That is, considering the volatility and difficulty in accurately predicting
passenger demand, some of the seats are allocated to meet basic needs, while the
remaining seats as, standby tickets, are temporarily not allocated. When tickets of
a certain OD section are sold out, the "first come, first served" of standby ticket-
purchasing strategy is adopted to effectively deal with the situation of large-scale
ticket adjustment caused by passenger flow fluctuation.

(6) All pre-allocation tickets are released at the beginning of the pre-sale period.

3.1.3. Notations

Some model notations used in this paper are defined in Table 1, as follows.

3.2. Passenger Dynamic Demand Analysis
3.2.1. Passenger Ticket-purchasing process

In real life, many stochastic processes are Markov processes, such as the daily sales
situation, which should be studied with respect to commercial activities, the number of
people waiting at the station, the number of people infected with infectious diseases, etc.,
which can be regarded as Markov processes. A Markov process is an important method
for studying discrete event dynamic systems, and its mathematical basis is the theory of
stochastic processes [35]. The Poisson process is a kind of simple stochastic process with
continuous time and a discrete state, which has been widely used in queuing theory and
service systems.

The ticket-purchasing process of passengers during the pre-sale period can be regarded
as the arrival process of several ticket-purchasing requests, which is a stochastic process
and fits the concept of the Poisson process. The following describes the ticket-purchasing
process through the Poisson process.

Nt represents the total number of passengers’ ticket-purchasing requests in the period
[0, t]. λ = E(Nt)/t represents the intensity of this Poisson process. However, the passengers’
ticket-purchasing requests are unevenly distributed in the time dimension, i.e., the Poisson
intensity λ is not a fixed constant. Therefore, the condition of a non-homogeneous Poisson
process is satisfied; that is, the non-homogeneous Poisson process is caused by the non-
stationary intensity of the exponential distribution of time between passenger requests (as
a function of time), primarily. Moreover, a passenger may purchase several tickets in each
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purchase process during the pre-sale period, and the number of tickets cannot be described
only through the non-homogeneous Poisson process. Therefore, the compound non-
homogeneous Poisson process is introduced to describe the passengers’ ticket-purchasing
process, which is defined as follows.

Table 1. Notations in this model.

Notations Definition Unit

m The number of stations on a certain high-speed railway line stations
H The number of segments on this HSR line; H = m− 1 segments
h The segment number is 1, 2, 3 . . . H

ϕh
A 0-1 variable indicates the occupancy of the current segment—if the
current segment is occupied, the value is 1; otherwise, the value is 0

(i, j)

The OD section from station i to station j on this HSR line, where i
represents the passenger origin station and j represents the passenger
destination station:
i = 1, 2, 3 . . . m− 1, j = i + 1 . . . m

Tij A collection of divided pre-sale periods in section (i, j)
t The tth period of the pre-sale period, t = 1, 2, 3 . . . Tij
tk
ij The tth period of the pre-sale period in section (i, j) contains k days

pij The published ticket price of the section (i, j) CNY
pa

ij The actual ticket price of the section (i, j) CNY
C The rated passenger capacity of this type of train passengers

Ch

The seat capacity of the train in segment h
(The seat capacity of the train in each segment is equal to the rated
passenger capacity C of the train, without considering the condition of
overcrowding and overselling.)

seats

lij The mileage of the section (i, j) km
L The full mileage of the train km
R The revenue of the train CNY

Et
p

The flexibility coefficient of the price at the tth period of the pre-sale
period

Xij

(
tk
ij

) The stochastic ticket-purchasing demand in section (i, j) at the tth
period of the pre-sale period at the actual price pa

ij
tickets

E
[
Xij

(
tk
ij

)] The expected value of stochastic ticket-purchasing demand in section
(i, j) at the tth period of the pre-sale period at the actual price pa

ij

dt
ij

The dynamic passenger demand of section (i, j) at the tth period of the
pre-sale period tickets

Nij The number of tickets pre-allocated in section (i, j) tickets

MT−1
ij

The passenger flow volume exceeding the number of tickets allocated
in the former T-1 periods of the pre-sale period in section (i, j)

passengers

δij A 0–1 variable, if MT−1
ij is non-negative, δij = 1; otherwise, δij = 0

θij

If the ticket-purchasing demands of passengers are not satisfied in the
former T-1 periods of the pre-sale period in section (i, j), the passengers
will choose to purchase standby tickets with a probability of θij

Decision
Variables Definition Unit

pt
ij The price at the tth period of the pre-sale period in section (i, j) CNY

xt
ij

The number of tickets allocated at the tth period of the pre-sale period
in section (i, j)

tickets

Assume that {Nt , t ≥ 0} is a non-homogeneous Poisson process with intensity λ(t) > 0.
{Yk , k = 1, 2 . . .} is a group of stochastic variables representing the number of tickets pur-
chased per arrival. {Nt , t ≥ 0} and {Yk , k = 1, 2 . . .} are independent of each other. Make

X(t) = ∑N(t)
k=1 Yk , t ≥ 0 (1)
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Then, {Xt, t ≥ 0} is called a compound non-homogeneous Poisson process.

3.2.2. Passenger Dynamic Demand and Ticket Prices

We use the exponential demand function to describe the relationship between passen-
gers’ ticket-purchasing demand and ticket price, mainly based on the following two main
points. (1) The value of the exponential demand function is always greater than zero. There
is no need for non-negative processing in the model construction process, which fits the
actual situation wherein demand cannot be negative. (2) The exponential demand function
includes linear functions. Due to the limited data available in this paper, if the number of
data is large enough, a linear regression analysis of demand and price can be undertaken,
and the parameters can be valued.

The exponential demand function is expressed as in Equation (2), where a and b
are parameters.

λ(p) = ae−bp (2)

pa is the actual ticket price and Equation (3) represents the relationship between the
intensity and the actual ticket price.

λa(pa) = ae−bpa
(3)

When the characteristics of passenger ticket-purchasing demand fit the non-homogeneous
Poisson process, the relationship between dynamic demand and ticket price at the tth period of
the pre-sale period in section (i,j) is derived as in Equation (4).

dt
ij = Xij

(
tk
ij

)
·e
−bpa

ij(
pt

ij
pa

ij
−1)

(4)

The flexibility coefficient of the price Et
p describes the degree to which demand is

affected by price and is an important parameter in the demand function, which is calculated
in Equation (5).

Et
p = lim

∆p→0

(
∆dt

ij

∆pt
ij
×

pt
ij

dt
ij

)
=

ddt
ij

dpt
ij
×

pt
ij

dt
ij

(5)

The value of Et
p reflects the sensitivity of passenger demand to ticket price changes.

Et
p varies at different times of the pre-sale period. At the beginning of the pre-sale period,

passengers have enough time to choose their travel time and route; at this moment the
sensitivity is relatively high, so the flexibility coefficient of the price is relatively large. Near
the end of the pre-sale period, passengers lack sufficient time to re-plan their itineraries
and are less sensitive to changes in ticket price than at the beginning of the pre-sale period,
so the coefficient is relatively small. Equation (4) can be transformed as follows.

dt
ij = Xij(tk

ij)·e
−Et

p(
pt

ij
pa

ij
−1)

(6)

The negative sign in Equation (6) represents that there is a negative correlation between
demand and price. The ticket-purchasing demand decreases with the increase in the
ticket price.

3.3. Model Formulation
3.3.1. Objective Function

At the tth period of the pre-sale period, the actual sale amount in section (i,j) depends
on the minimum value of the passenger demand dt

ij and the ticket allocation xt
ij, i.e.,
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min
{

dt
ij, xt

ij

}
. Then, in this period within the pre-sale period, the ticket revenue of section

(i,j) can be expressed as Equation (7).

Rt
ij = pt

ij·min
{

dt
ij, xt

ij

}
(7)

If dt
ij ≤ xt

ij, all passengers’ ticket purchase demands are met. Otherwise, all passengers
exceeding the number of tickets allocated xt

ij will enter the queue of standby seats at a
proportion of θij, and then wait to buy the standby tickets at the final period T of the
pre-sale period. The objective function of maximizing the train revenue is established as
shown in Equation (8).

maxR =
T−1
∑

t=0

M−1
∑

i=1

M
∑

j=i+1
pt

ij·min
{

dt
ij, xt

ij

}
+

T
∑

t=T−1

M−1
∑

i=1

M
∑

j=i+1
pt

ij·
(

min
{

dt
ij, xt

ij

}
+ θij·δij·MT−1

ij

)
(8)

3.3.2. Constraints

(1) Ticket price constraint

1. Since the ticket price of a high-speed railway needs to account for the revenue of
railway transport enterprises and social benefits, the ticket price is restricted to
float within a certain range, as shown in Equation (9).

pij ≤ pt
ij ≤ pij ∀t ∈ T (9)

According to the current policy on ticket prices, the published price is the highest
limit of the implementation price; that is, the upper limit pij of section (i,j) is a
certain value. The lower limit pij is the product of the published ticket price and

the lowest discount. As shown in Equation (10), βij is the lowest ticket price
discount rate in section (i,j).

pij= pij·βij (10)

2. To encourage passengers to purchase tickets earlier during the pre-sale period,
the ticket price in section (i, j) will only rise as the departure date approaches.

pt−1
ij ≤ pt

ij ∀t ∈ T (11)

3. In the first period of the pre-sale period, the ticket price should be at a lower
level to provide room for increases in later periods.

p1
ij ≤ pa

ij (12)

(2) Ticket allocation constraint

4. The number of tickets during the pre-sale period consists of two parts: the
pre-allocation tickets and the standby tickets. Standby tickets will be sold at the
last period T only when the pre-allocation tickets are sold out in the former T-1
periods. Therefore, the number of tickets allocated in the former T-1 periods
should be less than or equal to the number of pre-allocation tickets.

T−1

∑
t=0

xt
ij ≤ Nij (13)

5. The number of tickets allocated in each OD section cannot be negative and
must be an integer.

xt
ij ≥ 0, xt

ij ∈ Z ∀t ∈ T (14)

(3) Train seat capacity constraint
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The total number of tickets allocated to each OD section during the pre-sale period
should be less than the train seat capacity in the current segment.

T

∑
t=0

m−1

∑
i=1

m

∑
j=i+1

ϕh·xij ≤ Ch (15)

(4) Calculation of standby ticket-purchasing demand

The standby passenger flows in each section come from the passengers whose ticket-
purchasing demands have not been met in the former T-1 periods. Their value is the
difference between the passenger demand and the seats allocated and is not negative.

δij·MT−1
ij =

T−1

∑
t=0

dt
ij − xt

ij =
T−1

∑
t=0

dt
ij −

T−1

∑
t=0

min
{

dt
ij, xt

ij

}
(16)

(5) Average passenger seat utilization constraint

γ·
∑T

t=0 ∑m−1
i=1 ∑m

j=i+1 E
[
Xij

(
tk
ij

)]
·lij

C·L ≤
∑T

t=0 ∑m−1
i=1 ∑m

j=i+1 min
{

dt
ij, xt

ij

}
·lij

C·L , γ ∈ (0, 1) (17)

The Equation (17) indicates that the average passenger seat utilization rate of the train
after the implementation of dynamic pricing shall not be lower than a certain limit, and
the value range of the dimensionless parameter γ is (0,1). The left side of the equation
indicates the average passenger seat utilization rate under the actual ticket price, and the
right side indicates the average passenger seat utilization rate after the implementation of
dynamic pricing.

4. Methods
4.1. Passenger Ticket-Purchasing Demand Simulation Method

According to the characteristics wherein passengers’ ticket-purchasing request in-
tensity varies at different times during the pre-sale period, we first need to fit the ticket-
purchasing rate function gij(t) and divide the pre-sale period. The relationship between
ticket-purchasing request intensity function and ticket-purchasing rate function is λij(t) =
Qij·gij(t).

Since the ticket-purchasing demand Xij(tk) in different OD sections at different periods
of the pre-sale period is a random variable, the model established in this paper is a stochastic
nonlinear integer-programming model, which is difficult to solve directly. Therefore, the
simulation is used to simulate the ticket-purchasing process in each OD section, so as to
transform the model into a deterministic linear integer-programming model that is easy to
solve [36].

There are many methods to simulate the non-homogeneous Poisson process: the
sparse method requires that the ticket-purchasing intensity function at each period has
an upper limit; the scale transformation method requires the calculation of the inverse
function of the cumulative intensity function; the interval time generation method and
order statistics methods require the calculation of the inverse function of the distribution
function. When the function is more complex, it is difficult to calculate the inverse function.
The sparse method, by contrast, is simpler and more efficient. Therefore, we use it to
simulate ticket-purchasing demand.

The principle of the sparse method is to generate the arrival time of the ticket-
purchasing requests of the homogeneous Poisson process first, and then segregate them
with a certain probability to obtain the arrival time of the non-homogeneous Poisson pro-
cess. Firstly, assume that λij(t) ≤ λ∗ij is met for all t ∈ (0, T) and that λ∗ij is a constant. As
long as the value of the constant λ∗ij is higher than the intensity function λij(t), it satisfies the
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conditions of use. Secondly, for section (i,j), generate a homogeneous Poisson process with
intensity λ∗ij at the tth period of the pre-sale period. S0

ij, S1
ij, S2

ij, S3
ij . . . Sn

ij respent the arrival
times of passengers’ ticket-purchasing requests during that period in that OD section. Then,
each Sx

ij is retained with probability λij(Sx
ij)/λ

∗
ij and discarded with probability 1−λij(Sx

ij)/λ
∗
ij.

The results S(0)ij , S(1)ij , S(2)ij , S(3)ij . . . S(n)ij are the arrival times of the ticket-purchasing requests
for a non-homogeneous Poisson process. The specific steps are shown below.

Step 1: Make t = 0, x = 0, (x) = 0 and S0
ij = 0.

Step 2: Generate two independent stochastic numbers, U1 and U2, between (0,1).
Step 3: Make x = x + 1. Generate the arrival time of the passengers’ ticket-purchasing
request for the homogeneous Poisson process: Sx

ij = Sx−1
ij − (1/λ∗ij)·lnU1.

Step 4: If U2 ≤ λ(Sx
ij)/ λ

∗
ij, then (x) = (x) + 1, S(x)ij = Sx

ij, t = Sx
ij. Otherwise, t = Sx

ij.
Step 5: If t ≥ T, end the circulation. Otherwise, jump to step 2.
Step 6: Take a stochastic value of Yk; otherwise, the default is 1.

After M simulation times and taking the average value, we can obtain the average
value of ticket-purchasing demand (E

[
Xij(tk)

]
) in section (i,j) at each period of the pre-sale

period. Equation (6) is transformed as follows.

dt
ij = E

[
Xij(tk)

]
·e
−Et

p(
p

p0−1)
(18)

4.2. Design of Particle Swarm Algorithm

The particle swarm algorithm is a global stochastic search algorithm based on group
collaboration developed by simulating the foraging behavior of a flock of birds. The basic
idea of this algorithm is to find the optimal solution through cooperation and information
sharing among individuals in the group. The particle swarm optimization algorithm
has the advantages of a simpler principle, fewer parameters, and easier implementation.
For example, compared with genetic algorithm, particle swarm algorithm does not need
coding, and there are no “crossover” and “mutation” operations in this algorithm. It is
also faster than the simulated-annealing algorithm. The basic idea of both particle swarm
algorithm and ant colony algorithm is to simulate the behavior of biological groups in
nature to construct stochastic optimization algorithms. Since the individual in the ant
colony algorithm can only perceive the local information and cannot directly use the global
information, the basic ant colony algorithm generally needs a long search time and is prone
to stagnation [37]. Therefore, the two-decision variable stochastic nonlinear-programming
mathematical model for the joint optimization of ticket price and allocation established in
this paper is more suitable for being solved by a particle swarm optimization algorithm [38].
Figure 2 shows the basic procedure of the algorithm.

The steps for solving the model using this algorithm are shown below.
Step 1: Set algorithm parameters, including maximum number of iterations (maxgen),

number of populations (sizepop), velocity maximum (Vmax), velocity minimum (Vmin),
search space dimension (nvar), search range maximum (popmax), search range minimum
(popmin), learning factor (cnvar), and own velocity inertia ($).

Step 2: Initialize particle position and velocity. Stochastically generate the initial
positions of n particles in the search space range, where the value of n is equal to the
population size. The position of each particle consists of nvar dimensional coordinates, and
the value of nvar is equal to the number of decision variables in the objective function. For
the model in this study, the nvar dimensional coordinates of each particle correspond to
the ticket price and ticket allocation in each OD section in each period during the pre-sale
period, which is a set of solutions of the model. At the same time, stochastically generate
the initial velocity of each particle in the velocity range.
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Step 3: Set the fitness function. The maximum model of the optimization problem
generally takes the objective function (Equation (8)) as the fitness function. In addition, set
the current iteration generation t = 0.

Step 4: Calculate each particle current fitness value, i.e., the objective function value.
Step 5: Based on the fitness value, update and replace individual optimum of each

particle. If the current position of the particle has a higher fitness value, it will be updated.
Otherwise, the original position remains unchanged. In addition, traverse all particles.

The velocity and position update rule can be expressed as Equation (19).

Vt+1
i = $Vt

i + c1·rand(0, 1)·
(
Pt

ibest − Xt
i
)
+ c2·rand(0, 1)·

(
Gt

best − Xt
i
)

Xt+1
i = Xt

i + Vt+1
i (19)

In the Equation (19), Vt+1
i represents the search speed of the ith particle in the (t+1)th

generation, and Xt+1
i represents the position of the ith particle in the (t+1)th generation.

Vt+1
i is jointly determined by its own speed, Vt

i ; the individual optimal position Pt
ibest; and

the global optimal position Gt
best. The $ is the particle’s own velocity inertia factor. c1 and

c2 are learning factors, representing the influence weight of individual optimum and global
optimum on the current speed, respectively.

Step 6: According to the fitness value, select the maximum among the individual
optima as the global optimum of the particle swarm. Update and replace the global
optimum. Calculate the fitness value of the current individual optimal location of each
particle and compare it with the global optimum of the particle swarm found before this
iteration. If this fitness value is higher, it will update the global optimal. Otherwise, the
previous global optimum is left unchanged. In addition, traverse all particles.

Step 7: Determine whether the current iteration number t is equal to the maximum
iteration number (maxgen). If so, proceed to Step 9; otherwise, proceed to Step 8.

Step 8: Set iteration generation t = t + 1 and skip to Step 4.
Step 9: Output the fitness value of the particle swarm. The fitness value is the optimal

value of the objective function.



Appl. Sci. 2022, 12, 10026 12 of 23

5. Case Studies
5.1. Basic Data

The Beijing–Shanghai HSR is the main corridor of the “eight vertical and eight hori-
zontal” high-speed railway network in China. The Beijing–Shanghai high-speed railway
company has been optimally adjusting ticket prices since the end of 2020. Among the 27
trains on the Beijing–Shanghai HSR, some of them only stop at a few large stations, with a
shorter running time and higher ticket price, which are more suitable for dynamic pricing.
Therefore, one of these trains (G19) was chosen as the case study.

The G19 train stops at four stations, namely, the Beijing South Railway Station, Jinan
West Railway Station, Nanjing South Railway Station, and Shanghai Hongqiao Railway
Station, thus forming three segments and six ticket purchasing OD sections—(1,2), (1,3),
(1,4), (2,3), (2,4), and (3,4)—for the corresponding passengers to choose. The seats occupied
according to the number of tickets is shown in Figure 3. The G19 train uses CR400BF EMU,
and the rated passenger capacity of the second-class seats is 1,113 passengers.
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Figure 3. Diagram of the seats occupied by number of tickets.

According to the survey, the known ticket pre-allocation scheme of each OD section is
shown in Table 2.

Table 2. Ticket pre-allocation scheme.

OD Section Origin Station Destination Station Ticket
Pre-Allocation

(1,2) Beijing South Jinan West 131
(1,3) Beijing South Nanjing South 234
(1,4) Beijing South Shanghai Hongqiao 548
(2,3) Jinan West Nanjing South 136
(2,4) Jinan West Shanghai Hongqiao 173
(3,4) Nanjing South Shanghai Hongqiao 134

Since the actual passenger ticket-purchasing demand of the Beijing–Shanghai HSR
cannot be accurately obtained, we use the actual passenger ticket-purchasing data as an
approximate substitute. Moreover, due to the large differences in the number of tickets
allocated for each OD section, the direct statistics on the number of daily tickets sold are
ambiguous; therefore, we introduce the daily ticket-purchasing rate Gt

ij for analysis, as
shown in Equation (20). Currently, the pre-sale period for China Railway passenger tickets
is 15 days. We collected passengers’ ticket-purchasing data of partial OD sections during
the pre-sale period on a certain date in January 2022. According to the method of testing
random numbers based on an exponential distribution [40], we verified that the statistics
satisfied the randomness requirement.

Gt
ij =

Tickets left on the (t− 1)th day− Tickets left on the tth day
Total tickets sold during the pre− sale period

× 100% (20)
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The daily ticket-purchasing rates of Beijing South Station–Shanghai Hongqiao Station,
Jinan West Station–Nanjing South Station, and Nanjing South Station–Shanghai Hongqiao
Station are shown in Figure 4.
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Figure 4. Distribution of daily ticket-purchasing rates in partial OD sections of Beijing–Shanghai HSR.

Figure 4 indicates that the daily ticket-purchasing rates are different in different
OD sections. In addition, for each OD section, the daily ticket-purchasing rates for the
former 14 days of the pre-sale period increased over time. While for the long-distance
OD section (Beijing South–Shanghai Hongqiao and Jinan West–Nanjing South), the daily
ticket-purchasing rate decreased on the 15th day, i.e., the day of departure. The daily ticket-
purchasing rate of the short-distance OD section (Nanjing South–Shanghai Hongqiao)
continued to increase. Therefore, we selected the data of the daily tickets sold of the former
14 days of the pre-sale period of this train on a certain date in January 2022 for statistics.
The parameter values of each OD section are shown in Table 3.

Table 3. OD Section parameter value.

OD Section Average Value Standard
Deviation

Ticket
Price/CNY Mileage/km

(1,2) 121 12.50 211 406
(1,3) 215 22.67 504 1023
(1,4) 507 48.97 626 1318
(2,3) 125 13.70 315 617
(2,4) 160 15.70 453 912
(3,4) 123 13.91 153 295

In this paper, we only consider the second-class seat ticket price, and the actual price
of a G19 train ticket is CNY 626. According to Equation (10), we take the published price
as the upper limit of the price of CNY 662, with an increase of about 5.75%. The lower
limit of the price is taken as the upper limit of the price for a parallel train—with a longer
travel time and a less comfortable departure time or arrival time—of CNY 598, while the
downward proportion is about 4.68%. Based on this, the upper and lower price of each OD
section are determined as shown in Table 4.
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Table 4. Table of upper and lower prices for each OD section.

OD Section Upper Limit/CNY Actual Price/CNY Lower Limit/CNY

(1,2) 223 211 202
(1,3) 533 504 481
(1,4) 662 626 598
(2,3) 333 315 301
(2,4) 479 453 433
(3,4) 162 153 146

The standby passenger ticket-purchasing ratio θij is set as 0.9, which means that
passengers whose ticket-purchasing requests are not satisfied in the former T-1 periods
of the pre-sale period will choose to purchase standby tickets with a probability of 90%.
In the average passenger seat utilization constraint, the dimensionless parameter γ takes
the value of 0.95, indicating that after the implementation of dynamic pricing during the
pre-sale period, the average passenger seat utilization of the train shall not be lower than
95% of the average passenger seat utilization under the actual price.

5.2. Time-Phased Dynamic Demand Simulation

Before simulating the non-homogeneous Poisson ticket-purchasing process in each
OD section, the ticket-purchasing rates’ curve needs to be fitted first. We use the regression
analysis method to fit the ticket-purchasing rate of each OD section via MATLAB R2016B
software for the primary function, quadratic function, cubic function, linear function,
exponential function, and power function. Then, many varieties of curve-fitting functions
are obtained. The fitting parameter statistics of the Beijing South–Nanjing South section
g13(t) are shown in Table 5.

Table 5. Results of ticket-purchasing rates’ curve fitting.

Function Types
Statistical Parameters

SSE R-Square Adjusted-Square RMSE

Primary Function 0.039480 0.0169 0.5850 0.057530
Quadratic Function 0.000323 0.9120 0.8959 0.028720

Cubic Function 0.000759 0.9926 0.9904 0.008710
Linear Function 0.083200 0.1928 0.4606 0.086970

Exponential Function 0.000380 0.9963 0.9960 0.005626
Power Function 0.000655 0.9936 0.9931 0.007385

Primary Function 0.039480 0.0169 0.5850 0.057530

The SSE is the sum of the squared errors of the corresponding points of the fitting
data and the original data. The closer the value is to 0, the better the fitting effect will be.
The R-square is the coefficient of determination, which is used to determine the degree
of curve regression fitting; the closer the value is to 1, the better the fitting effect will be.
The adjusted-square is the adjusted fitting coefficient; the closer the value is to 1, the better
the fitting effect will be. The RMSE is based on the average of the predicted value and the
original data; the closer the value is to 0, the better the fitting effect will be. Comparing
the statistical parameters of each fitting function, the exponential function with a better
statistical effect is selected as the fitting function, as shown in Figure 5.

By fitting the ticket data of the Beijing South–Nanjing South route, we can obtain the
ticket-purchasing probability density function during the pre-sale period of this OD section,
which is expressed as Equation (21).

g13(t) =

{
0.0003803 ∗ e(0.4778∗t) t ≤ 14

1− 0.0003803 ∗ e(0.4778∗t) t = 15
(21)
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The corresponding ticket-purchasing probability distribution function of this OD
section is expressed as Equation (22).

G13(t) =
{∫ t

0 0.0003803∗e(0.4778∗t) dt t ≤ 14
1 t = 15

(22)
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pre-sale period.

Similarly, the g12(t) for the Beijing South–Jinan West section, g14(t) for the Beijing
South–Shanghai Hongqiao section, g23(t) for the Jinan West–Nanjing South section, g24(t)
for the Jinan West–Shanghai Hongqiao section, and g34(t) for the Nanjing South–Shanghai
Hongqiao section are fitted; then, the ticket-purchasing probability distribution functions
for the corresponding OD sections are obtained in turn.

According to the above fitted ticket-purchasing rate function gij(t), the intensity func-
tion λij(t) can be obtained through λij(t) = Qij·gij(t). We use MATLAB R2016B to simulate
the non-homogeneous Poisson-evaluated-ticketing process at different periods during the
pre-sale period for each OD section. Circulate the designed simulation program 100 times;
then, obtain the simulation results’ distribution for the Beijing South–Nanjing South section,
as shown in Figure 6.
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relative error is about 2.79%. Therefore, the simulation method for obtaining the passengers’
ticket-purchasing demand of this OD section has a strong reliability.

Figure 7 shows the distribution of 221 ticket-purchasing request arrival times S221
13 in

the Beijing South–Shanghai Hongqiao section during the pre-sale period. It is evident that
the daily ticket-purchasing rate changes smoothly in the former 12 or 13 days of the pre-sale
period with little difference, so there is no need to divide many periods. Therefore, the
first two periods are divided according to the 10% and 20% of the cumulative probability
distribution law, namely, t = 1 and t = 2. By comparison, the daily ticket-purchasing rate
changes very dramatically in the last three days of the pre-sale period, which is very
different from the first two periods. In addition, there is breakpoint in the daily ticket-
purchasing rate on the 15th day of the pre-sale period, namely, the departure day, so the
last three days are divided into two periods: t = 4 is the 15th day of the pre-sale period,
and t = 3 is about the 13th to 14th day of the pre-sale period. Thus, the pre-sale period is
divided into four periods. Table 6 shows the time division of the pre-sale period for each
OD section.
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Table 6. Time division table of pre-sale period for each OD section.

OD Section t = 1 t = 2 t = 3 t = 4

(1,2) Days 1 to 7 Days 8 to 12 Days 13 to 14 The 15th day
(1,3) Days 1 to 7 Days 8 to 11 Days 12 to 14 The 15th day
(1,4) Days 1 to 9 Days 10 to 12 Days 13 to 14 The 15th day
(2,3) Days 1 to 10 Days 11 to 13 The 14th day The 15th day
(2,4) Days 1 to 9 Days 10 to 12 Days 13 to 14 The 15th day
(3,4) Days 1 to 9 Days 10 to 13 The 14th day The 15th day

According to the divided pre-sale period, the average value and relative error of
passengers’ ticket-purchasing demand in each OD section in each time period of the pre-
sale period can be obtained, as shown in Table 7.
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Table 7. Statistical table of average value and error of ticket-purchasing demand.

OD
Section t = 1 t = 2 t = 3 t = 4 Total Error

(1,2) 10 23 65 26 124 2.48%
(1,3) 20 50 120 31 221 2.79%
(1,4) 51 118 259 89 517 1.97%
(2,3) 11 47 39 32 129 3.2%
(2,4) 15 44 75 31 165 3.13%
(3,4) 11 38 35 42 126 3.28%

Use E1
p, E2

p, E3
p, and E4

p to represent the flexibility coefficients of the price during the
four periods of the pre-sale period. Considering that the regional economy along the
Beijing–Shanghai HSR line is relatively developed, the passengers are less sensitive to the
price changes of tickets. Therefore, the value of E1

p should be less than 1. Combined with
the actual situation, E1

p takes the value of 0.9, and the flexibility coefficient of the price in
consecutive periods of the pre-sale period decreases by 5% in turn; that is, Et

p = 0.95·Et−1
p .

5.3. Optimization Results

Since the demand function during the former 14 days of the pre-sale period is a
continuous function, the last day often presents a breakpoint in the ticket-purchasing rate;
so, we divide the simulation into two stages. The first stage is the former 14 days of the
pre-sale period, and the second stage is the 15th day.

Set the particle population size popsize = 100, the maximum number of iterations
should be 500, the inertia factor $ = 0.8, the learning factor c1 = 1.49, and c2 = 1.49. We
use MATLAB R2016B software to solve the model. Figure 8 shows the iteration process
of the solution. Convergence is reached in less than 200 iterations in the first stage of the
pre-sale period, while convergence is reached within 100 iterations in the second stage of
the pre-sale period. At this time, the objective function value does not change, and the
optimal solution is obtained. The total revenue of the train during the pre-sale period is
CNY 601,881.
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The ticket price change in each OD section during the pre-sale period is shown in
Figure 9, where the blue line is the fixed ticket price, and the red line is the optimal ticket
price of each period during the pre-sale period.
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The ticket prices and number of ticket sales of each period during the pre-sale period
in each OD section, i.e., the optimization results of the model, are shown in Table 8.

Table 8. Model results.

OD
Section

Ticket Price/CNY Number of Ticket Sales/Tickets

t = 1 t = 2 t = 3 t = 4 t = 1 t = 2 t = 3 t = 4

(1,2) 207 212 212 223 11 23 63 25
(1,3) 495 520 532 533 20 50 114 31
(1,4) 626 626 662 662 53 113 247 85
(2,3) 315 325 333 333 11 48 38 31
(2,4) 433 476 479 479 15 42 72 30
(3,4) 151 151 151 155 12 39 33 40

6. Discussions

In this paper, the optimal ticket pricing and allocation for a single high-speed train
is solved based on the characteristics of the dynamic demand for tickets in different OD
sections during the pre-sale period, so as to maximize the revenue of railway transportation
enterprises. However, studies from different perspectives and with different focuses may
produce different results and effects. Therefore, further comparative analyses are needed to
discuss these results.

6.1. Discussion for the Case Results

In order to further discuss the case results, a comparison scheme has been designed
and analyzed. The ticket price of the comparison scheme adopts the actual fixed ticket
price of each OD section of the G19 train, and the number of ticket sales in the comparison
scheme is the average ticket-purchasing demand of each OD section during the pre-sale
period obtained by the above simulation. The joint optimization scheme of the ticket price
and allocation proposed in this paper is compared with the comparison scheme. The ticket
prices and number of ticket sales of each period during the pre-sale period in each OD
section of the two schemes are shown in Table 9.
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Table 9. Comparison table of model results.

Scheme Origin Station Destination
Station

Ticket Price/CNY Ticket Allocation/Tickets

t = 1 t = 2 t = 3 t = 4 t = 1 t = 2 t = 3 t = 4

Joint
Optimization

Scheme

Beijing South Jinan West 207 212 212 223 11 23 63 25
Beijing South Nanjing South 495 520 532 533 20 50 114 31

Beijing South Shanghai
Hongqiao 626 626 662 662 53 113 247 85

Jinan West Nanjing South 315 325 333 333 11 48 38 31

Jinan West Shanghai
Hongqiao 433 476 479 479 15 42 72 30

Nanjing South Shanghai
Hongqiao 151 151 151 155 12 39 33 40

Revenue/CNY 601,881

Comparison
Scheme

Beijing South Jinan West 211 124
Beijing South Nanjing South 504 221

Beijing South Shanghai
Hongqiao 626 517

Jinan West Nanjing South 315 129

Jinan West Shanghai
Hongqiao 453 165

Nanjing South Shanghai
Hongqiao 153 126

Revenue/CNY 595,848

Compared with CNY 595,848 for the revenue of the comparison scheme, the revenue of
the joint optimization scheme proposed in this paper is CNY 601,881, which is an increase in
the revenue by 1.01% with a small adjustment of the price. In fact, the comparison scheme
reflects the actual situation wherein the transportation enterprise operator decides the ticket
allocation under the fixed ticket price, without considering the dynamic ticket-purchasing
demand during the pre-sale period. Thus, it is clear that the joint optimization scheme
proposed in this paper can not only meet the passengers’ dynamic ticket demand during
the pre-sale period but also provide effective strategies for enterprises to expand the market
and increase profits.

However, the revenue increase rate in the results’ comparison is at a low level—only a
1% increase in revenue. The main reason was determined to be that during the modeling
process, the average seat utilization rate of the train was constrained to be no lower than a
certain limit to ensure that the average seat utilization rate did not be greatly affected.

6.2. Comparison with Previous Studies

Regarding the dynamic-pricing problem of China’s HSRs, there are some previous
studies that have carried out case studies with different Chinese HSR lines. By comparative
analysis, the consistency and difference between this study and the previous studies are
further discussed.

(1) Consistency

It has been found that the results of this study are consistent with most previous
studies [3,8,15,26,27,29], i.e., the railway transport revenue can be increased by implement-
ing the dynamic pricing strategy during the pre-sale period. This not only verifies the
feasibility of the model and algorithm proposed in this paper, but also proves that the
strategy of jointly optimizing the ticket price and allocation proposed in this paper is
effective for improving the revenue of transportation enterprises as well as meeting the
dynamic demand of passengers.

(2) Difference and innovation

From the perspective of the application of revenue management theory, ticket pric-
ing and ticket allocation are usually the key processes and decisions enacted by railway
transportation enterprises to maximize their revenue [29]. In the previous studies, some
researchers solved the problem of ticket allocation under a fixed ticket price [5,8], some
solved the problem of dynamic pricing under a fixed ticket pre-allocation [17,25], and only a
few studies explored the joint optimization problem of ticket pricing and allocation [30,33].
We think that ticket pricing and allocation are inseparable from each other for high-speed
railway passenger transport revenue management decisions. The dynamic adjustment of
the ticket price directly affects passengers’ demand, and then affects the ticket allocation
scheme. In turn, the ticket allocation scheme is also the basis for the implementation of
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dynamic pricing. Therefore, the relationship between the passenger demand and ticket
price was necessary for the study in this paper, which was used to connect the two decisions
of ticket pricing and allocation and realize the joint optimization.

As for the expression of passengers’ demand for tickets, most previous studies believe
that the demand is sensitive to the ticket price. For example, [30] argues that the passengers’
demand is a function of the ticket price and assumes that the demand function is known
and deterministic. However, it ignores that demand changes over time during the pre-
sale period. The authors of [33] consider the difference in demand in different periods
during the pre-sale period but describe the demand in every period as the deterministic
demand according to the given passenger flow, which ignores the randomness of the
ticket-purchasing demand. In reality, passengers’ ticket-purchasing process is a simple
stochastic process with a continuous time and discrete states. This paper investigated
the past ticket-purchasing data of passengers during the pre-sale period and found that
the arrival time of passengers’ ticket-purchasing requests is not uniformly distributed in
the time dimension. Therefore, the compound non-homogeneous Poisson process was
used to simulate the ticket-purchasing process of passengers, and the sparse method was
used to simulate the dynamic ticket-purchasing demand of passengers during the pre-sale
period, so that the demand in different OD sections and different periods of the pre-sale
period is expressed as a stochastic function affected by the price. The methods proposed in
this study describe the ticket-purchasing process and the dynamic demand of passengers
during the pre-sale period more realistically so as to improve the mismatch between supply
and demand.

In terms of model construction, in previous similar studies on dynamic pricing or
ticket allocation for HSRs, the following constraints were generally considered: the number
of seats allocated to each train cannot exceed the capacity of any two neighboring stations,
upper and lower price limits, and the number of seats allocated to each train must be a non-
negative integer, e.g., in [28,36]. In our opinion, these constraints are necessary to ensure
the reliability of the study results, but they are insufficient for practical situations. Unlike
previous studies, this paper adds the constraints of the average passenger seat utilization
and standby passenger flow calculation. To a certain extent, the average passenger seat
utilization constraint ensures that under the goal of maximizing train revenue, it will not
have a significant impact on the average passenger seat utilization rate of trains after the
implementation of floating pricing, which is more in line with the actual transportation
situation of high-speed railways in China. Considering the standby ticketing service in
China Railway’s passenger-ticketing organization, the demand for standby tickets was
calculated, and the ticket purchasing expenses of standby passengers were simultaneously
included in the train’s total revenue of the objective function for optimization, thereby
allowing the model to better fit the actual situation in China.

6.3. Weakness

It should be noted that this study has only taken G19 train as a case to verify the
effectiveness of the model and method. However, the G19 train is not the only option. On
the Beijing–Shanghai high-speed railway line, there are several trains with characteristics
such as fewer stops, shorter travel times, and higher ticket prices, and any one of them can
be selected as a case study. Of course, if a train with a different departure time was selected
as the case, the passengers’ dynamic ticket-purchasing demand rule would be different,
which would result in different optimal price and ticket allocation schemes. However, this
would not affect the effectiveness of the validation model and method.

Objectively speaking, if more trains were selected for case studies separately, the
differences in passengers’ ticket-purchasing demands among trains with different departure
times, as well as the differences in optimal price and ticket allocation schemes, could be
further compared and analyzed, and a more sufficient results analysis and discussion
would be obtained. However, it is a pity that we only collected the ticket-purchasing data
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of the G19 train at the analyzed time and did not investigate the ticket-purchasing situation
of other trains, which is a weakness of this study.

6.4. Further Research

This paper mainly studies the joint optimization of the ticket pricing and allocation of
a single train; therefore, assuming every train is independent, the transfer of passenger flow
among the trains on the same railway line is not considered. However, the actual situation
is more complicated. There are several parallel trains running on the same railway line,
that is, trains with the same stops and similar travel times but different departure times.
If several parallel trains were considered simultaneously, the dynamic ticket-purchasing
demand of passengers might be transferred among these parallel trains, thus affecting
the ticket pricing and allocation of each train. This will be a new problem of the joint
optimization of ticket pricing and allocation for multiple parallel trains. The transfer of
passengers’ dynamic ticket-purchasing demand among multiple parallel trains, as well
as the joint optimization modeling and determination of ticket prices and allocation, are
challenging and more complex problems, which will be a worthy research direction in the
future.

7. Conclusions

With the gradual deepening of China Railway’s market-oriented reform, based on
the revenue management theory, this paper tried to solve the shortcomings of the existing
ticketing organization in terms of the joint optimization of ticket pricing and allocation,
considering the dynamic demand characteristics of passengers during the pre-sale period.
The main conclusions are as follows:

(1) Since the arrival times of passengers’ ticket-purchasing requests are unevenly dis-
tributed in the time dimension, this paper uses the compound non-homogeneous
Poisson process to describe the passengers’ ticket-purchasing process, and adopts the
sparse method to simulate the passengers’ ticket demand during the pre-sale period.
Through this method, the ticket-purchasing process of passengers and the dynamic
demand of passengers during the pre-sale period are described realistically, so as to
propose the stochastic demand function in different OD sections and different periods
within the pre-sale period. This allows the joint optimization model of ticket pricing
and allocation to better improve the mismatch between supply and demand.

(2) Taking the ticket pricing and allocation as the decision variables, a stochastic nonlinear-
programming mathematical model was established with the goal of maximizing the
single train revenue, considering the constraints of the upper and lower prices, the
ticket allocation conditions among each period, the train’s seat capacity, the average
passenger seat utilization, and the standby ticket-purchasing demand. According to
the characteristics of the model, a particle swarm algorithm was designed to solve
the problem. This study enriches the application of revenue management theory
in the high-speed railway passenger transport market and makes certain academic
contributions.

(3) This study took the G19 high-speed train as a case study to verify the effectiveness
of the model and algorithm. Based on the past data of passengers’ ticket purchases,
the dynamic passenger demand of each OD section during the pre-sale period was
simulated, and the optimal ticket price and allocation of each OD section in each
period of the pre-sale period were obtained through the optimization model. The
results show that the joint optimization scheme of ticket pricing and allocation consid-
ering dynamic demand yields a revenue of CNY 601,881, which increases the revenue
by 1.01% compared with the fixed ticket price and pre-allocation scheme. With the
increase in train revenue, the operation income of the whole transportation enterprise
will be gradually improved, which is conducive to dealing with the challenge of an
imbalanced income and expenditure and promoting sustainable development.
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(4) In this paper, only the single train and the second-class seats are considered when
studying the joint optimization of ticket pricing and allocation. In an actual situation,
the passenger demand not only transfers among parallel trains, but also among
different seat classes. In future research, the joint optimization of ticket pricing and
the allocation for multiple parallel trains and multiple seat classes should be further
studied to develop more realistic schemes and strategies.
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