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Abstract: This paper presents a logistics problem, related to the transport of goods, which can
be applied in practice, for example, in postal or courier services. Two mathematical models are
presented as problems occurring in a logistics network. The main objective of the optimisation
problem presented is to minimise capital resources (Capex), such as cars or containers. Three methods
are proposed to solve this problem. The first is a method based on mixed integer programming (MIP)
and available through the CPLEX solver. This method is the reference method for us because, as an
exact method, it is guaranteed to find the optimal solution as long as the problem is not too large.
However, the logistic problem under consideration belongs to the class of NP-complete problems
and therefore, for larger problems, i.e., for networks of large size, the MIP method does not find
any integer solution in a reasonable computational time. Therefore, two nature-inspired heuristic
methods have been proposed. The first is the evolutionary algorithm and the second is the artificial
bee colony algorithm. Results indicate that the heuristics methods solve instances of large size, giving
suboptimal solutions and therefore, enabling their application to real-life scenarios.

Keywords: metaheuristics; evolutionary algorithm; bees algorithm; mixed integer and integer linear
programming; combinatorial optimization; logistic problems

1. Introduction

The market for postal, parcel and logistics services requires effective adaptation of the
logistics network to product offerings that change with customer expectations. Appropriate
and optimal analysis of the impact of designed products on the efficiency of the logistics
network and changing parcel streams significantly influences the effectiveness of business
decisions in this area, taking into account service-level agreements [1].

Observing the markets for postal and logistics services (parcel services are undoubt-
edly a common stream for both business profiles), it is possible to notice increasing dy-
namics of change both on the side of customer requirements and the offer of key players,
which is rapidly adapting. The main development trends described, related to the so-called
logistics, indicate the necessity to prepare for the introduction of new market and tech-
nological solutions on the part of the customers of companies providing postal services,
which drives significant changes in the logistics service, and thus in the shape of the net-
work. They result from the growing expectations of customers both with regard to the
products themselves and their availability, i.e., consequently, the logistics offer. An operator
that wants to remain a key service provider should be prepared to flexibly shape its offer
and adapt the shape and potential of the logistics network more and more quickly. In
such a dynamic market, historical trend analyses or even real-time observations are no
longer sufficient.

Both the level of complexity and the scale of the problem to be solved in postal service
companies do not allow the direct use of existing algorithms. Therefore, it is planned to
undertake research that will combine the various components of simulation and logistics
network optimisation models presented in the literature with specific algorithm properties
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that take into account the unique characteristics and complexity (e.g., logistics network,
range of products and services) of a postal service company. The optimisation model to
be tested is expected to be hybrid in nature, combining a metaheuristic approach with the
exact solution of integer programming class subproblems.

This approach proposes a model to describe the optimal service provision in a transport
company. The model, presented in mathematical form, proposes a cost function that reflects
the minimisation of both capital expenditures, such as cars or containers, and operational
expenditures, taking into account human resources, particularly applicable at intermediate
nodes for the transfer of goods between cars. The problem belongs to the class of NP-hard
problems, so two metaheuristics have been proposed in addition to the exact method, mixed
integer programming (MIP), based on integer programming and solved by the CPLEX
solver [2]. The exact method, MIP, generally performs well for smaller problems, even
giving an optimal solution. For larger logistic networks, on the other hand, it no longer
performs so well, failing to give an integer solution within a reasonable computational time.
We see MIP as a reference method (benchmark) against metaheuristics. Computation times
for larger problems are sometimes several orders of magnitude longer for the MIP method,
relative to metaheuristics.

Since the invention of computationally efficient exact algorithms is rather difficult,
heuristic discrete optimisation methods seem to be best suited for logistic network optimi-
sation. Therefore, the use of meta-heuristics, designed to be problem-specific, is justified
and fully understood, with special attention paid to nature-inspired algorithms with prob-
lem operators that have been specifically adapted to the problem under study. In this
approach, two nature-inspired algorithms are proposed, i.e., evolutionary algorithms and
bee algorithms. The performance of all optimisation algorithms was compared for selected
test networks of different complexity.

Considering the practical aspect, it is envisaged that the main areas of analysis sup-
ported by the developed approach would be:

• Scenario analysis of strategic decisions in the context of cost optimisation and quality
performance of the postal operator’s logistics network;

• Modelling the shape of the product portfolio in the context of service opportunities in
the logistics network;

• The impact of the planned implementation of new services or acquisition of signif-
icant volumes from new customers on the cost position of services in the logistics
network problems;

• The possibility of optimising the handling of individual products in line with the
changing (increasing) quality requirements of the market, e.g., the possibility of
changing the pick-up and delivery times of parcel shipments (of individual product
groups) in different regions of the country and the delivery times (of individual
product groups) in different regions of the country;

• Analysis of the possibility of bottlenecks in the logistics network with the expected
increase in the volumes handled;

• Analysis of the schedules of planned investments in the network of logistics points,
taking into account its efficiency parameters;

• Simulation of the demand for transport resources (quantity, type) and the feasibility
of transport plans. Selection of optimal development models in the context of the
adopted cost and environmental priorities.

From an operations research perspective, delivery operations often boil down to
vehicle routing problems that arise when goods need to be delivered to a number of
delivery locations by more than one vehicle. This is precisely the kind of problem we
consider in this work. Although this broad description covers a wide range of applications,
it is often the case that a few specific business characteristics make it difficult to use
the approaches associated with this problem, which in turn leads to the development
of increasingly specific models that are more applicable to the practical problems faced
by businesses.
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Over the past decades, the vehicle routing problem (VRP) with its variants has been
very popular and addressed in publications by the scientific community [3,4]. In [5], authors
examine what is the optimal set of routes for a fleet of vehicles to traverse in order to deliver
to a given set of customers. Since VRP is an NP-hard problem [6], exact algorithms are only
efficient for small instances of the problem. Heuristics and metaheuristics are often more
suitable for practical applications. As real-world problems are much larger in scale (e.g., a
company may need to supply thousands of customers from dozens of warehouses, using
multiple vehicles and under a variety of constraints).

In the paper [7], the authors used a loading approach for both single and double-decker
trucks to deliver goods on multicity routes. The primary objective is to meet both customer
demand and delivery times. In [8], the authors investigate what is the shortest possible route
for a single vehicle to visit each customer exactly once and returns to the source.

In contrast, in the work [9,10], the authors consider the Container Relocation Problem
(CRP), also in maritime transport, using exact methods based on linear programming and
heuristics. Containers transported to a container terminal are stored in container yards side
by side and on top of each other, forming blocks.

An important aspect of the logistics problems is the consideration of time and delays
in the delivery of goods to the point of destination. This has been taken into account in
the publications [7,11], where in the latter, a new multi-objective path-finding model is
proposed to find optimal paths in road networks with time-dependent stochastic travel
times. This study is motivated by the fact that different travellers usually have different
route-choice preferences, often involving multiple conflicting criteria, such as expected
path travel time, variance of path travel time, and so forth.

In [12], the authors apply the penalty function, where a vehicle is allowed to visit and
serve a customer later than their time window, however, a time-dependent late arrival
penalty must be taken into consideration if the delayed service occurs.

The proposed approach, as described in this work, includes parts of all the aspects
detailed above, i.e., it covers problems such as:

• VRP;
• CRP;
• Time and delays;
• Penalty function.

We propose two metaheuristics based on evolutionary algorithms and the bee swarm
algorithm. However, there is no comprehensive approach in the bibliography on this re-
search topic, taking into account all the above aspects, and the objective function represents
the cost of the equipment used and the delivery time of the goods, a realistic problem
faced by transport, postal and courier companies. The representation of the chromosome
in the present case somewhat resembles the one described in the paper in [11], where the
chromosome is also used as a vector, with different lengths. However, in our case, the
chromosome structure also takes into account the different types of cars. A similar problem
has not been considered, and therefore, we cannot compare directly from the literature.

We have previously applied related problems analysed using similar metaheuristics to
problems also of the NP-hard type, concerning the design of DWDM optical telecommunication
networks [13], and to the knapsack problem, using the CMA-ES algorithm [14].

This paper is organised as follows. In Section 2, the problem is formulated and the
logistics service model is described in detail. In Section 3, the proposed algorithms are
described in the context of the presented combinatorial optimisation problem. Then, in
Section 4, a set of tests for different sizes of the logistics network are presented. The pro-
posed methods are compared and the validity of the metaheuristics used is demonstrated.
A statistical and computational efficiency analysis of the proposed methods was performed.
Finally, Section 5 presents a summary of the research results and plans for future work on
the subject.
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2. Problem Description

In this section, the logistic problem is formulated using the mixed-integer program-
ming (MIP) method [15]. The sets that are used are shown below, followed by constants
and variables. The logistical problem under consideration is divided into two problems
and is described by the models presented below.

2.1. Basic Logistic Problem

The model of a basic logistic problem (BLP) focuses on the minimisation of the cost
function, which is related to the vehicles and the route they travel. The following sets are
used in the problem:

V vertices;

A arcs;

S streams;

T vehicle types;

M dimensions;M = {weight, pallets};
F logistic functions; F = {NEN, EDN, PSN}; the set is ordered;

EDN logistics function performing activities at a node in the logistics network such as
receiving, unloading, loading and dispatch of postal goods;

PSN logistics function performing activities at a node in the logistics network such as
processing and sorting postal goods;

NEN logistics function that does not perform any activity in a logistics network node;

D acceptable delays; D = {D3, D2, D1, D0, DEL}; the set is ordered;

Dx means that a package with a posting date t must be delivered by day t + x from the
sender to the recipient;

δ+(v) set of arcs entering vertex v ∈ V ;

δ−(v) set of arcs leaving vertex v ∈ V .

In the model, the following constants are necessary:

a(s) source of stream s ∈ S ; a(s) ∈ V ;

b(s) destination of stream s ∈ S ; b(s) ∈ V ;

l(s, m) size of stream s ∈ S in dimension m ∈ M;

d(s) maximum acceptable delay of stream s ∈ S ; d(s) ∈ D;

ξ(t, a) travel cost for vehicle type t ∈ T on arc a ∈ A;

c(t, m) capacity of vehicle type t ∈ T in dimension m ∈ M;

n(d) acceptable delay following acceptable delay d ∈ D, e.g., n(D1) = D0;

n( f ) logistic function following logistic function f ∈ F , e.g., n(NEN) = EDN.

Finally, the following variables are used in this problem:

xsad f amount of stream s ∈ S with acceptable delay d ∈ D after being subjected to logistic
function f ∈ F on arc a ∈ A; integer value;

yta number of vehicles of type t ∈ T on arc a ∈ A; integer value;

zsvd f amount of stream s ∈ S in vertex v ∈ V after being subjected to logistic function
f ∈ F changing its acceptable delay to n(d); integer value;

wsvd f amount of stream s ∈ S in vertex v ∈ V with acceptable delay d ∈ D being subjected
to logistic function f ∈ F ; integer value.
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The following objective cost function is optimised using an MIP algorithm subject to
the constraints listed below.

Objective cost function:

min ∑
t∈T

∑
a∈A

ytaξ(t, a) (1)

Constraints:

∑
a∈δ+(v)

xsad f − ∑
a∈δ−(v)

xsad f = zsvn(d) f − zsvd f + wsvdn( f ) − wsvd f

∀s ∈ S , ∀v ∈ V , ∀d ∈ D \ {DEL} : d ≥ d(s), ∀ f ∈ F
(2)

∑
s∈S

∑
d∈D

∑
f∈F

xsad f l(s, m) ≤ ∑
t∈T

ytac(t, m) ∀a ∈ A, ∀m ∈ M (3)

wsa(s)d(s)NEN = 1 ∀s ∈ S (4)

zsvDEL f = 0 ∀s ∈ S , ∀v ∈ V \ {b(s)}, ∀ f ∈ F (5)

zsb(s)DEL f = 0 ∀s ∈ S , ∀ f ∈ F \ {PSN} (6)

yta ∈ Z+ ∀t ∈ T , ∀a ∈ A (7)

xsad f ∈ Z+ ∀s ∈ S , ∀a ∈ A, ∀d ∈ D, ∀ f ∈ F (8)

zsvd f ∈ Z+ ∀s ∈ S , ∀v ∈ V , ∀d ∈ D, ∀ f ∈ F (9)

wsvd f ∈ Z+ ∀s ∈ S , ∀v ∈ V , ∀d ∈ D, ∀ f ∈ F . (10)

Objective function (1) serves to minimise the total travel cost. Constraints (2) are the
flow conservation constraints. On the left-hand side, we group the traffic entering and
leaving a vertex, while on the right-hand side, we group the traffic that either becomes or
ceases to be the considered traffic with given d and f by either being kept in a node (d is
changing) or being subjected to a logistic function ( f is changing). Constraints (3) assure
that the adequate number of vehicles is provided on each arc of the network. Constraints (4)
assure that each demand enters a network, while constraints (5) and (6) assure that each
flow entering a network can leave it only with its destination vertex being completely
sorted. In other words, (5) assures it cannot leave a network in a vertex which is not its
destination vertex, while (6) assures that it cannot leave a network before being subjected
to PSN logical function. Constraints (7)–(10) describe the admissible domain of the sets of
variables used.

2.2. Extended Logistic Problem

The second model we are considering has been named an extended logistic problem
(ELP). The model additionally takes into account journey times and associated delays. The
following additional constants are used in the ELP model:

Constants:

λ(a) travel time on arc a ∈ A;

ξ(s, v, f ) cost for stream s ∈ S being subjected to logistic function f ∈ F at vertex v ∈ V ;

λ(s, v, f ) time needed for stream s ∈ S to be subjected to logistic function f ∈ F at vertex
v ∈ V ;

g(s) stream that is gathered together with stream s, i.e., both streams have to travel together
before being subjected to logistic function EDN; g(s) ∈ S , if s is independent, then
g(s) = s;

h(s, d) time available to stream s with acceptable delay d; e.g., for D+2 stream s available
at 7 a.m. that has to be delivered before 4 p.m., we have h(s, D3) = 0, h(s, D2) = 17,
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h(s, D1) = 24, h(s, D0) = 16.

In this model, the cost function is represented by the expression (11). In addition, two
constraints are needed.

Objective cost function:

min ∑
t∈T

∑
a∈A

ytaξ(t, a) + ∑
s∈S

∑
v∈V

∑
d∈D

∑
f∈F

wsvd f ξ(s, v, f ) (11)

Constraints:

xsadNEN = xg(s)adNEN ∀s ∈ S , ∀a ∈ A, ∀d ∈ D (12)

∑
a∈A

∑
f∈F

xsad f λ(a) + ∑
v∈V

∑
f∈F

wsvd f λ(s, v, f ) ≤ h(s, d) ∀s ∈ S , ∀d ∈ D. (13)

yta ∈ Z+ ∀t ∈ T , ∀a ∈ A (14)

xsad f ∈ Z+ ∀s ∈ S , ∀a ∈ A, ∀d ∈ D, ∀ f ∈ F (15)

wsvd f ∈ Z+ ∀s ∈ S , ∀v ∈ V , ∀d ∈ D, ∀ f ∈ F . (16)

Objective function (11) is to minimise the total travel cost. Constraints (12) assure that
streams that were gathered together share their paths before being subjected to logistic
function EDN. Notice that the relation resulting from (12) is transitive. Therefore, it is
possible to gather more than two streams together. Finally, constraints (13) help the model
to obtain solutions that are less likely to break real-world delay constraints. They sum
up all incurred travel and logistic function times and assure that the sum is below the
assigned threshold. Notice that these constraints assume that the throughput of each vertex
is infinite; thus, streams do not have to wait before being served. Moreover, they consider
weighted averages of incurred delays when streams are split. Constraints (14)–(16) describe
the admissible domain of the sets of variables used.

3. Methods

We have employed two nature-inspired metaheuristic algorithms, i.e., the evolution-
ary algorithm (EA) and the artificial bees colony algorithm (ABC), to solve the given
optimization problem.

The used methods represent population-based optimisation algorithms and so-called
swarm intelligence, which relies on the cooperation of the collective members. The evo-
lutionary algorithm was applied in the most straightforward setting, i.e., (1 + 1), where
the population consists of only one individual (a parent), and the offspring is created by
adding a random perturbation to the parent. The artificial bee colony algorithm used in
our research is consistent with the version of the ABC proposed in [16].

In further subsections, the representation of the individuals and variation operators
are described in detail. Additionally, we provide the pseudo-code for each employed
metaheuristic method.

3.1. Representation

For both metaheuristics, each individual xi in population P = {x1, . . . , xk} is repre-
sented as a vector of m vehicles:

xi = [v1, . . . , vm]

For the ABC algorithm, the representation is extended with a type of a bee, i.e.,
employed, onlooker or scout.

A vehicle is represented as a triple:

vi = (o, r, c)
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where:

• o represents a vector of taken objects, i.e., stream realizations (both models);
• r represents a vector of a drawn route from the set of prepared paths between all

vertices (both models);
• c represents capacity c(t, m) of a vehicle on each arc a ∈ A of the processed route

(both models).

3.2. Variation Operators

Both ABC and EA algorithms modify their solutions by using following
variation operators:

• ReplaceCarsOperator during each invocation removes the number of cars set by the
parameter and releases streams that they were transporting. Then, it attempts to fill
already existing cars with free streams. If there are any remaining streams left, new
cars are generated for them;

• ExchangeRealisationOperator removes a single stream from the number of cars set
by the parameter. Then, it attempts to randomly fill already existing cars with free
streams. If there are any remaining streams left, new cars are generated for them;

• MixRealisationsOperator unloads all cars and then it attempts to fill already existing
cars with free streams. If there are any remaining streams left, new cars are generated
for them.

By default, the probabilities of using operators are as follows:

• ReplaceCarsOperator—40%;
• ExchangeRealisationOperator—50%;
• MixRealisationsOperator—10%.

Both ReplaceCarsOperator and ExchangeRealisationOperator take two input ar-
guments: c and r. The first one determines minimal part of cars/streams modified during a
single call, the second one specifies maximal part. During each call, the operators randomize
a number from the range given by these parameters.

3.3. Evolutionary Algorithm

In this approach, EA (1 + 1) is applied. In each iteration, a new individual is created
from the parent by applying a mutation (one of three variation operators, presented in
Section 3.2). Then, it is evaluated. If its objective function value is better than its predecessor,
then it becomes the base specimen of the next iteration. Otherwise, it is rejected. The EA
pseudocode is presented in Algorithm 1. The algorithm takes as parameters the following:
i—the number of iterations, which is the stop criterion of the algorithm at the same time
and mutation operation parameters c and r, described in Section 3.2.

Algorithm 1: Evolutionary Algorithm
Input: i, c, r
Output: Best solution found
Specimen ← RandomSolution
stopCounter ← 0
while Stop condition is not met do

SpecimenBis ← Specimen
mutation(SpecimenBis)
evaluateSpecimens()
if SpecimenBis is better then

Specimen ← SpecimenBis
stopCounter ← 0

else
stopCounter++
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3.4. Artificial Bee Colony Algorithm

In the case of the ABC algorithm, the first population of N individuals is randomly
generated by creating vehicles and assigning streams to them as long as there are any free
streams. Then, each individual one is evaluated and depending on its quality, it receives
more or fewer onlookers. Onlookers are created by applying one of the variation operators
(using c and r parameters) to the worker bees. Then, all the onlookers are evaluated. If
an onlooker is better than the worker bee that it is assigned to, the worker is replaced.
The best worker bee is stored. Other individuals are rejected after existing for m iterations
without improving their fitness function. The algorithm stops after i iterations. The ABC
pseudocode is presented in Algorithm 2.

Algorithm 2: Artificial Bee Colony Algorithm
Input: N, m, i, c, r
Output: Best solution found
bees ← RandomSolutions(N);
while Stop condition is not met do

evaluateBees()
sendOnlookers()
switch drawnOperator do

case 1 do
replaceCarsOperator(cf)

case 2 do
exchangeRealisationOperator(rf)

case 3 do
mixRealisationsOperator()

calculateCosts()
replaceWorkers()
selectBestBee(bees);

4. Results

In the ABC algorithm, the following parameters can be specified:

• Size of the workers population—30;
• Number of iterations—17000;
• Maximum number of iterations without improvement for a single bee—40;
• Weight of penalty factor that is penalizing not completely full cars—16.6%.

We have used various population sizes from n = 15 to 100, and found that in most cases,
it is sufficient to use n = 15 to 50. Therefore, we have used population a size of n = 30 in all
our simulations. We tested the number of iterations in the range (500–2500), and the value of
1700 turned out to be the best compromise between the computation time and the quality of
the obtained solution. Other parameters were also selected through empirical research.

The Evolutionary Algorithm worked for 50,000 iterations. The total number of ob-
jective function calculations was then almost the same for both tested algorithms. After a
series of experiments, ReplaceCarsOperator and ExchangeRealisationOperator param-
eters values were determined as:

• Minimal part of cars/streams modified during a single call—6.25%;
• Maximal part of cars/streams modified during a single call—12.5%.

The calculations were performed using a linear solver engine of CPLEX 12.8.0.0 on a
2.1 GHz Xeon E7-4830 v.3 processor with 256 GB RAM, running under the Linux Debian
operating system.

Figures 1 and 2 show the convergence curves of the considered algorithms for BLP
and ELP models, respectively. Each curve represents an average of 20 independent runs. In
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both cases, logistic networks with NetworkSize = 5, 10, 15, 20, 25 and 30 were considered.
The following observations can be made:

• For the BLP model (Figure 1), the MIP method found a solution in every case, with
only NetworkSize = 5 being the optimal solution;

• In the case of the ELP model (Figure 2), the MIP method only found an optimum for
the five-node network. However, for NetworkSize = 20, 25 and 30, it did not find an
integer solution at all;

• Both heuristic methods found a sub-optimal solution in every case considered;
• In most cases, EA gives better results. However, for smaller network instances, the

ABC method is comparable or slightly better. Such observation is strengthened by the
results of the Mann–Whitney test (column T in Tables 1 and 3). In most cases, for both
problem variants, there is a significant difference in a location shift in favour of the
EA algorithm.

(a) (b)

(c) (d)

Figure 1. Cont.
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(e) (f)

Figure 1. Convergence curves plotted for the algorithms considered, for a logistic network of different
sizes, for the BLP model. Each curve is an average of 20 independent runs. (a) 5-node. (b) 10-node.
(c) 15-node. (d) 20-node. (e) 25-node. (f) 30-node.

(a) (b)

(c) (d)

Figure 2. Cont.
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(e) (f)

Figure 2. Convergence curves plotted for the algorithms considered, for a logistic network of different
sizes, for the ELP model. Each curve is an average of 20 independent runs. (a) 5-node. (b) 10-node.
(c) 15-node. (d) 20-node. (e) 25-node. (f) 30-node.

Table 1. Comparison of the average and the best value of the objective function evaluation for each
test case together with the outcomes of the paired Wilcoxon test, for the BLP model. Symbols +, −
and =, in the last column, indicate whether the EA algorithm was better (+), worse (−) or equal (=)
to the ABC algorithm.

Network EA ABC MIP Wilcoxon–Mann–
#Node Mean Best Mean Best Whitney Test

5 206 206 167 165 153 −
7 402 401 362 354 341 −

10 935 930 923 911 855 =
12 1296 1284 1325 1293 1156 +
15 2135 2104 2241 2191 1947 +
17 2746 2688 2850 2762 2489 +
20 4134 4080 4201 4054 3601 +
22 5134 5170 5111 5187 4464 +
25 7182 7262 7154 7331 6280 =
30 11,378 11,260 11,331 11,113 9379 =

Tables 1 and 3 show the mean and best values of the objective function in each test case.
Whereas, Tables 2 and 4 show the mean and standard deviation values of the computational
time in each test case. The last column in each table contains the result of the Wilcoxon–
Mann–Whitney test [17] with a confidence level of 0.95 applied to the outcomes of the two
metaheuristics (EA and ABC). We used symbols +, − and = to indicate whether the EA
algorithm was—respectively—better, worse or equal to the ABC algorithm.

Figure 3a,b depict the calculation time achieved by heuristics and the MIP solvers
before termination for networks with 5, 10, 20 and 30 nodes for BLP and ELP variants. One
may notice that for the BLP variant, the MIP solver on small networks (NetworkSize = 5
and 15) outperformed the ABC algorithm and was slightly worse than the EA. However,
for the ELP variant, the MIP achieved a comparable calculation time to the heuristics on
the network only with five nodes. For each bigger network, i.e., with 20 or 30 nodes, the
MIP solver reached the total calculation time stop condition without a feasible solution,
while the heuristics returned a suboptimal albeit feasible solution in total calculation time
smaller by a factor of 1 or 2 than the MIP runtime. More detailed data are contained in the
Tables 2 and 4 together with the results of the Mann–Whitney test. According to the Mann–
Whitney test results (column T), the EA algorithm was worse than the ABC algorithm
only for NetworkSize = 5, 7 for BLP and ELP variants. For each bigger size of network
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considered in conducted experiments, the EA outperformed the ABC heuristic. The bigger
the size of the network, the more noticeable the difference between heuristics. It is still
worth emphasising that, despite the fact that the proposed heuristics do not find an op-
timal solution, suboptimal solutions are acceptable in the practical problems considered,
especially as the calculations are not so time-consuming.

Table 2. Comparison of the computation time (sec.) for the BLP model together with the outcomes of
the paired Wilcoxon test. Symbols +, − and = indicate whether the EA algorithm was better (+),
worse (−) or equal (=) to the ABC algorithm.

Network EA ABC MIP Wilcoxon–Mann–
#Node Mean std Mean std Whitney Test

5 12 0.3 1.98 0.1 4 −
7 26 1.3 7 0.3 83 −

10 83 1.1 129 8.2 83 +
12 132 1.54 162 16.4 43,200 +
15 325 3.35 518 37.5 43,200 +
17 463 10 773 53.1 43,200 +
20 1023 22 1816 155 43,200 +
22 1392 16 2568 230 43,200 +
25 2813 44.4 5353 298 43,200 +
30 5885 84 12,146 1949 43,200 +

Table 3. Comparison of the average and the best value of the objective function evaluation for each
test case together with the outcomes of the paired Wilcoxon test, for ELP model. Symbols +, − and
= indicate whether the EA algorithm was better (+), worse (−) or equal (=) to the ABC algorithm.

Network EA ABC MIP Wilcoxon–Mann–
#Node Mean Best Mean Best Whitney Test

5 155 151 162 158 145 +
7 342 331 355 350 318 +

10 908 897 942 926 831 +
12 1308 1287 1369 1341 1189 +
15 2162 2134 2355 2281 1945 +
17 2808 2779 2924 2873 2507 +
20 4229 4125 4208 4055 −− =
22 5520 5391 5797 5655 −− +
25 7073 7030 7519 7286 −− +
30 10,928 10,842 10,947 10,877 −− =

Table 4. Comparison of the computation time (sec.) together with the outcomes of the paired
Wilcoxon test, for the ELP model. Symbols +, − and = indicate whether the EA algorithm was better
(+), worse (−) or equal (=) to the ABC algorithm.

Network EA ABC MIP Wilcoxon–Mann–
#Node Mean std Mean std Whitney Test

5 14 0.2 2 0.1 11 −
7 26 0.9 7 0.2 121 −

10 76 1.93 75 11 43,200 =
12 132 3.6 161 13 43,200 +
15 317 4.7 533 23 43,200 +
17 440 8.4 682 45 43,200 +
20 1355 60 2580 149 43,200 +
22 1355 60 2588 150 43,200 +
25 2281 80 3908 528 43,200 +
30 4963 86 11,212 1213 43,200 +
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(a) (b)

Figure 3. Box plot of calculation time for heuristic methods for the BLP—(a) and ELP models—(b) model.

5. Conclusions

This paper presents two models to describe realistic problems in a logistic network.
For the BPL problem, the MIP method finds an optimal solution for small network instances
and is competitive with the presented heuristic methods. For large network instances, the
computation time increases rapidly and the MIP method provides a suboptimal solution
needing a rather large computation time. The EA and ABC heuristic methods require, on
average, at least an order of magnitude less computation time, although the suboptimal
result is approx. 5–10% worse in relation to the exact MIP method. In the case of the model
extended by the ELP time parameters, for small problem instances, the MIP method is
still 2–3% better than the heuristics. On the other hand, for medium and large problem
instances, the exact MIP method does not find an integer solution at all in a reasonable
time, while the heuristics give a satisfactory suboptimal integer solution in an acceptable
computational time.

Finally, it is worth noting that the results apply to a logistic network of practical
importance and therefore, provide additional guidance for network operators who are
planning to expand the logistic network, and that the proposed heuristic algorithms give
suboptimal results, especially for a more difficult problem with more than 20 nodes. It
should be noted that there is still potential for improving the results obtained by the
heuristics and this will be our goal in future research work in this area.
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Abbreviations
The following abbreviations are used in this manuscript:

EA Evolutionary Algorithm
ABC Artificial Bee Colony
ES Evolution Strategy
MIP Mixed Integer Programming
CAPEX Capital Expenditure
OPEX Operational Expenditure
VRP Vehicle Routing Problem
NP-hard Non Polynomial
CRP Container Relocation Problem
EDN Expedition and Dispaching Node
PSN Processing and Sorting Node
NEN None Expedition and Processing Node
BLP Basic Logistic Problem
ELP Extended Logistic Problem
NSGA Non-Dominated Sorting Genetic Algorithm
gap difference between current best integer solution

and optimal value of LP relaxation
CPLEX Mixed Integer Programming solver
CMA-ES Covariance Matrix Adaptation Evolution Strategy
DWDM Dense Wavelength Division Multiplexing
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