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Abstract: Recently, the array-invariant method was proposed to passively localize sources of op-
portunity in shallow water. It exploits multiple arrivals which are different in terms of beam angle
and travel time. Conventional plane-wave beamforming in the existing array-invariant method is
used to obtain beam-time migration. The resolution capability of conventional plane-wave beam-
forming is determined by array aperture, which, however, limits the localization accuracy of the
existing array-invariant method. To improve the localization accuracy, this study proposes the use of
two-dimensional (2D) deconvolution to obtain a better beam-time migration than in conventional
plane-wave beamforming. Our simulation with a small horizontal array showed that the range estima-
tion error of the proposed array-invariant method based on 2D deconvolution was only one-third of
that of the existing method. The experiment also demonstrated the validity of our proposed method.

Keywords: array invariant; underwater target location; 2D deconvolution

1. Introduction

Underwater source localization is a hot topic in underwater acoustic signal process-
ing [1–8]. The array-invariant method, based on the dispersion characteristics of wideband
signals in waveguides, was proposed by Lee and Makris in 2006 for shallow sea source
localization [2]. With the development of blind deconvolution [3–5], the array-invariant
method has been successfully applied to passively localize surface ships or submerged
sources, using a vertical [6–9] or horizontal [10,11] array without knowledge of the ocean
environment. The blind deconvolution method extracts the Green’s function, namely the
channel impulse response, between a source of opportunity (e.g., ship) and an array. Sub-
sequently, conventional plane-wave beamforming is employed to obtain the beam-time
migration of the Green’s function. Finally, the array-invariant method estimates the source
range from the beam-time migration using the least-squares approach [2,11].

Following the steps of the existing array-invariant method, it can be found that beam-
time migration plays a key role in the source–range estimation. To date, only conventional
plane-wave beamforming has been utilized to obtain the beam-time migration in localiza-
tion applications [7–9,11]. However, the resolution capability of conventional plane-wave
beamforming is determined by the array aperture, which influences the localization accu-
racy of the existing array-invariant method, especially when using a small horizontal array.
The relatively wide beam-time migration should be one of the main reasons causing the
source–range estimation error of the existing array-invariant method. This study attempts
to decrease the source–range estimation error by obtaining better beam-time migration by
using two-dimensional (2D) deconvolution.

In this paper, with some mathematical derivations, we employ frequency-domain
beamforming to process the extracted Green’s function to obtain the beam-time migration,
which is expressed as a 2D convolution. Based on the deduced 2D convolution expression,
we propose a 2D deconvolution method to deconvolve the beam-time migration obtained
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with conventional plane-wave beamforming to obtain the high-resolution beam-time mi-
gration. The more accurate source range can thus be estimated from the high-resolution
beam-time migration. The existing array-invariant method [11] involving blind deconvolu-
tion and conventional plane-wave beamforming is referred to as the reference method in
this study. The simulation with a small horizontal array in shallow water shows that the
source–range estimation error of our proposed method based on the 2D deconvolution is
only one third of that of the reference method. The experiment with a small horizontal array
in the Yellow Sea of China also proves the validity of our proposed method. Additionally,
the results in this study also demonstrate that the wide beam-time migration obtained with
conventional plane-wave beamforming in the array-invariant method is one of the main
reasons behind source–range estimation errors.

This brief report is organized as follows: Section 2 describes the Green’s function
and blind deconvolution for the horizontal array. In Section 3.1, conventional plane-wave
beamforming is reviewed. In Section 3.2, the 2D deconvolution method is proposed to
deconvolve the beam-time migration obtained with conventional plane-wave beamform-
ing. The 2D deconvolution method can obtain high-resolution beam-time migration. The
simulation and the experiment are described in Sections 4 and 5, respectively. The simu-
lation and the experiment demonstrate the validity of our proposed method. Finally, our
conclusion is provided in Section 6.

2. Extracting Green’s Function

For the array-invariant method, extracting the Green’s function with blind deconvo-
lution [8,9,11] from the received signals is necessary. Assume that an unknown source
signal is s(t). The frequency spectrum of s(t) is S(ω) = |S(ω)|ejΦs(ω), where ω is the
radian frequency and Φs(ω), is the corresponding phase. In this study, we focus on using
a horizontal array in shallow water to realize passive localization. Consider a horizontal
array with N elements, as shown in Figure 1. The received signal of the nth element can be
expressed as

Pn(ω) = G(rn, rs, ω)|S(ω)|ejΦs(ω), (1)

where rn and rs are the position vectors of the nth element of the array and the unknown
source, respectively, and G(rn, rs, ω) is the Green’s function between the source at rs and
the nth element at rn. In a ray path approximation [11], the Green’s function G(rn, rs, ω)
can be written as

G(rn, rs, ω) =
K

∑
k=1

Akejω{τn(θk ,φ)−T(θk ,φ)}, (2)

where φ is the horizontal azimuth shown in Figure 1, θk is the grazing angle of the kth ray,
τn(θk, φ) is the local time delay of the kth ray at the nth element, T(θk, φ) is travel times of
the kth ray, and Ak is the amplitude of the kth ray.
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Figure 1. Coordinate system defined with the azimuth angle φ, beam angle θ̃, and the grazing angle
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For the horizontal array in Figure 1, the local time delays depend mainly on the
horizontal azimuth due to a small grazing angle, thus τn(θk, φ) ≈ τn(φ) [11]. Subsequently,
by steering the beam to φ, the output of the conventional plane-wave beamforming is
identified by

F(ω; θk, φ) =
N
∑

n=1
e−jωτn(θk ,φ)Pn(ω)

= |S(ω)|ejΦs(ω)
N
∑

n=1

K
∑

kq=1
Akq ejω{τn(θkq ,φ)−Tkq}e−jωτn(θk,φ)

≈ |F(ω; θk, φ)|e{jΦs(ω)−jωTk}

(3)

Blind convolution uses the beamforming output phase, ψ(ω, φ) = Φs(ω)−ωT(θk, φ),
and removes the phase component Φs(ω) of the unknown source signal from Pn(ω) by a
phase rotation, expressed as:

Ĝ(rn, rs, ω) =
Pn(ω)√

N
∑

n=1
|Pn(ω)|

2
e−jψ(ω,φ) =

G(rn, rs, ω)√
N
∑

n=1
|G(rn, rs, ω)|

2
ejωT(θk ,φ) (4)

The beam-time migration in the existing array-invariant method [11] can be obtained
by processing the extracted Ĝ(rn, rs, ω) with conventional plane-wave beamforming.

3. 2D Deconvolution for Obtaining Better Beam-Time Migration

To ensure our proposed method based on 2D deconvolution is easily understandable,
frequency-domain conventional plane-wave beamforming is briefly introduced first in this
section. Then, our proposed method is presented.

3.1. Conventional Plane-Wave Beamforming

Considering a far-field source, the angle of incidence θ̃ is shown in Figure 1. When
using uniform horizontal array, as shown in Section 2, with interelement spacing denoted
by d, the received signal of the array can be expressed as

XS(ω) = paS(ω) + n =


pa,1
pa,2

...
pa,N

S(ω) + n (5)

where pa is the array response vector given as pa = [pa,1, pa,2, · · · pa,N ]
T , pa,n = e−jωnd sin θ̃/c,

and n is the noise vector.
Conventional beamforming [12–14] multiplies the array signals XS(ω) by a steering

vector µ= [µ1, µ2, · · · µN ]
T for the direction ϕ, where µn = (1/N)e−jωnd sin ϕ/c. The beam

power as a function of sin ϕ, which is obtained with conventional beamforming, is written as

Xp(sin ϕ) =
∣∣∣XS(ω)µT

∣∣∣2 =

∣∣∣∣∣S(ω)

N

N

∑
n=1

ej2πn d
λ (sin ϕ−sin θ̃)

∣∣∣∣∣
2

= |S(ω)|2
∣∣∣∣∣ 1

N

N

∑
n=1

ej2πn d
λ (sin ϕ−sin θ̃)

∣∣∣∣∣
2

(6)

3.2. 2D Deconvolution

The local time delays τn(θk, φ) in Equation (2) can be written as τn(sin θ̃k), which is the
function of the beam angle measured sin θ̃k, and T(θk, φ) can be abbreviated as Tk. Then,
the expression of the Green’s function in (2) can be rewritten as

G(rn, rs, ω) =
K

∑
k=1

Akejω{τn(sin θ̃k)−Tk} (7)
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Let G(rs, ω)= [G(r1, rs, ω), G(r2, rs, ω), · · ·G(rN , rs, ω)]. We define the 2D rotation
matrix as

Ψ= [µ(t0),µ(t1), . . .µ(tM)], (8)

where µ(tm)= [µ1(tm), µ2(tm), · · · µN(tm)]
T , and µn(tm) = (1/N)ejω(τn(sin ϕ)−tm).

Assuming that we process M samples, t0 and tM are the start and end time of the
sampling segment, respectively. Considering (7), after the time-beam rotation, the output
can be written as

Y(sin ϕ, t) =
ωmax
∑

ωq=ωmin

G(rs, ωq)Ψ =
ωmax
∑

ωq=ωmin

K
∑

k=1

Ak
N

N
∑

n=0
e−jωq((τn(sin ϕ)−τn(sin θ̃k))+(Tk−t))

=
K
∑

k=1

Ak
N

ωmax
∑

ωq=ωmin

N
∑

n=1
e−jωq((

nd(sin ϕ−sin θ̃k)
c +(Tk−t))

(9)

where ωmin and ωmax are the highest and lowest frequencies of the Green’s function
G(rs, ωq) in the discrete frequency domain, respectively. The power of Y(sin ϕ, t) is

B(sin ϕ, t) = |Y(sin ϕ, t)|2 =
K

∑
k=1

|Ak|2

N2

∣∣∣∣∣ ωmax

∑
ωq=ωmin

N

∑
n=1

e−jωq((
nd(sin ϕ−sin θ̃k)

c +(Tk−t))

∣∣∣∣∣
2

. (10)

After a simple derivation, Equation (10) can be written as a 2D convolution of the
beam-time pattern, denoted as PSF, with the source power distribution S. PSF depends
only on the difference in bearing and time, so PSF is shift-invariant in the steering angle
and time, and can be written as

B(sin ϕ, t) =
∫ tM

t0

∫ 1

−1
PSF((sin ϕ− sin ϑ), (t− t̂)) · S(sin ϑ, t̂)d sin ϑdt̂, (11)

where

PSF((sin ϕ− sin ϑ), (t− t̂)) =

∣∣∣∣∣ 1
N

ωmax

∑
ωq=ωmin

N

∑
n=0

e−jωq((
nd(sin ϕ−sin ϑ)

c +(t−t̂))

∣∣∣∣∣
2

, (12)

and

S(sin ϑ, t̂) =
K

∑
k=1
|Ak|2δ((sin ϑ− sin θ̃k) + (t̂− Tk)). (13)

It should be noted that S(sin ϑ, t̂) separates the multiple arrivals, in terms of both the
bearing and time domains, much better than B(sin ϕ, t) does. If we estimate S(sin ϑ, t̂) from
B(sin ϕ, t) using 2D deconvolution, high-resolution beam-time migration can be obtained,
which helps improve the localization accuracy.

Some well-known deconvolution algorithms, such as the Richardson–Lucy (R–L) [12–16]
algorithm, have been widely applied in various fields. We propose the use of the R–L
algorithm to deconvolve B(sin ϕ, t) both the bearing and time domains to improve the
localization accuracy of the array-invariant method.

After obtaining the high-resolution beam-time migration, the range is estimated with
the following formula:

r0 =
−c sin θ̃

χ̃
(14)

where χ̃ = d(sin θ̃)/dt, which is extracted from the beam-time migration with the least-
squares approach [2,11]. The source direction θ̃ is estimated by searching for the maximum
value in the beam-time migration.
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4. Simulation

A simulation in a typical shallow-water waveguide was conducted to demonstrate
our proposed method based on 2D deconvolution. The KRAKEN toolbox was used. The
environmental parameters of the employed Pekeris [2,17] waveguide are summarized in
Figure 2a. The water depth was 100 m and the speed of sound was assumed to be 1500 m
and the same at different depths. The seabed was typically sand bottom.
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Figure 2. (a) The Pekeris waveguide with sand bottom, where cw, ρw, and αw are the sound speed,
density of the water, and attenuation of the water, and cb, ρb and αb correspond to those in the sand.
(b) The Green’s function was obtained with blind deconvolution at a distance of 1000 m between
the array and source. (c) Beam-time migration obtained using the reference method. (d) Beam-time
migration obtained using the proposed method.

A horizontal array with 16 elements was employed. The array length was 2.8 m.
The bandwidth of the noise radiated by the source of opportunity was 2–4 kHz. The
sampling frequency was 20 kHz. The existing array-invariant method [11] was used as the
reference method. The source and the horizontal array were placed at 3 m and 97 m under
water, respectively. The azimuth angle of the sound source was 65◦. Additive white noise
was used. The signal-to-noise ratio at each array element was set at 10 dB. The length of
simulation data is 2 s. The Green’s function of the 16th element at the range of 1000 m was
extracted with blind deconvolution and is shown in Figure 2b.

The beam-time migrations obtained using the reference method and proposed methods
are shown in Figure 2c,d, respectively, which have the same scale. The peak position of
beam-time migrations is marked by the red square. In Figure 2c, it can be seen that the
relative arrival time of the two paths was 13.95 ms and 40.1 ms, respectively, and the sine of
the beam angle of the two paths was 0.879 ms and 0.839 ms, respectively. In Figure 2d, it can
be seen that the relative arrival time of the two paths was 13.2 ms and 40.1 ms, respectively,
and the sine of the beam angle of the two paths was 0.883 ms and 0.849 ms, respectively.

It is clear that our proposed method based on 2D deconvolution, shown in Figure 2d,
had a much higher resolution in both the bearing and time domains, compared to the
reference method. Based on the high-resolution beam-time migration, it is clear that the
source–range estimation error can be decreased.

For passive shallow-water localization with a horizontal array, the relative error of
range estimation determines the localization accuracy. The source range was estimated
according to Equation (14). In the case of the true source range of 1000 m, the range
estimated with the reference method, shown in Figure 2c, was 850.2 m. The range estimated
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with the proposed method, shown in Figure 2d, was 1038.7 m. The relative estimation
errors of the proposed and reference methods were 3.9% and 15.0%, respectively. The
estimation performances of the two methods at different ranges are summarized in Table 1.
On average, the estimation error of our proposed method was only one third of that of the
reference method. The results also prove that the wideband beam-time migration obtained
using conventional plane-wave beamforming in the reference array-invariant method [11]
is one of the main factors influencing the accuracy of the source range estimation.

Table 1. The range estimates and relative errors of the proposed and reference methods at different
ranges in the simulation.

True Range Proposed
(Estimated Range, Relative Error)

Reference
(Estimated Range, Relative Error)

1000 m 1038.7 m, 3.9% 850.2 m, 15.0%

1500 m 1615.1 m, 7.7% 1216.3 m, 18.9%

2000 m 2146.8 m, 7.3% 2454.3 m, 22.7%

3000 m 3232.3 m, 7.7% 2251.0 m, 24.9%

5. Experiment

The data from an experiment in the Yellow Sea of China in 2019 were processed for
testing the proposed and reference methods. A 2.8 m movable horizontal array was used.
The horizontal array had 16 elements. The sampling frequency was 20 kHz. The source was
fixed as shown in Figure 3a. The source transmitted wideband noise within a frequency
band of 2–4 kHz. Both the source and the horizontal array were located at a depth of 5 m.
The trajectory of the horizontal array is shown in Figure 3a.
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Figure 3. (Color online). (a) Positions of the array and source in the experiment. (b) Green’s function
obtained with blind deconvolution at Position #1. (c) Beam-time migration obtained using the
reference method. (d) Beam-time migration obtained using the proposed method.

The extracted Green’s function at Position #1 (988.9 m) in Figure 3a is shown in
Figure 3b. The beam-time migrations obtained using the reference and proposed methods
are shown in Figure 3c,d, respectively, which have the same scale. The peak position of
beam-time migrations is marked by the red square. Based on the beam-time migrations in
Figure 3c,d, the range estimated with the reference and proposed methods were 1244.3 m
and 1130.2 m, respectively, and the relative estimation errors of the reference and proposed
methods were 25.9% and 14.4%, respectively.



Appl. Sci. 2022, 12, 9356 7 of 8

The received signals at Positions #2 (718.6) and #3 (580.1) in Figure 3a were also
processed with the proposed and reference methods. Table 2 shows the range estimates and
relative errors of the proposed and reference methods at different positions. It can be seen
that the relative error of the proposed method is about half of that of the reference method.

Table 2. The range estimates and relative errors of the proposed and reference methods at different
ranges in the experiment.

True Range Proposed
(Estimated Range, Relative Error)

Reference
(Estimated Range, Relative Error)

#1 (988.9 m) 1130.2 m, 14.4% 1244.3 m, 25.9%

#2 (718.6 m) 604.2 m, 15.9% 535.3 m, 25.3%

#3 (580.1 m) 515.2 m, 11.2% 425.5 m, 26.6%

6. Conclusions

This brief report proposed an array-invariant method based on 2D deconvolution for
robust passive source localization in shallow water. Our proposed method achieved much
better beam-time migration than the existing array-invariant method, which improved the
range estimation accuracy significantly. Both the simulation and the experiment show that
our proposed method based on 2D deconvolution achieves a much higher accuracy than the
existing array-invariant method. This brief report also reveals that the relatively wideband
beam-time migration obtained using conventional plane-wave beamforming in the existing
array-invariant method is one of the main factors that influences the localization accuracy.
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