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Abstract: Limitations in determining the resonance frequency for large models, taking into account
non-linearity in the form of contact, initiated work on the creation of a simplified method of estimating
these resonance frequencies. The trend in this field is the use of time-domain methods with full
contact, or frequency-domain methods which take into account nonlinearity for specific cases. For
simplification, classical modal analysis is often used, with boundary conditions taken into account
or freeform vibrations, with neglected contact, or with tied contact areas, as though the contact
was always closed. The presented approximation method is based on both types of such analysis
and compensates for the error of both of the solutions. The method was elaborated with nonlinear
dynamics simulations in the time domain. This work presents experimental verification of the method
for a simple beam, and for more complex geometry—the satellite antenna panel.

Keywords: non-linear vibrations; resonance frequency; modal analysis; vibrations with contact

1. Introduction

The analysis of vibrations including contact is a demanding requirement in the field of
industrial applications. A few methods of vibrations analysis exist, including non-linearity
in the form of contact, which can be separated into two main groups: frequency domain
and time domain analysis.

For frequency domain analysis, the following might be listed: the Harmonic Balance
Method described in [1–4] and its modifications based on force response [5], or the System
DOF reduction described in [6–8]. Other methods used in the frequency domain are the
energy conservation schemes described in [9,10]. In specific problems such as turboma-
chinery blades, a non-linear modal analysis was proposed [11]. All of those methods are
applied or are for simple geometrical cases, or are relatively difficult to apply in industrial
usage, because of the truncated Fourier expansion used for the frequency domain for each
DOF, which would produce extremely large models [12].

As a specific type of solution for the situation of vibrations with contact is the lin-
earization of a model, which is used for beams with cantilever-Hertzian contact vibrations,
as described in [13–16]. However, these simplifications, always taking into account closed
contact, are applicable only for specific cases, as presented in those papers.

The time domain methods that can be pointed out for solving the problem are based
on the full solution of dynamic equations including interactions, such as contacts, and their
simplifications. The full solution for dynamic equations has been shown in many cases
to be very accurate. In addition, some of the research has been completed in that field for
delaminated sandwich-composite panels to simulate the behavior of a delaminated area
subjected to vibrations, including surface contact [17].

In addition, for that group, there are modifications of the method that use both the
time and frequency domain shown in [18].

Finite Element (FE) codes, widely used in industry, have no implementation on
frequency domain methods except for classical modal analysis, and only the time domain
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solution is available for use in engineering to include contact in vibrations. The explicit
solution of dynamics shown in [16] also has some limitations for large models. The Courant
criterion enforces a very short time step which will lead to a huge number of steps [19],
which increases the integration error or limits the simulation to short-time events.

Three main approaches could be observed to obtain resonance frequencies of the
system in practice. The first is by neglecting contact and performing simulation, in the way
that contact was always opened [20,21]. Second, where simplification for modal analysis is
completed, in a way similar to contact being always closed [22–25]. A third approach is to
simulate a situation between the two mentioned springs and springs are added to contact
to introduce additional stiffness, based on earlier experimental tests; however, the method
requires earlier physical testing which is impractical in many solutions.

To study how resonance frequency reacts to the introduction of contact to the system,
a cantilever beam was carried out with usage of an implicit dynamics solution. The
implicit algorithm was selected over the explicit algorithm due to no problems with tiny
time-stepping or simulation time limitation.

With the extracted characteristic of resonance frequency to contact length dependence,
a simplified method of prediction was proposed, using modal analysis.

2. Approach to Estimation Method

Classical modal analysis in usage for cases where contact exists leads to one of two
approaches: neglect the contact [20,21] or fixed edge of the contact like it was all the time
closed [22–25]. For the specimen considered in this paper, it can be observed, that the actual
resonance frequency occurs between values of both approaches.

The closer look at the response of the vibration in the resonance verified by non-linear
dynamics shows that a full vibration cycle is built out of the lower half-cycle part (while
the contact is closed) and the upper half-cycle part (while the contact is open). The lower
half-cycle frequency is close to the frequency calculated by modal analysis with a fixed
edge of the contact, while the upper half-cycle resonance frequency is equal to the one
calculated by modal analysis with neglected contact.

Based on that knowledge, the idea appeared to create an expression that will use both
approaches of modal analysis to calculate, based on the resonance frequency values gained
in both analyses, the resonance frequency that will appear in reality. The illustration of one
period of non-linear response with both half-cycles’ conception is shown in Figure 1.
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The method that allows for the estimation of the resonance frequency of the system
with usage of only linear modal analysis would be a very useful tool for engineers in
industrial applications because of the simplicity, low resource demands compared to non-
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linear dynamics, and easily accessible by well-known FEA codes, in contrast to the methods
listed in the first paragraph.

The main rule for the formula is to use both of the analysis half-cycle period times,
collected by linear modal analysis, and to introduce a parameter related to the contact
length to compensate for the error. To omit the contact length as a direct parameter—which
is influenced by geometry—the parameter that represents the stiffening of the system by
contact is introduced as the ratio of the resonance frequency of the system extracted with
modal analysis with a fixed contact edge (fe) to the resonance frequency of the system
extracted with modal analysis with neglected contact (f0).

3. Vibrations Research with Numerical Simulations

For a detailed look at how systems behave during vibration with contact, the nu-
merical simulation method was selected as the main tool of the preliminary investigation.
To accurately include the contact phenomenon, it was mandatory to use full dynamic
simulation. Because accuracy was a priority in the simulations, the implicit algorithm was
selected over the explicit algorithm. For the preliminary tests, a flat rectangle specimen
with a straight edge of contact was selected.

The model built for analysis was made out of continuous shell elements fixed to the
rigid clamp with an introduced area of contact. Additionally, a mass point was included
to represent the accelerometer mass and allow for future repeating of the simulation in
experimental tests. The model is presented in Figure 2.
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The simulation was following the tip of the specimen, where the accelerometer mass
point was attached, and had an enforced displacement of 20 mm in the first step. The
second step of the simulation was to release the enforced displacement. The specimen
then started to vibrate at natural frequencies. The displacement of the accelerometer
point in time was recorded. For the described simulation, Abaqus 2018 was used, with a
nonlinear implicit dynamics algorithm, taking into account the contact and geometrical
nonlinearity. The CFRP specimen was modelled with Continuum Shell-layered elements,
and the accelerometer was modelled as single node mass, connected to the specimen with
rigid elements. In addition, the fixation was modelled with discrete rigid elements. For
contact, the definition penalization algorithm was used with a friction coefficient of value
f = 0.2. To analyze the resonance frequency of the system, a Python script was created to
apply a fast Fourier transform on the displacement- time characteristic.

For research purposes, a flat rectangle specimen geometry was selected as an object of
investigation. The dimensions of the specimen were 220 × 20 mm with 2 mm thickness.
The specimen material was 10 plies of carbon fiber twill weave composite with 0/90 layup.
The specimen was fixed at 40 mm length.

Additionally, for the experimental tests a hole in the free end of the specimen was
introduced to attach additional mass as a parameter. The two masses that were included to
change the resonance frequency of the system were 7.6 g and 9.7 g.
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The mechanical properties of the material were evaluated in the static tensile strength
test for three manufactured pieces. The values of the properties are collected in Table 1.

Table 1. Mechanical properties of CFRP composite used for samples in the research.

Specimen
Name E1 (GPa) E2 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) ν12

(–)
ρ

[ kg
m3 ]

TW090_1 56.77 56.77 3.5 2.5 2.5 0.07 1442
TW090_2 58 58 3.5 2.5 2.5 0.07 1390
TW090_3 60 60 4 3 3 0.07 1430

The exact placement of the holes in the samples is described in Table 2 as parameters
hx—longitude distance from end of the sample, hy—side distance from end of the specimen.

Table 2. Measured dimensions of manufactured test specimens.

Specimen
Name

l
(mm)

b
(mm)

t
(mm)

αs
(◦)

hx
(mm)

hy
(mm)

TW090_1 219.86 19.98 2.02 0.39 11.5 9.6
TW090_2 219.70 20.1 2.04 0.19 7.7 11.0
TW090_3 219.60 20.1 2.05 0.13 7.0 9.5

The described setup is presented in Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 15 
 

The mechanical properties of the material were evaluated in the static tensile strength 
test for three manufactured pieces. The values of the properties are collected in Table 1. 

Table 1. Mechanical properties of CFRP composite used for samples in the research. 

Specimen 
Name 

𝑬𝟏 (GPa) 𝑬𝟐 (GPa) 𝑮𝟏𝟐 (GPa) 𝑮𝟏𝟑 (GPa) 𝑮𝟐𝟑 (GPa) 
𝝂𝟏𝟐 
(–) 

𝝆  
[ 𝐤𝐠𝐦𝟑] 

TW090_1 56.77 56.77 3.5 2.5 2.5 0.07 1442 
TW090_2 58 58 3.5 2.5 2.5 0.07 1390 
TW090_3 60 60 4 3 3 0.07 1430 

The exact placement of the holes in the samples is described in Table 2 as parameters 
hx—longitude distance from end of the sample, hy—side distance from end of the speci-
men. 

The described setup is presented in Figure 3. 

 
Figure 3. Scheme of the specimen mounted in the grip. 

Table 2. Measured dimensions of manufactured test specimens. 

Specimen 
Name 

l  
(mm) 

b  
(mm) 

t  
(mm) 

αs  
(°) 

hx 
(mm) 

hy 
(mm) 

TW090_1 219.86 19.98 2.02 0.39 11.5 9.6 
TW090_2 219.70 20.1 2.04 0.19 7.7 11.0 
TW090_3 219.60 20.1 2.05 0.13 7.0 9.5 

Dynamic FE simulation was performed with 10 different lengths of contact X in the 
range 0–100 mm, each 10 mm. The characteristics of the natural resonance frequency by 
contact length are shown in Figure 4. Additionally, the resonance frequencies calculated 
with the classical modal analysis with fixed contact edge and opened contact were in-
cluded to visualize the difference. 

Figure 3. Scheme of the specimen mounted in the grip.

Dynamic FE simulation was performed with 10 different lengths of contact X in the
range 0–100 mm, each 10 mm. The characteristics of the natural resonance frequency by
contact length are shown in Figure 4. Additionally, the resonance frequencies calculated
with the classical modal analysis with fixed contact edge and opened contact were included
to visualize the difference.
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4. Formula Created for Resonance Frequency Estimation

The estimation formula for the resonance frequency was prepared by the resonance
frequencies extracted in the classical modal analysis simulation with two types of boundary
conditions—neglecting the contact and fixing the edge of the contact. The formula includes
a correction factor that is connected to the stiffening of the structure with the contact as fe
to f0 ratio.

The preliminary form of the equation is based on observations of vibration with
contact behavior. The part of the formula responsible for vibration without support was
taken as the half period of the cycle, and the part responsible for the specimen in contact
was taken as the half period of the cycle with additional correction factor. The preliminary
Formula (1) is as follows:

fi =

 1
2· f0

+
1

2·
(

fe −
(

A· fe +
(

fe
f0

)B
))


−1

(1)

Based on the collected data for vibrations with 10 contact lengths and some additional
cases, such as thicker specimens or different material orientation, nonlinear regression
was applied to extract the values of the A and B correction parameters. The values of the
parameters were equal to:

• A = −0.00351
• B = 1.97057

For simplification of the formula, the correction factors were rounded to integer values.
The final values of the correction factors were as follows:

• A = 0
• B = 2

The final shape of the formula is as follows (2):

fi =

 1
2· f0

+
1

2·
(

fe −
(

fe
f0

)2
)


−1

(2)
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The equation was proposed according to the observation presented in Figure 1, that
the full cycle of vibration can be split into two. The first part of the cycle, while contact
is closed, may be described with modal analysis with the fixed edge of the contact, while
the second cycle can be described with modal analysis omitting the contact. The formula
presents the sum of times that it takes each of the half-cycles to occur, with some correction
factors. The value of the correction factors (A and B) were defined with a regression method,
in such a way that the error of the formula result was minimized according to non-linear
simulation case for couple of iterations.

The formula was back-tested on the entry data. The error of the formula-based
estimation for the case that was verified with non-linear dynamics for each iteration of the
contact length is shown in Figure 5.
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5. Experimental Verification
5.1. Tests on Cantilever Beam

To perform experimental verification of the formula, a test stand was designed and
manufactured. The test bench for the vibration examination was designed as a rail and a
guide car, with an attached sample holder. The sample was mounted vertically to eliminate
the influence of gravity and avoid the need to mount the rail vertically. The vibrations
were forced by the inductor attached with the base to the frame shared with the rail; the
vibrating head was connected with the carriage by a rod.

The MTS Systems Corporation shaker model 2100E11 was used as mechanical excita-
tion. The imposing signal was an audio file sent to the QSC RMX2450be amplifier, which
was directly connected to the shaker.

Vibration measurement was performed with laser vibrometer Polytec PSV-400 con-
nected to the Polytec OFV-5000 controller. Additionally, the Siemens LMS system with PCB
356A16 was used for signal calibration and additional measurements in the sample holder.
The complete test bench is shown in Figure 6.
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For imposing signal generation, the Python script was written, which can create a
wave file with sinusoidal signal with variable frequency and amplitude. The script allows
one to impose the sine sweep test of constant acceleration, which was used to find resonance
frequency of the system.

The experiment was planned with the following assumptions:

• A total of three flat specimens made out of CFRP composite, with the same dimen-
sions as described for nonlinear dynamics simulation, to investigate manufacturing
deviations;

• Five different grips to support specimens with four different lengths of contact (20 mm,
40 mm, 60 mm, 80 mm) and without contact (one side simple fixation);

• Two additional masses that were attached to the free end of each sample to verify the
system with different natural frequencies (case without attached mass and two cases
with different masses).

Each of the probes was repeated three times to compensate for variation on mounting
the specimen on the test bench. The cumulative number of probes performed was:

nprob = 3 × 3 × 5 × 3 = 135 (3)

The measured dimensions of the prepared specimens are presented in Table 2.

5.2. Tests on Satellite Antenna Structure

An additional structure was selected as another experimental object. Non-destructive
tests were performed on the ESEO satellite antenna panel. The panel is made out of two-
layered CFRP composite, bonded in lightweight foam structures to support electronics and
stiffen the setup. The cross section with the description is shown in Figure 7. The contact of
this case is based on the fixation method.
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Figure 7. Cross section of the satellite antenna panel used for experimental tests.

The component is tightened to the satellite structure with three bolts in cut-out holes
in the main structure. The upper half cycle is when the panel is supported only on the bolt
heads, the lower half cycle is when it is supported on the edge of the cut-out hole in the
main structure (Figure 8).
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The numerical model for the modal analysis of the antenna was prepared with layered
shell elements for CFRP panels and solid elements for foam parts. The shell and solid
elements were glued together in the interface areas. The electrical connector was modeled
as a mass point attached to its fixation points in the CFRP panel. The mechanical properties
of the materials are presented in Table 3.

Table 3. Mechanical properties used for antenna simulation.

CFRP Rohacell 51 IG-F PCB

E1 60 GPa E 70 MPa E 70 GPa
E2 60 GPa ν 0.3 - ν 0.3 -
ν12 0.07 - ρ 52 kg/m3 ρ 9000 kg/m3

G12 4 GPa
G23 3 GPa
G13 3 GPa

ρ 1500 kg/m3
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The experimental tests of the component were completed with the use of Dongling
Technologies vibration machine model with GT600M table. Vibrations were measured with
the Polytec vibrometer model: PSV-500. The software used for the control was Siemens NV
LMS Test.Lab. The component was screwed with three bolts to the fixation tool, mounted
on the table of the vibration machine. The test stand is shown in Figure 9. The test was
performed in accordance with the ESA requirements [26]. The test method was sine sweep
of equal enforced acceleration of the base. The tested frequency range was 20–2600 Hz with
an acceleration amplitude of 1 g on the Z axis.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 
Figure 9. Satellite antenna panel mounted on the vibration machine with laser vibrometer measure-
ment point. 

6. Results 
6.1. Results—Cantilever Beam 

For all of the pointed cases, the response of the specimen was registered. Based on 
that, the first resonance frequency was evaluated. An example plot of the resonance fre-
quency for the TW090_1 specimen is shown in Figure 10. The full comparison and differ-
ences between all of the cases are collected in Table 4. The biggest difference in all of the 
cases was registered as 3.94%. The average difference between the estimate and the test 
result is equal to 1.18%. 

 
Figure 10. Example response measured with vibrometer at the end of the TW090_1 specimen (con-
tact 40 mm + mass 7.6 g). 

  

0
5

10
15
20
25
30
35
40
45
50

10 20 30 40 50 60 70 80 90 100

ac
ce

le
ra

tio
n 

[m
/s

2 ]

frequency [Hz]

measurement point 

Figure 9. Satellite antenna panel mounted on the vibration machine with laser vibrometer measure-
ment point.

6. Results
6.1. Results—Cantilever Beam

For all of the pointed cases, the response of the specimen was registered. Based on that,
the first resonance frequency was evaluated. An example plot of the resonance frequency
for the TW090_1 specimen is shown in Figure 10. The full comparison and differences
between all of the cases are collected in Table 4. The biggest difference in all of the cases
was registered as 3.94%. The average difference between the estimate and the test result is
equal to 1.18%.
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Figure 10. Example response measured with vibrometer at the end of the TW090_1 specimen (contact
40 mm + mass 7.6 g).
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Table 4. Comparison of estimated resonance frequencies with experimental tests for all cases of
cantilever beam.

Frequency Response (Hz)

Specimen
Name

X
(mm)

m = 0 m = 7.6 m = 9.7

fi fexp ∆f fi fexp ∆f fi fexp ∆f

TW
09

0_
1

0 63.23 63.23 0.00% 34.55 34.87 0.92% 31.64 31.80 0.50%
20 67.94 68.48 0.79% 36.44 37.40 2.57% 33.30 34.21 2.66%
40 74.14 73.59 0.75% 39.31 40.12 2.02% 35.89 36.77 2.39%
60 80.90 81.54 0.78% 42.46 42.75 0.68% 38.74 39.33 1.50%
80 88.23 87.47 0.87% 45.95 45.96 0.02% 41.90 41.80 0.24%

Average error 0.64% 1.24% 1.46%

TW
09

0_
2

0 65.87 66.42 0.83% 34.37 34.25 0.35% 31.47 31.31 0.51%
20 70.79 70.47 0.45% 36.11 36.72 1.66% 33.05 33.64 1.75%
40 77.27 76.77 0.65% 38.90 39.39 1.24% 35.59 36.00 1.14%
60 84.32 83.77 0.66% 41.95 42.17 0.52% 38.35 38.70 0.90%
80 91.98 89.06 3.28% 45.33 44.70 1.41% 41.40 41.39 0.02%

Average error 1.17% 1.04% 0.86%

T
W

09
0_

3

0 66.47 67.34 1.29% 34.45 34.00 1.31% 31.54 31.05 1.58%
20 71.49 71.44 0.07% 36.44 36.90 1.25% 33.15 33.69 1.60%
40 78.01 77.22 1.02% 39.24 39.76 1.31% 35.67 36.35 1.87%
60 85.13 84.62 0.60% 42.31 41.82 1.17% 38.43 38.28 0.39%
80 92.89 89.37 3.94% 45.70 44.30 3.16% 41.48 40.75 1.79%

Average error 1.38% 1.64% 1.45%

For the visualization difference between the approaches that are widely used as always
closed or neglected contact, the comparison plot is shown in Figures 11–13 for TW090_1.
The values that are compared together are the estimated resonance frequencies with usage
of the presented formula, the values obtained in the experimental test, and the values
obtained in modal analysis with always closed contact. The neglected contact values are
equal to modal analysis for 0 mm contact distance (free vibration without contact).
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Figure 13. Comparison of experimental tests with modal analysis and estimated values of resonance
frequency values for TW090_1 specimen (m = 9.7).

The difference between the resonance frequency and always closed modal analysis
was that the higher the contact, the distance was longer. The biggest difference between the
modal analysis and the tested specimens was observed for the 80 mm contact distance, and
it was equal to 72%. For the neglected contact modal analysis, for the same contact distance
difference between the simulation and experimental test, it was equal to 58%. These values
vary slightly for each specimen or included mass, in the range of ±1%.

6.2. Results—Satellite Antenna Structure

For the satellite antenna during functional tests, a sine sweep test was performed to
point out the resonance characteristics. There were two runs of the sine sweep test—before
functional tests and after—to investigate whether there was a change in the structure after
functional tests. Both of the runs resulted in being very close to each other’s response.
The resonance frequencies obtained in the test were taken as an object of comparison to
numerical simulations and the simplified resonance estimation method. The responses of
the sine sweep tests are plotted in Figure 14.
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Numerical simulations were performed using the presented method for the numerical
model of antenna. In this case, not only the value of resonance frequencies were to be regis-
tered but also the mode shapes were recognized and matched together, for simulation with
neglected contact and for fixed contact edge case. The differences between the vibration
modes were: 0.43% for the first mode, 1.18% for the second, and 0.92% for the third one.
Results of the satellite antenna tests are presented in Table 5.

Table 5. Comparison of estimated resonance frequencies with experimental tests for the
satellite antenna.

Resonance Frequency (Hz)

Mode 1 Mode 2 Mode 3

Experiment—1st run 2000.9 2102.8 2488.9
Experiment—2nd run 2017.4 2138.0 2530.5

Average of
experiments 2009.2 2120.4 2509.7

Estimation method 2017.8 2145.3 2532.8
Difference 0.43% 1.18% 0.92%

7. Discussion

As presented in the Results section, the differences in resonance frequencies obtained
in the tests and estimated with the presented formula were small. In particular, this could
be stated compared to the values collected in the method of modal analysis, where the error
was of an order higher than for the estimation method.

Differences in the estimation method and tests may occur for several reasons. The
method was prepared on one specific geometry. Several tests for other configurations of
the geometry were prepared, but the common aspect was contact that allowed a clear
second-mode formation in the second half-cycle. While the contact enforces vibration, that
will change its shape during half-cycles, and the method will lead to significant errors
or will not be applicable anymore. A similar scenario has to be applied to the system
with multiple contacts that are closed during vibration. These are the limitations for the
estimation method established with the presented research. More research should be
completed to verify more cases to develop the field of applicability.
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The accuracy of the method is very good compared to the widely used techniques
nowadays, which makes it better tool for resonance frequency assessment than modal
only analysis.

Despite the limitations, the method shows potential for application in systems with
similar contact behavior during vibration, as was presented in the tests of the satellite
antenna, which was more complex than the cantilever beam.

8. Summary

In this paper, we presented experimental verification of resonance frequency esti-
mation with the use of modal analysis. The way of creating the estimation formula was
described. Furthermore, the experimental verification of the estimation method was pre-
sented. The experiment was based on research of resonance for the flat CFRP specimens,
which were with and without additional nonstructural mass, as simple geometry, and for
the satellite antenna, as a complex object.

The nominal geometry of the specimen was not changed during the tests, only the
additional mass of the specimen. Three different specimens were manufactured to verify
the test multiple times. The variable in the test for each of the probes was the contact
distance measured from fixation.

Based on the results, it could be assumed that the estimation formula predicted reso-
nance frequencies with good accuracy with respect to the values obtained in experimental
tests. The tested resonance frequencies differ a lot compared to the values obtained in nu-
merical simulations with the use of always closed or neglected contact modal simulations.

A conclusion may be assumed, based on the presented results, that when the contact
effect is more dominant in the structure, the modal simulation errors will increase. The
presented formula estimates the resonance frequency much better and might be applicable
in industry applications, while further research will be completed.

The formula was also tested for more complex shapes. The satellite antenna was
selected for verification. The results of the experimental tests were in good agreement
with the estimated values. However, the case was demonstrated that for more complex
geometry, the mode shapes in two different half-cycles should be recognized and matched.

The applicability limit that was observed is the contact edge in the model. If the
contact edge changes during vibrations, the method is not applicable, because it assumes
that there are two visible half-cycles. In addition, closing second or third contact is also not
included, for the same reason.

Despite the limitations, the method seems to have potential in industrial applica-
tion. Further research should be completed in terms of testing more geometries with
nonregular shape.
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Nomenclature

fe Resonance frequency of the system extracted with modal analysis with fixed contact edge
f0 Resonance frequency of the system extracted with modal analysis with neglected contact
fi Resonance frequency of the system calculated with presented estimation formula
fexp Resonance frequency of the system obtained in experimental test
nprob Number of probes taken in physical experiment
hx Longitude distance of the hole for mass attachment from end of the specimen
hy Side distance of the hole for mass attachment from end of the specimen
X Contact distance from fixed edged
l Length of the specimen
b Height of the specimen
t Thickness of the specimen
αs Fiber skew angle of the specimen
m Mass attached to the free end of the specimen
∆ f Percentage difference between values obtained in estimation method and in experimental tests
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