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Abstract: In this paper, we study the finite-time formation control problem of uncertain nonholonomic
mobile robots following a parameterized path. A path-guided formation control scheme based on
an extended state observer is proposed. To compensate for unmeasured velocities and disturbances
simultaneously, a third-order fast finite-time extended state observer (FFTESO) is proposed. Then, a
distributed formation control solution is developed to achieve the kinematic and dynamic system
coordination control of the nonholonomic mobile robots. For the kinematic system control, a path-
parameter-updating law is developed for a virtual leader, and the desired linear velocity and heading
angle are developed for the mobile robots. For the kinetic control, an anti-disturbance control protocol
is designed based on the estimated signals. The salient features of the proposed algorithms lie in
that the estimations of disturbances and unmeasured velocities are achieved against the system’s
nonholonomic constraints, and the path following the control and cooperative control is synthesized
together for path-guided formation, which reduces the complexity of the controller design. Finally,
simulation studies are conducted to demonstrate the effectiveness of the proposed algorithm.

Keywords: nonholonomic mobile robot; finite-time convergence; formation control; path-guided;
extended state observer

1. Introduction

The formation control of multiple mobile robots has recently become a hot research
issue with the development of the technology on multi-agent systems and its applications
on robots [1–3]. The objective of formation control is to develop control algorithms for a
group of robots such that a predefined formation shape can be achieved to perform some
tasks cooperatively. Multi-robot formation control has wide applications in military and
civil areas, such as cooperation transportation [4], search and rescue [5], surveillance [6],
etc., due to its advantages in communication and collaboration.

The main purpose of the path-guided multi-robot formation is to make the mobile
robots keep the desired formation and move along a parameterized path (called the geo-
metric task). For example, the virtual structure approach was used to achieve the desired
formation by considering the formation as a rigid body, and the model predictive control
was employed to optimize the velocity of the virtual robot [7]. Besides the studies on
geometric tasks, many research studies have focused on specifying the desired speed for
the path parameter (called the dynamic task). Its advantage is that the path parameter
can be treated as an additional degree of freedom. In [8], the path-following time-varying
formation control problem was studied for a group of mobile robots with a unicycle-type
kinematic model by designing a path-parameter-updating law. However, the control
law is centralized. Then, an improved law for the distributed virtual-structure-based
path-following formation control was developed in [9], where both the path following
of individual robots and the desired formation pattern were achieved. In [10], based on
the virtual structure approach, a multi-robot formation control method was studied in
which multiple mobile robots moved along a parameterized path with obstacles. In [11],
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a path-following control and formation maintenance problem was solved for multiple
mobile robots that were subjected to a prescribed performance level by using the backstep-
ping technique and tan-type barrier Lyapunov functions. In [12], the path-following and
formation control of multiple mobile robots were achieved by using a virtual structure
algorithm and designing a proper path-parameter-updating law. It should be noted that
the methods proposed in [10–12] only focused on the formation control at the kinematic
level, but the dynamic control was not considered. In [13], the path-following control
problem of multiple uncertain mobile robots with performance constraints was studied,
and the proposed strategy was extended to the formation control of multiple unicycle-type
robots. The above-mentioned control algorithms in [7–13] dealt with the path-guided
formation control problem of multi-robot systems by assigning a desired path for each
mobile robot and transforming the formation control problem into a multi-path-following
problem without considering the coordination of the mobile robots. In practical engineer-
ing, the multi-path-guided formation may cause a heavy computational burden due to the
constantly updating of path parameters once the formation pattern changes, thus leading
to the instability of the system.

It should be noted that the dynamic control methods of the multiple mobile robot
formation in the aforementioned works [8,9,13] are constrained to an accurate dynamic
model and do not consider the effect of external disturbances on the stability of the system.
To improve the robustness of the formation control by considering the effect of model
uncertainties and external disturbances, a great number of methods have been proposed.
In [14], an integral sliding mode controller was proposed to deal with external disturbances
and achieve the formation control of multiple mobile robots. In [15], a terminal sliding
mode control law was proposed to deal with model uncertainties at the dynamic level and
external disturbances. In [16], a Q-learning-based adaptive sliding mode controller was
proposed for the formation control of multiple mobile robots. However, the chattering
of the sliding mode control in [15–17] causes serious wear to the mobile robots. A radial
basis function neural network was used to approximate the model uncertainties of multiple
mobile robots in [18,19]. A fixed-time disturbance observer was proposed in [20] to estimate
external disturbances, and a leader–follower formation controller was developed for multi-
robot systems. The active disturbance rejection control (ADRC) is a widely used method
to compensate for unknown disturbances, which was introduced for the robust control
of the dynamic systems in [21] and nonlinear systems in [22]. Considering the ADRC of
mobile robotics, a survey summarized the mainstream control strategies and pointed out
the advantages of the ADRC on the robust control of mobile robots [23]. The above works
show the advantages of the ADRC in the robust control of mobile robots. As the core of
the ADRC, the extended state observer is used to estimate the total disturbances of the
system. In [24–32], an extended state observer was applied only based on the dynamics
of mobile robots. However, if the velocity is unmeasurable, the proposed extended state
observer is unavailable because of having the characteristic of nonholonomic constraints.
Moreover, the application of the extended state observer to the path-guided formation
control of multiple mobile robots is meaningful but rarely studied.

Motivated by the aforementioned discussions, in this paper, we investigate the output-
feedback-based path-guided finite-time formation control of nonholonomic mobile robots.
Firstly, a fast finite-time ESO (FFTESO) is proposed to estimate the unmeasured velocities
and disturbances. Then, a formation control scheme including the kinematic and dynamic
control laws is proposed. For the kinematic control law, a path-parameter-updating law
is developed for a virtual leader, and the desired linear velocity and heading angle are
designed for the mobile robots. For the dynamic control law, an anti-disturbance control
protocol is designed based on the estimated signals. The main contributions of this work
are as follows:

(1) A fast finite-time extended state observer is developed to estimate the unmeasured
velocities and disturbances, thus overcoming nonholonomic constraints while im-
proving the observation accuracy and speed;
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(2) A finite-time formation control scheme is proposed for the kinematic and dynamic
control of multiple mobile robots. The proposed path-guided formation controller
integrates the path-following control and formation control to relax the assumption of
a globally known parameterized path, which is needed in [10–13];

(3) A single-path-updating law is developed to drive the formation to follow the parame-
terized path with the assigned speed. Compared with the multi-path-updating law
in [7–13], the proposed single-path-updating law reduces computing and communica-
tion resources.

The rest of this article is organized as follows: The preliminaries are introduced in
Section 2. In Section 3, the finite-time extended state observer, the double closed-loop
kinematic controller, and the output-feedback-based dynamic controller are developed. In
Section 4, the stability analysis of the closed-loop system is presented. In Section 5, simu-
lation studies are conducted to demonstrate the effectiveness of the proposed algorithm.
Finally, Section 5 concludes this paper.

Notations: R is the set of real numbers. | · | represents the absolute value of a scalar,
and ‖ · ‖ is the Euclidean norm of a vector. Given a vector e =

[
e1, e2, . . . , ep

]T, sgn(e) =[
sgn(e1), sgn(e2), . . . , sgn

(
ep
)]T and sigα(e) =

[
|e1|αsgn(e1), |e2|αsgn(e2), · · · ,

∣∣ep
∣∣αsgn

(
ep
)]T,

where sgn(·) is the signum function, (·)T is the transpose of a vector or a matrix. λmin(·) is
the minimum eigenvalue of a matrix.

2. Preliminaries
2.1. Graph Theory

Consider a system consisting of N mobile robots (labeled as n1, n2, . . . , nN) and one
virtual leader (labeled as n0). The communication topology of the multi-robot system is
described by a directed graph G = (V , E) with a set of mobile robots V = {n0, n1, . . . , nN}
and a set of edges E ⊆ V × V . The edge (i, j) ∈ E means node i can obtain information
from node j, and node j is a neighbor of node i. The set of neighbors of node i is denoted by
Ni = {j ∈ V | (i, j) ∈ E}. A directed path from node i1 to node is is a sequence of ordered
directed edges consisting of {(i1, i2), (i1, i2), . . . , (is−1, is)}. For the N following mobile
robots, the subgraph G is used to describe the communication topology among the robots
labeled as n1, n2, . . . , nN . The adjacency matrix of the graph G is denoted as A(G) =

[
aij
]
,

where aij = 1 if aij ∈ E and aij = 0, if otherwise. The Laplacian matrix L =
[
lij
]

is defined

as lii =
N
∑

j=1,j 6=i
aij and lij = −aij, i 6= j, i, j = 1, 2, . . . , N. In this paper, suppose that the

virtual leader has none of the following robots’ information, i.e., a0i = 0, i = 1, 2, . . . , N,
and at least one of the following robots can access the information of the virtual leader.
Let L ∈ RN×N be the Laplacian matrix of subgraph G, B ∈ RN×N = diag{a10, a20, . . . , aN0}
and H = L + B. The following assumption is needed:

Assumption 1. There exists a directed spanning tree with the virtual leader as the root in graph G.

2.2. Problem Formulation

As shown in Figure 1, O− XEYE is the global coordinate frame, and C− XBYB is the
body-fixed coordinate frame. The mobile robots with two actuated wheels are controlled to
keep the desired formation pattern and follow a desired path by exchanging information
with their neighbor robots. According to [25], the dynamics of the ith (i ∈ {1, . . . , N})
mobile robot can be described as 

.
xi = vi cos(θi).
yi = vi sin(θi).
θi = ωi,

(1)
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and {
mi

.
vi = f v

i (vi, ωi) +
ri
2 τv

i + dv
i

Ii
.

ωi = f ω
i (vi, ωi) +

ri
2Ri

τω
i + dω

i
(2)

where pi = [xi, yi]
T is the position of the ith mobile robot in the global coordinate frame, θi is

the heading angle, vi and ωi are the linear and angular velocities defined in the body-fixed
coordinate frame, mi and Ii are the inertia parameters, f v

i and f ω
i are the unknown Coriolis

and damping terms, dv
i and dω

i are the external disturbances, τv
i and τω

i are the control
torques, ri is the radius of the wheel, and 2Ri is the width of the ith robot.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 20 
 

( )
( )

cos
sin
,

i i i

i i i

i i

x v
y v

θ
θ

θ ω

=
 =
 =





 (1)

and 

( )

( )

,
2

,
2

v v vi
i i i i i i i

i
i i i i i i i

i

r
m v f v d

rI f v d
R

ω ω ω

ω τ

ω ω τ

 = + +

 = + +





 (2) 

where 𝑝௜ = ሾ𝑥௜, 𝑦௜ሿT is the position of the 𝑖th mobile robot in the global coordinate frame, 𝜃௜ is the heading angle, 𝑣௜ and 𝜔௜ are the linear and angular velocities defined in the 
body-fixed coordinate frame, 𝑚௜ and 𝐼௜ are the inertia parameters, 𝑓௜௩ and 𝑓௜ఠ are the 
unknown Coriolis and damping terms, 𝑑௜௩ and 𝑑௜ఠ are the external disturbances, 𝜏௜௩ and 𝜏௜ఠ are the control torques, 𝑟௜ is the radius of the wheel, and 2𝑅௜ is the width of the 𝑖th 
robot. 

 
Figure 1. Formation model. 

In the formation control problem, the mobile robots are guided by a virtual leader 
moving along the parameterized path 𝑝௥ሺ𝜑ሻ = ሾ𝑥௥ሺ𝜑ሻ, 𝑦௥ሺ𝜑ሻሿ். Here, the scalar variable 𝜑 is the time-dependent parameter of the parameterized path 𝑝௥ሺ𝜑ሻ. It is used to plan the 
desired path of the virtual leader. The mobile robots labeled as 𝑛ଵ, … , 𝑛ே move to follow 
the desired relative position and orientation. The following assumption is needed for the 
parameterized path: 

Assumption 2. The parameterized path 𝑝௥ሺ𝜑ሻ and its derivative 𝜕𝑝௥ሺ𝜑ሻ/𝜕𝜑 are bounded. 

The control objective of this work is to develop an observer-based formation maneu-
vering protocol for mobile robots such that the following statements hold: 
(1) The mobile robots keep the desired formation described by 

XB

YB

θi

vl

vr

Pr(ϕ)

O XE

YE

Ci

XB

YB

Cj

θj

Figure 1. Formation model.

In the formation control problem, the mobile robots are guided by a virtual leader
moving along the parameterized path pr(ϕ) = [xr(ϕ), yr(ϕ)]T . Here, the scalar variable ϕ
is the time-dependent parameter of the parameterized path pr(ϕ). It is used to plan the
desired path of the virtual leader. The mobile robots labeled as n1, . . . , nN move to follow
the desired relative position and orientation. The following assumption is needed for the
parameterized path:

Assumption 2. The parameterized path pr(ϕ) and its derivative ∂pr(ϕ)/∂ϕ are bounded.

The control objective of this work is to develop an observer-based formation maneu-
vering protocol for mobile robots such that the following statements hold:

(1) The mobile robots keep the desired formation described by

lim
t→T
‖pi − pj − pijd‖ < ε1, i = 1, . . . , N, j = r, 1, . . . , N (3)

where ε1 is a positive constant, and pijd ∈ R2 is the desired geometry position between
the ith robot and the jth robot.

(2) The path parameter converges to a commanded speed vs as follows:∣∣ .
ϕ− vs

∣∣< ε2, (4)

where vs is the assigned speed of the path parameter, and ε2 is a positive constant.

The following lemma is introduced to achieve the above objectives:
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Lemma 1 [33]. Consider a general system
.
x(t) = f (x(t)) with f (0) = 0, where f : U1 → R is

the differential in an open neighborhood of the origin. Suppose there are positive constants c1 > 0,
c2 > 0, η1 ∈ (0, 1) and η2, a differential Lyapunov function V(x) with the initial value V(x0)

such that
.

V(x) ≤ −c1Vη1(x) (or
.

V(x) ≤ −c1Vη1(x)− c2V(x)); then, the trajectory of the
system is finite-time convergent, where the convergence time is T ≤ V(x0)

1−η1 /c1(1− η1) (or
T ≤ [c2(1− η1)]

−1ln[1 + c−1
1 c2V(x0)

1−η1 ]).

3. Main Results

Figure 2 depicts the formation control scheme consisting of kinematic control and
dynamic control. At the kinematic control level, the desired linear velocity vid, heading
angle θid, and the path-parameter-updating law ωs are obtained such that control objectives
(3) and (4) can be achieved. At the dynamic level, an anti-disturbance controller based
on the estimated velocities and disturbances is developed to make vi → vid , θi → θid ,
ωi → ωid in a finite time.
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3.1. Observer Design

In this section, the design of an FFTESO is discussed to estimate the unmeasured
linear velocity, angular velocity, and total disturbances containing external disturbances
and uncertainties.

Dynamics (2) of the mobile robots can be rewritten as

.
vi = a1τv

i + σv
i , (5)

and { .
θi = wi.
ωi = a2τω

i + σω
i

(6)

where a1 = ri
2mi

, σv
i = 1

mi
( f v

i (vi, ωi) + dv
i ), and a2 = ri

2Ii Ri
, σω

i = 1
Ii
( f ω

i (vi, ωi) + dω
i ). To

facilitate the FTESO design, the following assumption is needed:

Assumption 3. There exist positive constants σ1 and σ2 such that ‖ .
σ

v
i ‖ ≤ σ1 and

‖ .
σ

ω
i ‖ ≤ σ2, respectively.

It is reasonable to assume that the derivative of the velocity-related variables σv
i and

σω
i are bounded due to the limited energy of the external disturbances and velocities of

practical mechanical systems.
Based on the abovementioned assumption, a finite-time observer is developed to

estimate the unmeasured angular velocities and disturbances.
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(1) The following FFTESO is developed to estimate the unmeasured angular velocity ωi
and the unknown signal σω

i based on the measured output information θi.
.
θ̂i = −bi1(sigα(θ̂i − θi) + (θ̂i − θi)) + ω̂i.
ω̂i = −bi2(sig2α−1(θ̂i − θi) + 2sigα(θ̂i − θi)) + σ̂ω

i + a2τω
i.

σ̂
ω

i = −bi3(sig2α−1(θ̂i − θi) + 2sigα(θ̂i − θi) + (θ̂i − θi))

(7)

where θ̂i, ω̂i, and σ̂ω
i are the estimates of θi, ωi, and σω

i ; the parameters bi1, bi2, bi3 > 0
are the control gains to be designed, and α is a positive constant satisfying 1

2 < α < 1.

Using (6) and (7), the estimation error system is given as follows:
.
θ̃i = −bi1(sigα(θ̃) + θ̃) + ω̃i.
ω̃i = −bi2(sig2α−1(θ̃) + 2sigα(θ̃) + θ̃) + σ̃ω

i.
σ̃

ω

i = −bi3(sig2α−1(θ̃) + 2sigα(θ̃) + θ̃)− .
σ

ω
i

(8)

where θ̃i = θ̂i − θi, ω̃i = ω̂i −ωi, and σ̃ω
i = σ̂ω

i − σω
i are the estimation errors.

Then, the stability analysis of the estimation error system (8) is presented in the
following theorem:

Theorem 1. Considering the estimation error system (8) and Assumption 3, the estimation errors
are finite-time uniformly ultimately bounded as stable if the observer gains bi1, bi2, bi3 and satisfies

bi1bi2 − bi3 > 0.

Proof. Choose the Lyapunov function candidate as follows:

V1 =
N

∑
i=1

εT
i Piεi, (9)

where εi = [sigα(θ̃i) + θ̃i, ω̃i, σ̃ω
i ]

T
, and Pi is a positive definite matrix.

Taking the time derivative εi, one has

.
εi =

α|θ̃i|α−1
.
θ̃i +

.
θ̃i.

ω̃i.
σ̃

ω

i


=

(α|θ̃i|α−1 + 1)(−bi1(sigα(θ̃i) + θ̃i) + ω̃i)

−bi2(sig2α−1(θ̃) + 2sigα(θ̃) + θ̃) + σ̃ω
i

−bi3(sig2α−1(θ̃i) + 2sigα(θ̃i) + θ̃i)−
.
σ

ω
i


=

α|θ̃i|α−1(−bi1(sigα(θ̃i) + θ̃i) + ω̃i)

−bi2(sig2α−1(θ̃i) + sigα(θ̃i))

−bi3(sig2α−1(θ̃i) + sigα(θ̃i))


+

−bi1(sigα(θ̃i) + θ̃i) + ω̃i
−bi2(sigα(θ̃i) + θ̃i) + σ̃ω

i
−bi3(sigα(θ̃i) + θ̃i)

+

 0
0
− .

σ
ω
i


= diag(|θ̃i|α−1, |θ̃i|α−1, |θ̃i|α−1)Ai1εi + Ai2εi + Fi

(10)

where

Ai1 =

−αbi1 α 0
−bi2 0 0
−bi3 0 0

,
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Ai2 =

−bi1 1 0
−bi2 0 1
−bi3 0 0


and Fi = [0, 0,− .

σ
ω
i ]

T
. The characteristic equation of matrix Ai1 is λ3 + αbi1λ2 + αbi2λ,

where λ is the eigenvalue of the above characteristic equation. The Hurwitz matrix of the
characteristic equation is αbi2 0 0

1 αbi1 αbi2
0 0 1

.

Based on the Routh–Hurwitz criterion, if the observer gains are selected to satisfy
bi1 > 0, bi2 > 0, bi3 > 0, the characteristic equation is Hurwitz, which implies that
matrix Ai1 is Hurwitz. Similarly, matrix Ai2 is Hurwitz if the observer gains are selected
to satisfy (1) bi1 > 0, bi2 > 0, bi3 > 0 and (2) bi1bi2 − bi3 > 0. Therefore, there exist
symmetric and positive-definite matrices Pi, Qi1 and Qi2 such that AT

i1Pi + Pi Ai1 = −Qi1
and AT

i2Pi + Pi Ai2 = −Qi2.
Taking the time derivative V1, one has

.
V1 =

N
∑

i=1
(

.
ε

T
i Piεi + εT

i Pi
.
εi)

=
N
∑

i=1
(εT

i diag(|θ̃i|α−1, |θ̃i|α−1, |θ̃i|α−1)(AT
i1Pi + Pi Ai1)εi

+εT
i (AT

i2Pi + Pi Ai2)εi + 2εT
i PiFi)

≤
N
∑

i=1
(−|θ̃i|α−1λmin(Qi1)‖εi‖2 − λmin(Qi2)‖εi‖2 + 2‖εi‖‖Pi‖‖Fi‖)

(11)

Considering
∣∣∣θ̃i

∣∣∣≤ ‖εi‖
1
α and Assumption 3, we have

.
V1 ≤ −

N
∑

i=1
λmin(Qi1)‖εi‖3− 1

α −
N
∑

i=1
λmin(Qi2)‖εi‖2 + 2

N
∑

i=1
σ2‖εi‖‖Pi‖

≤ −λ1
N
∑

i=1
‖εi‖3− 1

α − λ2
N
∑

i=1
‖εi‖2 + 2σ2‖Pi‖

N
∑

i=1
‖εi‖

≤ −µ1V
3
2−

1
2α

1 − µ2V1 + µ3V
1
2

1 ≤ −(µ1 − ι1)V
3
2−

1
2α

1

−(µ2 − ι2)V1 −V
1
2

1 [ι1V1− 1
2α

1 + ι2V
1
2

1 − µ3]

(12)

where λ1 = min
i=1,...,N

{λmin(Qi1)}, λ2 = min
i=1,...,N

{λmin(Qi2)}, λ3 = min
i=1,...,N

{λmin(Pi)},

λ4 = max
i=1,...,N

{λmax(Pi)}, µ1 = λ1

(λ4)
3
2−

1
2α

, µ2 = λ2
λ4

, µ3 = 2σ2λ4
λ3

.

From (12), we have
.

V1 ≤ −(µ1 − ι1)V
3
2−

1
2α

1 − (µ2 − ι2)V1 if ι1V1− 1
2α

1 + ι2V
1
2

1 − µ3 ≥ 0.
According to Lemma 1, the error vector εi converges to the following stable region in a
finite time:

Θ1 = {εi : ι1V1− 1
2α

1 + ι2V
1
2

1 < µ3} (13)

where ι1 ∈ (0, µ1) and ι2 ∈ (0, µ2).
The convergence time is

T1 ≤
2

(µ2 − ι2)(1− α)
ln(

(µ2 − ι2)V
1

2α−
1
2

1
µ1 − ι1

+ 1), (14)

which completes the proof. �



Appl. Sci. 2022, 12, 9281 8 of 18

1. The FFTESO for the estimation of unmeasured linear velocity is given as follows for
vi and the unknown signal σv

i :
.
q̂i = −γi1(sigα(q̂i − qi) + (q̂i − qi)) + v̂i + ω̂(−xi sin(θi) + yi cos(θi)).
v̂i = −γi2(sig2α−1(q̂i − qi) + 2sigα(q̂i − qi) + (q̂i − qi)) + σ̂v

i + a1τv
i.

σ̂
v
i = −γi3(sig2α−1(q̂i − qi) + 2sigα(q̂i − qi) + (q̂i − qi))

(15)

where qi = xi cos(θi) + yi sin(θi); q̂i, v̂i and σ̂v
i are the estimates of qi, vi and σv

i ,
respectively. The parameters γi1, γi2, γi3 > 0 are the gains to be designed, and α is a
positive constant satisfying 1

2 < α < 1.

The estimation error system is given as follows:
.
q̃i = −γi1(sigα(q̃i) + q̃i) + ṽi + ω̃i(−xi sin(θi) + yi cos(θi)).
ṽi = −γi2(sig2α−1(q̃) + 2sigα(q̃) + q̃) + σ̃v

i.
σ̃

v
i = −γi3(sig2α−1(q̃) + 2sigα(q̃) + q̃)− .

σ
v
i

(16)

where q̃i = q̂i − qi, ṽi = v̂i − vi, and σ̃v
i = σ̂v

i − σv
i are the estimation errors.

The stability analysis of the estimation error system (16) is presented in the
following theorem:

Theorem 2. Considering the estimation error system (16) and Assumption 3, the estimation errors
are finite-time uniformly ultimately bounded as stable if the observer gains γi1, γi2, γi3 and satisfies
γi1γi2 − γi3 > 0.

Proof. After time T1, the estimated angular velocity ω̂i converges to ωi, and the error
system (16) becomes

.
q̃i = −γi1(sigα(q̃i) + q̃i) + ṽi.
ṽi = −γi2(sig2α−1(q̃i) + 2sigα(q̃i) + q̃i) + σ̃v

i.
σ̃

v
i = −γi3(sig2α−1(q̃i) + 2sigα(q̃i) + q̃i)−

.
σ

v
i

(17)

which has the same form as the system in (8).
The following Lyapunov candidate function is chosen:

V2 =
N

∑
i=1

ζT
i Piζi, (18)

where ζi = [sigα(q̃i) + q̃i, ṽi, σ̃v
i ]

T , and Pi is a positive definite matrix.
Similar to the proof of Theorem 1, we have

.
V2 ≤ −l1V

3
2−

1
2α

2 − l2V2 + l3V
1
2

2

≤ −(l1 − ι1)V
3
2−

1
2α

2 − (l2 − ι2)V2 −V
1
2

2 [ι1V1− 1
2α

2 + ι2V
1
2

2 − l3].
(19)

From (19), we have
.

V2 ≤ −(l1 − ι1)V
3
2−

1
2α

2 − (l2 − ι2)V2 if ι1V1− 1
2α

2 + ι2V
1
2

2 − l3 ≥ 0.
According to Lemma 1, the error vector ζi converges to the following stable region:

Θ2 = {ζi : ι1V1− 1
2α

2 + ι2V
1
2

2 < l3} (20)

where ι1 ∈ (0, l1) and ι2 ∈ (0, l2).
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The convergence time is

T2 ≤ T1 +
2

(l2 − ι2)(1− α)
ln(

(l2 − ι2)V
1

2α−
1
2

2
l1 − ι1

+ 1), (21)

which completes the proof. �

Remark 1. Compared with the finite-time extended state observer proposed in [26], which only
contains the term sigα(·), the combination of the term sigα(θ̃i) (or sigα(q̃i)) and the linear
term θ̃i (or q̃i) in the proposed fast finite-time extended state observers (7) (or (15)) accelerate the
convergence speed. This is because when the estimation error satisfies θ̃i ≥ 1 and q̃i ≥ 1, θ̃i and
q̃i play the major role instead of the terms sigα(θ̃i) and sigα(q̃i), which accelerate the convergence
speed to the regions θ̃i < 1 and q̃i < 1. Once the estimation error converges to the regions θ̃i < 1
and q̃i < 1, the terms sigα(θ̃i) and sigα(q̃i) play the major role instead.

3.2. Kinematic Controller Design

In this section, the double closed-loop control strategy is applied for the kinematic
controller design. In the outer loop of multiple mobile robots, a velocity control law is
designed for the formation control. In the inner loop, an attitude control law is designed
for the heading angle tracking control.

The distributed formation error is defined as follows:

ep
i =

N

∑
j=1

aij(pi − pj − pijd) + ai0(pi − pr − pid), (22)

where pijd = pid − pjd, and ep
i is the distributed formation error expressed in the global

coordinate frame.
Differentiating ep

i yields

.
ep

i = si
.
pi −

N
∑

j=1
aij

.
pj − ai0

∂pr
∂ϕ

.
ϕ

= siϑid + siδie − siξie −
N
∑

j=1
aij

.
pj − ai0

∂pr
∂ϕ (vs −ωs),

(23)

where si =
N
∑

j=1
aij + ai0, δie = ϑ̂i − ϑid, ξie = ϑ̂i − ϑi, ϑid =

.
pid =

[
vid cos(θid)
vid sin(θid)

]
,

ϑ̂i = v̂i

[
cos(θ̂i)
sin(θ̂i)

]
, ϑi = vi

[
cos(θi)
sin(θi)

]
,

.
ϕ = vs −ωs.

The desired guidance vector is designed to stabilize error dynamics (23) as follows:

ϑid =

[
ϑidx
ϑidy

]
= vid

[
cos(θid)
sin(θid)

]
= 1

si
(−kp

i sigβ
p
i (ep

i ) +
N
∑

j=1
aijv̂j

[
cos(θ̂j)

sin(θ̂j)

]
+ ai0

∂pr
∂ϕ vs),

(24)

where kp
i is a positive control gain to be designed, β

p
i is a positive constant satisfying

0 < β
p
i < 1, and vid, θid are the desired linear velocity and heading angle of the mobile

robot, respectively.
According to (24), the desired linear velocity vid and the desired heading angle θid can

be designed as follows:
θid = atan2(ϑidy, ϑidx) + 2kπ, (25)

vid = ‖ϑid‖. (26)
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To make the derivative of the path parameter converge to a commanded speed, a
path-updating law is designed as follows:

.
ωs = −ρ1(sigβs

(ωs) + ρ2

N

∑
i=1

ai0(
∂pr

∂ϕ
)

T
ep

i ), (27)

where ρ1 and ρ2 are the positive control gains to be designed, and βs is a positive constant
satisfying 0 < βs < 1.

3.3. FFTESO-Based Dynamic Controller Design

To realize the tracking control of the estimated linear velocity v̂i to the desired linear
velocity vid, the tracking error ev

i is defined as follows:

ev
i = v̂i − vid. (28)

Differentiating ev
i yields

.
ev

i = −γi2(sig2α−1(q̃i) + 2sigα(q̃i) + q̃i) + σ̂v
i + a1τv

i −
.
vid. (29)

To stabilize the tracking error ev
i , the following control law is designed:

τv
i =

1
a1
(−kv

i sigβv
i (ev

i ) + γi2(sig2α−1(q̃i) + 2sigα(q̃i) + q̃i)− σ̂v
i +

.
vid), (30)

To realize the tracking control of the heading angle θ̂i to the desired heading angle θid
obtained in (25), the following angle tracking error is defined:

eθ
i = θ̂i − θid. (31)

Differentiating eθ
i yields

.
eθ

i = −bi1(sigα(θ̃i) + θ̃i) + ωid + eω
i −

.
θid, (32)

where eω
i = ω̂i −ωid is the tracking error of the angular velocity.

In order to stabilize the tracking error eθ
i , the following attitude control law is designed:

ωid = −kθ
i sigβθ

i (eθ
i ) + bi1(sigα(θ̃i) + θ̃i) +

.
θid, (33)

where kθ
i ∈ R is the control gain to be designed, and βθ

i is a positive constant satisfying
0 < βθ

i < 1.
where kv

i ∈ R is the control gain to be designed, and βv
i is a positive constant satisfying

0 < βv
i < 1.

To realize the tracking control of the estimated angular velocity ω̂i to the desired
angular velocity ωid, the tracking error eω

i is defined in (29). Differentiating eω
i yields

.
eω

i = −bi2(2sigα(θ̃i) + 2θ̃i) + σ̂ω
i + a2τω

i −
.

ωid. (34)

To stabilize the tracking error eω
i , the following control law is designed:

τω
i =

1
a2
(−kω

i sigβω
i (eω

i ) + bi2(sig2α−1(θ̃i) + 2sigα(θ̃i) + 2θ̃i)− σ̂ω
i +

.
ωid − eω

i ), (35)

where kω
i ∈ R is the control gain to be designed, and βω

i is a positive constant satisfying
0 < βω

i < 1.
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Remark 2. It can be observed from that (30), (33), and (35) that the time derivative
.
θid,

.
ωid, and

.
vid are required in the controller design. In engineering, the noise will be amplified if we take the
first derivative of signals θid, ωid, and vid directly. Therefore, the second-order finite-time tracking
differentiator proposed in [34] is employed to obtain the estimation of the first derivative of the
signals and suppress noise.

3.4. Stability Analysis

Substituting (24) into (23) and using (27), the kinematic error system is given as follows:
.
ep

i = −kp
i sigβ

p
i

(
ep

i

)
+ siδie − siξie +

N
∑

j=1
aijξ je + ai0

∂pr
∂ϕ ωs

ωs = −ρ1(sigβs
(ωs) + ρ2

N
∑

i=1
ai0(

∂pr
∂ϕ )

T
ep

i ).
(36)

Substituting (30), (33), and (35) into (29), (32), and (34), the dynamic error system is
given as follows: 

.
ev

i = −kv
i sigβv

i (ev
i )

.
eθ

i = −kθ
i sigβθ

i (eθ
i ) + eω

i.
eω

i = −kω
i sigβω

i (eω
i )− eθ

i

(37)

The stability analysis of the closed-loop systems (36) and (37) are given in the following
two theorems:

Theorem 3. Consider a network of nonholonomic mobile robots with dynamics (1) and (2) with the
kinematic control laws (25), (26), and the path-updating law (27). If Assumptions 1–3 are satisfied,
the subsystem (36) is finite-time uniformly ultimately bounded stable.

Proof. Choose the Lyapunov function candidate as follows:

V3 =
1
2

N

∑
i=1

(ep
i )

T
ep

i +
1

ρ1ρ2
ω2

s . (38)

Taking the time derivative of V3 yields

.
V3 =

N
∑

i=1
[(ep

i )
T
[−kp

i sigβ
p
i (ep

i ) + siδie − siξie +
N
∑

j=1
aijξ je − ai0

∂pr
∂ϕ ωs]

+ 1
ρ1ρ2

ωs[−ρ1(sigβs
(ωs) + ρ2

N
∑

i=1
ai0(

∂pr
∂ϕ )

T
ep

i )]

=
N
∑

i=1
[− kp

i (e
p
i )

T
sigβ

p
i (ep

i )]−
1
ρ2
|ωs|βs+1

+
N
∑

i=1
[(ep

i )
T
(siδie − siξie +

N
∑

j=1
aijξ je)].

(39)

Denote E1 = [(ep
1 )

T
, . . . , (ep

N)
T

, ωs]
T

. According to inequality
N
∑

i=1
(zi)

p ≥ N1−p(
N
∑

i=1
zi)

p

with the positive real numbers z1, . . . , zN > 0 and p > 1, we have

.
V3 ≤ −k∗1(2N + 1)−β∗1 [

N
∑

i=1
‖ep

i ‖1 + |ωs|]1+β∗1

+
N
∑

i=1
‖ep

i ‖(si‖δie‖+ si‖ξie‖+
N
∑

j=1
aij‖ξ je‖)

≤ −κ1‖E1‖β∗1+1 + ‖Ye‖‖E1‖

(40)
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where ‖Ye‖ = max
1≤i≤N

{si‖δie‖+ si‖ξie‖+
N
∑
j=1

aij‖ξje‖}, k∗1 = min
i=1,...,N

{kp
i , 1

ρ2
}, β∗1 = min

i=1,...,N
{βp

i , βs},

and κ1 = k∗1(2N + 1)−β∗1 . The errors ‖ξie‖, and ‖ξ je‖ are bounded since the estimation
errors are finite-time uniformly ultimately bounded. We assume that ‖δie‖ is bounded,
which will be proved in the next theorem. Then, there exists a positive constant Y∗ such
that ‖Ye‖ ≤ Y∗. One has

.
V3 ≤ −(κ1 −

‖Y∗‖
‖E1‖β∗1

)‖E1‖β∗1+1 (41)

According to Lemma 1, ‖E1‖ ≤ ‖Y
∗‖

κ1
can be reached in a finite time. The convergence

time is

T4 ≤
V

1−β∗1
2

4
κ1(1− β∗1)

. (42)

�

Theorem 4. Consider a network of nonholonomic mobile robots with dynamics (1) and (2) with
the dynamic control laws (30), (33), and (35). If Assumptions 1–3 are satisfied, subsystem (37) is
finite-time stable.

Proof. Choose the Lyapunov function candidate as follows:

V4 =
1
2

N

∑
i=1

[(ev
i )

2 + (eθ
i )

2
+ (eω

i )
2] (43)

Taking the time derivative of V4 yields

.
V4 =

N
∑

i=1
[ev

i (−kv
i sigβv

i (ev
i )) + eθ

i [−kθ
i sigβθ

i (eθ
i ) + eω

i ] + eω
i [−kω

i sigβω
i (eω

i )− eθ
i ]]

=
N
∑

i=1
[− kv

i |ev
i |

βv
i +1 − kθ

i |eθ
i |

βθ
i +1 − kω

i |eω
i |

βω
i +1]

(44)

Denote Ei2 = [ev
i , eθ

i , eω
i ]

T . According to inequality
N
∑

i=1
(zi)

p ≥ N1−p(
N
∑

i=1
zi)

p

with the

positive real numbers z1, . . . , zN > 0 and p > 1, we have

.
V4 ≤ −k∗2(3N)−β∗2 [

N
∑

i=1
(|ev

i |+ |eθ
i |+ |eω

i |)]1+β∗2

≤ −κ2
N
∑

i=1
‖Ei2‖β∗2+1

(45)

where k∗2 = min
i=1,...,N

{kv
i , kθ

i , kω
i }, β∗2 = min

i=1,...,N
{βv

i , βθ
i , βω

i }, and κ2 = k∗2(3N)−β∗2 . From (45),

we have
.

V4 ≤ −κ4V
β∗2+1

2
4 . (46)

The convergence time is

T5 ≤
V

1−β∗2
2

4
κ2(1− β∗2)

, (47)

According to Lemma 1, subsystem (37) is finite-time stable, implying that lim
t→T4

v̂i = vid,

lim
t→T4

θ̂i = θid, lim
t→T4

ω̂i = ωid. Hence, the tracking error ‖δie‖ is bounded. �
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In Theorems 1–4, the stability of the observer subsystem, the kinematic subsystem,
and the dynamic subsystem is analyzed. Through the following theorem, the stability of
the closed-loop cascade system is synthesized:

Theorem 5. Consider a network of nonholonomic mobile robots with dynamics (1) and (2) with
FFTESOs (7) and (15), the kinematic control laws (25), (26), the path-updating law (27), and
the dynamic control laws (30), (33), and (35). If Assumptions 1–3 are satisfied, the distributed
formation control can be achieved, and the errors in the closed-loop systems (36) and (37) are
finite-time uniformly ultimately bounded stable.

Proof. According to Theorems 3 and 4, the system cascaded by subsystems (36) and (37)
is finite-time uniformly ultimately bounded stable. From Theorems 3, the error vector
satisfies ‖E1‖ ≤ ‖Y

∗‖
κ1

, which means that there exist positive constants ε1 and ε2 such that
(3) and (4) are satisfied, which completes the proof. �

Remark 3. A single-path-guided formation control scheme is proposed in this article, which makes
multiple mobile robots keep the desired formation while tracking the parameterized path with a
specified speed. Compared with the results in [7–13], where each mobile robot was assigned a desired
parameterized path, the single-path-guided formation control scheme proposed in this article saves
communication and computing resources.

4. Simulation Results

In this section, the results of the conducted simulation studies are presented to
demonstrate the effectiveness of the proposed formation control protocols. MATLAB
R2014a/Simulink software was used for simulation purposes, and the ode45 (Dormand-
Prince) solver was used for the differential calculations with a relative tolerance value of
0.001. The considered system consisted of four mobile robots and a virtual leader moving
along a parameterized path. Only one robot was assumed to have the ability to access the
information of the desired path. The information exchange among the mobile robots was
directed, and the communication topology between the mobile robots is shown in Figure 3.
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The parameters of the mobile robots used in the simulations are the same as those
in [35] and presented in Table 1. The initial conditions of the mobile robots were cho-
sen as [x1(0), y1(0), θ1(0)]

T = [−1.3, 10.5, 0.2]T, [x2(0), y2(0), θ2(0)]
T = [−1.4, 10.5, 0.2]T,

[x3(0), y3(0), θ3(0)]
T = [−1, 9, 0.2]T, [x4(0), y4(0), θ4(0)]

T = [−0.1, 5, 0.2]T. The desired
path was generated by pr(ϕ) = [10 sin(0.5ϕ), 10 cos(0.5ϕ)]T, with the commanded speed
vs = 0.5. The desired geometry position vectors were chosen as p1d = [0, 0]T, p2d = [−3, 0]T,
p3d = [0,−3]T, and p4d = [−3,−3]T. The extended state observer gains were set as bi1 = 90,
bi2 = 2700, bi3 = 27000, γi1 = 90, γi2 = 2700, γi3 = 27000, and α = 0.95. The control gains
of the path-updating law were set as ρ1 = ρ3 = 0.3 and βs = 0.5. The control gains were
set as kp

i = 15, kv
i = 15, kθ

i = 5, kω
i = 10, β

p
i = 0.95, βv

i = 0.95, βθ
i = 0.95, and βω

i = 0.95. To
demonstrate the effectiveness of the proposed FFTESO-based formation control protocols,
the bounded external disturbances were given as follows:

d1(t) =
[

4 cos(t)
2 sin(t)

]
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d2(t) =
[

2 + 4 sin(2t)
2 cos(2t)

]
d3(t) =

[
−2 + 3 sin(t)
−1 + 2 cos(3t)

]
d4(t) =

[
2 + 3 sin(4t)
1 + 2 cos(4t)

]
Table 1. Parameters of the mobile robots.

Parameter The ith Mobile Robot Unit

mi 0.365 Kg m2

Ii 0.3941 Kg m2

ri 0.15 m
Ri 0.75 m

The comparisons between the different observers are shown in Figure 4. For clarity,
we only show the comparison results of one mobile robot. The other mobile robots resulted
in the same conclusions, because the applied observers were distributed. By employing the
proposed FFTESO (7) and (15), the estimation errors of the unmeasured velocities vi and ωi
and the disturbance signals σv

i and σω
i are shown in Figure 4. To demonstrate the superiority

of the proposed FFTESO, the comparisons with the linear extended state observer (LESO)
proposed in [29] and the finite-time extended state observer (FTESO) proposed in [26] were
made. The observer gains and initial conditions of the linear extended state observer in [29]
and the finite-time extended state observer in [26] are the same as those in this article. It
can be observed from Figure 4 that the settling time and estimation error of the proposed
FFTESO is less than those under the methods proposed in [29] and [26]. The following
performance indices were used to evaluate the performance of the proposed FFTESO: the
integral of the absolute value of the error (IAE), the integral of the square error (ISE), the
integral of the time multiplied by the absolute value of the error (ITAE), and the integral of
the time multiplied by the square error (ITSE). The comparisons of the performance indices
of the scheme are shown in Tables 2–5. Small performance index values represent good
performance. It can be observed that the performance of the proposed FFTESO is better
than that of the FFESO and LESO.
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Table 2. Comparison of performance indices of the estimated linear velocity.

Controller
Actual Value Performance Indices

Estimation IAE ISE ITAE ITSE

LESO ṽ1 = v̂1 − v1 0.939 0.824 1.915 0.349
FTESO ṽ1 = v̂1 − v1 0.759 0.648 1.156 0.254

Proposed FFTESO ṽ1 = v̂1 − v1 0.244 0.063 0.596 0.020

Table 3. Comparison of performance indices of the estimated angular velocity.

Controller

Actual Value Performance Indices

Estimation IAE
(10−2)

ISE
(10− 3) ITAE ITSE

(10−3)

LESO ω̃1 = ω̂1 −ω1 7.971 5.613 0.180 2.210
FTESO ω̃1 = ω̂1 −ω1 6.292 4.322 0.106 1.523

Proposed FFTESO ω̃1 = ω̂1 −ω1 2.312 0.553 0.058 0.168

Table 4. Comparison of performance indices of the estimated signals σv
1 .

Controller
Actual Value Performance Indices

Estimation IAE ISE ITAE ITSE

LESO σ̃v
1 = σ̂v

1 − σv
1 6.807 52.38 9.494 22.49

FTESO σ̃v
1 = σ̂v

1 − σv
1 6.993 61.49 6.899 25.369

Proposed FFTESO σ̃v
1 = σ̂v

1 − σv
1 2.255 4.882 5.824 1.893

Table 5. Comparison of performance indices of the estimated signals σω
1 .

Controller
Actual Value Performance Indices

Estimation IAE ISE ITAE ITSE

LESO σ̃ω
1 = σ̂ω

1 − σω
1 2.439 5.363 5.376 1.917

FTESO σ̃ω
1 = σ̂ω

1 − σω
1 1.979 4.366 3.461 1.394

Proposed FFTESO σ̃ω
1 = σ̂ω

1 − σω
1 1.398 2.044 3.183 0.592

Based on the proposed FFTESO, the output-feedback-based formation control proto-
cols were employed to achieve the maneuvering of the path-guided formation. Simulation
results are shown in Figures 5–7. Figure 5a shows that the mobile robots were guided
to follow the path with the commanded speed and reached the desired geometry shape
under the proposed control protocol, where the asterisk indicates the initial positions of
the mobile robots, and the triangle indicates the positions of the mobile robots at t = 5 s
and t = 15 s, respectively. Figure 5b shows the evolution of the path parameter. It can be
observed that the path-parameter-updating speed converged to a small neighborhood of
the commanded speed. Figure 6 displays the curves of the mobile robots’ states. It can be
observed from Figure 6 that the formation position consensus errors of the four mobile
robots, as well as the mobile robots’ heading angle, linear velocity, and angular velocity,
reached convergence in a finite time. Figure 7 shows the control inputs of the four mobile
robots. It is observed that the proposed control protocol drove the multiple mobile robots
to keep the desired formation and follow the desired path with the assigned speed. Thus,
we can conclude that the proposed control protocol is effective and efficient.
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Figure 5. The trajectories of the NMRs (a) and evolution of the path parameter (b).
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5. Conclusions

In this paper, we investigated the output-feedback-based finite-time path-guided
formation control of nonholonomic mobile robots. A finite-time extended state observer
was designed to estimate the velocities and disturbances. Then, the formation control
scheme consisting of kinematic control and dynamic control was proposed. For the kine-
matic control, a path-parameter-updating law was developed for a virtual leader, and the
desired linear velocity and heading angle were developed for the mobile robots. For the
dynamic control algorithm, an anti-disturbance control protocol was developed based on
the estimated velocities and disturbances. The stability analysis of the closed-loop system
was given, and simulation studies were conducted to demonstrate the effectiveness of the
proposed control protocols.



Appl. Sci. 2022, 12, 9281 17 of 18

Author Contributions: Conceptualization, Y.F., X.L. and S.L.; methodology, Y.F., X.L. and S.L.;
software, Y.F.; validation, Y.F. and S.L.; formal analysis, Y.F., X.L. and S.L.; investigation, Y.F.; resources,
Y.F.; data curation, Y.F. and S.L.; writing—original draft preparation, Y.F.; writing—review and
editing, X.L. and S.L.; visualization, X.L., Z.J. and S.L.; supervision, X.L., Z.J., S.L. and B.G.; project
administration, X.L. and B.G.; funding acquisition, X.L. and B.G. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded in part by the Natural Science Foundation of Hebei Province
under Grant F2020202103, and the Scientific Research Program for Young Outstanding Talent of
Higher Education of Hebei Province under Grant BJ2021045.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, X.; Wen, C.; Chen, C. Adaptive Formation Control of Networked Robotic Systems with Bearing-Only Measurements. IEEE

Trans. Cybern. 2020, 51, 199–209. [CrossRef] [PubMed]
2. Li, S.; Zhang, J.; Li, X.; Wang, F.; Luo, X.; Guan, X. Formation Control of Heterogeneous Discrete-Time Nonlinear Multi-Agent

Systems with Uncertainties. IEEE Trans. Ind. Electron. 2017, 64, 4730–4740. [CrossRef]
3. Wang, J.; Luo, X.; Li, X.; Guan, X. Specified-time bearing-based formation control of multi-agent systems via a dynamic gain

approach. J. Frankl. Inst. 2018, 355, 8619–8641. [CrossRef]
4. Ren, Y.; Sosnowski, S.; Hirche, S. Fully Distributed Cooperation for Networked Uncertain Mobile Manipulators. IEEE Trans.

Robot. 2020, 36, 984–1003. [CrossRef]
5. Zhao, W.; Meng, Q.; Chung, P.W.H. A heuristic distributed task allocation method for multivehicle multitask problems and its

application to search and rescue scenario. IEEE Trans. Cybern. 2016, 46, 902–915. [CrossRef]
6. Scherer, J.; Rinner, B. Multi-Robot Persistent Surveillance with Connectivity Constraints. IEEE Access 2020, 8, 15093–15109.

[CrossRef]
7. Kanjanawanishkul, K. Coordinated Path Following for Mobile Robots Using a Virtual Structure Strategy with Model Predictive

Control. Automatika 2014, 55, 287–298. [CrossRef]
8. Ghommam, J.; Mehrjerdi, H.; Saad, M.; Mnif, F. Formation path following control of unicycle-type mobile robots. Robot. Auton.

Syst. 2010, 58, 727–736. [CrossRef]
9. Zhang, Q.; Lapierre, L.; Xiang, X. Distributed Control of Coordinated Path Tracking for Networked Nonholonomic Mobile

Vehicles. IEEE Trans. Ind. Inform. 2012, 9, 472–484. [CrossRef]
10. Chen, X.; Huang, F.; Zhang, Y.; Chen, Z.; Liu, S.; Nie, Y.; Tang, J.; Zhu, S. A Novel Virtual-Structure Formation Control Design for

Mobile Robots with Obstacle Avoidance. Appl. Sci. 2020, 10, 5807. [CrossRef]
11. Zhang, Y.; Wang, M. Coordinated path following control of multiple nonholonomic mobile robots with prescribed per-formance.

In Proceedings of the 38th Chinese Control Conference, Guangzhou, China, 27–30 July 2019; pp. 5623–5628.
12. Cao, K.; Jiang, B.; Yue, D. Cooperative path following control of multiple nonholonomic mobile robots. ISA Trans. 2017, 71,

161–169. [CrossRef] [PubMed]
13. Wang, W.; Huang, J.; Wen, C. Prescribed performance bound-based adaptive path-following control of uncertain nonholonomic

mobile robots. Int. J. Adapt. Control Signal Process. 2017, 31, 805–822. [CrossRef]
14. Zhao, Y.; Zhang, Y.; Lee, J. Lyapunov and Sliding Mode Based Leader-follower Formation Control for Multiple Mobile Robots

with an Augmented Distance-angle Strategy. Int. J. Control Autom. Syst. 2019, 17, 1314–1321. [CrossRef]
15. Lin, S.; Jia, R.; Yue, M.; Xu, Y. On Composite Leader–follower Formation Control for Wheeled Mobile Robots with Adaptive

Disturbance Rejection. Appl. Artif. Intell. 2019, 33, 1306–1326. [CrossRef]
16. Zhang, C.; Qin, W.; Fan, M.-C.; Wang, T.; Shen, M.-Q. A Q-Learning-Based Parameters Adaptive Algorithm for Formation

Tracking Control of Multi-Mobile Robot Systems. Complexity 2022, 2022, 5093277. [CrossRef]
17. Xiao, W.; Zhou, Q.; Liu, Y.; Li, H.; Lu, R. Distributed Reinforcement Learning Containment Control for Multiple Nonholonomic

Mobile Robots. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 69, 896–907. [CrossRef]
18. Yoo, S.J.; Park, B.S. Connectivity preservation and collision avoidance in networked nonholonomic multi-robot formation systems:

Unified error transformation strategy. Automatica 2019, 103, 274–281. [CrossRef]
19. Xu, Y.; Wang, C.; Cai, X.; Li, Y.; Xu, L. Output-feedback formation tracking control of networked nonholonomic multi-robots with

connectivity preservation and collision avoidance. Neurocomputing 2020, 414, 267–277. [CrossRef]
20. Li, Y.; Zhu, L.; Guo, Y. Observer-based multivariable fixed-time formation control of mobile robots. J. Syst. Eng. Electron. 2020, 31,

403–414. [CrossRef]
21. Hebertt, S.; Alberto, L.; Mario, R.; William, Z. Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach,

1st ed.; Butterworth-Heinemann: Oxford, UK, 2017.
22. Guo, B.; Zhao, Z. Active Disturbance Rejection Control for Nonlinear Systems: An Introduction, 1st ed.; John Wiley & Sons: Hoboken,

NJ, USA, 2016; pp. 93–153.
23. Huang, Y.; Su, J. Visual Servoing of Nonholonomic Mobile Robots: A Review and a Novel Perspective. IEEE Access 2019, 7,

134968–134977. [CrossRef]

http://doi.org/10.1109/TCYB.2020.2978981
http://www.ncbi.nlm.nih.gov/pubmed/32217493
http://doi.org/10.1109/TIE.2017.2674590
http://doi.org/10.1016/j.jfranklin.2018.09.008
http://doi.org/10.1109/TRO.2020.2971416
http://doi.org/10.1109/TCYB.2015.2418052
http://doi.org/10.1109/ACCESS.2020.2967650
http://doi.org/10.7305/automatika.2014.12.460
http://doi.org/10.1016/j.robot.2009.10.007
http://doi.org/10.1109/TII.2012.2219541
http://doi.org/10.3390/app10175807
http://doi.org/10.1016/j.isatra.2017.06.028
http://www.ncbi.nlm.nih.gov/pubmed/28709652
http://doi.org/10.1002/acs.2732
http://doi.org/10.1007/s12555-018-0194-7
http://doi.org/10.1080/08839514.2019.1685182
http://doi.org/10.1155/2022/5093277
http://doi.org/10.1109/TCSI.2021.3121809
http://doi.org/10.1016/j.automatica.2019.02.019
http://doi.org/10.1016/j.neucom.2020.07.023
http://doi.org/10.23919/JSEE.2020.000017
http://doi.org/10.1109/ACCESS.2019.2941962


Appl. Sci. 2022, 12, 9281 18 of 18

24. Liu, A.; Zhang, W.-A.; Yu, L.; Yan, H.; Zhang, R. Formation Control of Multiple Mobile Robots Incorporating an Extended State
Observer and Distributed Model Predictive Approach. IEEE Trans. Syst. Man, Cybern. Syst. 2020, 50, 4587–4597. [CrossRef]

25. Chang, S.; Wang, Y.; Zuo, Z.; Yang, H. Fixed-Time Formation Control for Wheeled Mobile Robots with Prescribed Performance.
IEEE Trans. Control Syst. Technol. 2021, 30, 844–851. [CrossRef]

26. Wang, N.; Zhu, Z.; Qin, H.; Deng, Z.; Sun, Y. Finite-time extended state observer-based exact tracking control of an unmanned
surface vehicle. Int. J. Robust Nonlinear Control 2020, 31, 1704–1719. [CrossRef]

27. Ren, C.; Li, X.; Yang, X.; Ma, S. Extended State Observer-Based Sliding Mode Control of an Omnidirectional Mobile Robot with
Friction Compensation. IEEE Trans. Ind. Electron. 2019, 66, 9480–9489. [CrossRef]

28. Li, P.; Yang, H.; Li, H.; Liang, S. Nonlinear ESO-based tracking control for warehouse mobile robots with detachable loads. Robot.
Auton. Syst. 2021, 149, 103965. [CrossRef]

29. Ren, C.; Ding, Y.; Ma, S. A structure-improved extended state observer based control with application to an omnidirectional
mobile robot. ISA Trans. 2020, 101, 335–345. [CrossRef] [PubMed]

30. Qin, B.; Yan, H.; Zhang, H.; Wang, Y.; Yang, S.X. Enhanced Reduced-Order Extended State Observer for Motion Control of
Differential Driven Mobile Robot. IEEE Trans. Cybern. 2021, 1–12. [CrossRef]

31. Zhu, Y.; Huang, Y.; Su, J.; Pu, C. Active disturbance rejection control for wheeled mobile robots with parametric uncertainties. In
Proceedings of the 21st IFAC World Congress on Automatic Control—Meeting Societal Challenges, Berlin, Germany, 11–17 July
2020; pp. 1355–1360.

32. Lu, Q.; Chen, J.; Wang, Q.; Zhang, D.; Sun, M.; Su, C. Practical fixed-time trajectory tracking control of constrained wheeled
mobile robots with kinematic disturbances. ISA Trans. 2022. [CrossRef]

33. Hu, Q.; Jiang, B. Continuous Finite-Time Attitude Control for Rigid Spacecraft Based on Angular Velocity Observer. IEEE Trans.
Aerosp. Electron. Syst. 2018, 54, 1082–1092. [CrossRef]

34. Aguiar, A.P.; Hespanha, J.P. Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles with Parametric
Modeling Uncertainty. IEEE Trans. Autom. Control 2017, 52, 1362–1379. [CrossRef]

35. Fukao, T.; Nakagawa, H.; Adachi, N. Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 2000,
16, 609–615. [CrossRef]

http://doi.org/10.1109/TSMC.2018.2855444
http://doi.org/10.1109/TCST.2021.3069831
http://doi.org/10.1002/rnc.5369
http://doi.org/10.1109/TIE.2019.2892678
http://doi.org/10.1016/j.robot.2021.103965
http://doi.org/10.1016/j.isatra.2020.01.024
http://www.ncbi.nlm.nih.gov/pubmed/31983417
http://doi.org/10.1109/TCYB.2021.3123563
http://doi.org/10.1016/j.isatra.2021.12.039
http://doi.org/10.1109/TAES.2017.2773340
http://doi.org/10.1109/TAC.2007.902731
http://doi.org/10.1109/70.880812

	Introduction 
	Preliminaries 
	Graph Theory 
	Problem Formulation 

	Main Results 
	Observer Design 
	Kinematic Controller Design 
	FFTESO-Based Dynamic Controller Design 
	Stability Analysis 

	Simulation Results 
	Conclusions 
	References

