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Abstract: Traditional Micro-Aerial Vehicles (MAVs) are usually equipped with a low-cost Inertial
Measurement Unit (IMU) and monocular cameras, how to achieve high precision and high reliability
navigation under the framework of low computational complexity is the main problem for MAVs.
To this end, a novel semi-direct point-line visual inertial odometry (SDPL-VIO) has been proposed
for MAVs. In the front-end, point and line features are introduced to enhance image constraints and
increase environmental adaptability. At the same time, the semi-direct method combined with IMU
pre-integration is used to complete motion estimation. This hybrid strategy combines the accuracy
and loop closure detection performance of the feature-based method with the rapidity of the direct
method, and tracks keyframes and non-keyframes, respectively. In the back-end, the sliding window
mechanism is adopted to limit the computation, while the improved marginalization method is
used to decompose the high-dimensional matrix corresponding to the cost function to reduce the
computational complexity in the optimization process. The comparison results in the EuRoC datasets
demonstrate that SDPL-VIO performs better than the other state-of-the-art visual inertial odometry
(VIO) methods, especially in terms of accuracy and real-time performance.

Keywords: point-line feature; semi-direct; tracking; visual inertial odometry; marginalization

1. Introduction

A navigation system is one of the main applications for MAVs [1], mainly providing
accurate and reliable attitude, speed and position information, and is indispensable in
the process of MAVs flight and control. Due to limitations in size and payload capacity,
MAVs are typically equipped with low-cost sensors and lack the hardware required to run
advanced integrated navigation algorithms. Designing a low-cost integrated navigation
platform for MAVs and building a more efficient system on this basis to ensure accuracy
and real-time performance is the basic premise for MAVs to perform tasks and even survive.

Visual Inertial Navigation (VIN) is a hot topic in the field of MAVs research [2,3].
Cameras can provide abundant visual information, and inertial sensors (gyroscopes and
accelerometers) can provide short-term and high-precision pose estimation. Their low
cost, low power, small size, and complementarity make a combination of them particularly
suitable for MAVs.

Based on the functional structure, VINs can be classified into the front end and the
back end. The front end completes the calculation of visual and inertial motion states,
and the back end realizes data fusion and outputs the optimal state estimation.

Front-end image processing methods can be divided into the following: (1) Feature-
based methods [4–12], which extract representative features (such as point or line features)
from images, and then match them according to the description of features. OKVIS [5]
finds features using the Harris corner detector, and matches them using Binary robust
invariant scalable keypoints (BRISK) descriptors. ORB-SLAM2 [7] performs feature ex-
traction, description and matching, and then performs motion estimation using Oriented
FAST and Rotated BRIEF (ORB) features. PL-SLAM [8] integrates the line representation
within the SLAM, and improves the performance of ORB-SLAM2, especially in poorly
textured environments. However, feature extraction and the calculation of descriptors are
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very time-consuming. (2) Direct methods [13,14], which estimate the motion based on the
pixel gray difference between two images. DSO [14] minimizes the photometric error to
estimate the camera motion, which greatly reduces the amount of computation compared
with feature-based methods. However, it has high requirements regarding image quality
and is not suitable for large inter-frame motion. (3) Semi-direct methods [15–22], which
combine the above two methods and have received increasing attention from researchers
in recent years. SVO [15] first uses the image intensity to estimate the pose, and then uses
the position of feature points to optimize the pose. However, there are still shortcomings in
motion-tracking accuracy and robustness. PL-SVO [16] extends line segments to the SVO al-
gorithm, and has stronger robustness in poorly textured environments. SVL [18] combines
ORB-SLAM and SVO, in which the former is used in keyframes and the latter is used in
non-keyframes. PCSD-VIO [22] refers to the frame-tracking strategy of SVL, but integrates
online photometric calibration, and the fusion method with IMU is slightly different.

Back-end data fusion methods can be divided into the following: (1) Filtering-based
methods [4,6], which use inertial observation for state propagation and visual observation
for state update. As the number of features in the state vector increases, the compu-
tational complexity rapidly increases, so it is not suitable for a large range of scenes.
(2) Optimization-based methods [5,9–11,23–28], which are usually based on keyframes and
minimize the overall errors by establishing the connection relation between frames and con-
stantly adjusting the pose of frames. VINS-Mono [10] is a tightly coupled algorithm based
on nonlinear optimization, with initialization, loop detection and relocalization modules.
PL-VIO [11] adds line features to the basic frame of VINS-Mono, and has achieved good
results. However, it lacks a loop-detection module, and uses a large amount of computation
in nonlinear optimization.

The above work has both advantages and disadvantages, such as the adoption of
time-consuming feature extraction, sensitivity to poorly textured environments and large
illumination changes, ability to work without inertial sensors, and the large amount of
computation needed in nonlinear optimization. Therefore, a novel, semi-direct, point-
line, visual inertial odometry for MAVs has been proposed. The main contributions are
as follows:

Firstly, motion estimation is accomplished using the semi-direct method, which re-
alizes the mutual advantage compensation of the feature-based method and the direct
method, that is, the former accurately tracks keyframes, and extracts point and line features
for back-end nonlinear optimization and loop-closure detection, while the latter rapidly
tracks non-keyframes through direct image alignment.

Secondly, the sliding window mechanism is adopted to effectively combine visual and
inertial information, and an improved marginalization method is used to decompose the
high-dimension matrix corresponding to the cost function, which binds the computational
complexity and improves the computational efficiency.

Finally, experiments are conducted to compare SDPL-VIO and the other state-of-the-
art VIO methods. The results of the European Robotics Challenge (EuRoC) datasets show
that SDPL-VIO can consider both speed and accuracy.

The rest of this paper is organized as follows. In Section 2, the mathematical for-
mulation is given. Next, the proposed system implementation is described in Section 3.
The experimental results and analysis are shown in Section 4. Finally, a conclusion is given
in Section 5.

2. Mathematical Formulation
2.1. Notations

We define {w}, {b}, {c} as a world coordinate, body coordinate and camera coordinate,
respectively. Rc

w and pc
w are the rotation and translation from the world coordinate to the

camera coordinate. Rb
c and pb

c represent the extrinsic parameters, which can be calibrated

in advance. T =

[
R p
0 1

]
is the 4 × 4 homogeneous transformation. q is the quaternion
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representation of R, ⊗ represents the multiplication between two quaternions. b∗c×
represents the skew symmetric matrix corresponding to the vector.

2.2. IMU Pre-Integration

The raw IMU measurements (angular velocity ω̂ and acceleration â) are affected by
gravity gw, bias b and noise n [10]:

ω̂ = ω + bω + nω

â = a + ba + Rb
wgw + na

(1)

where, ω and a are the real IMU measurements.
The IMU state propagation from the consecutive frame bk to bk+1 can be given by:

pw
bk+1

= pw
bk
+ vw

bk
∆tk − 1

2 gw∆tk
2 + Rw

bk
α

bk
bk+1

vw
bk+1

= vw
bk
− gw∆tk + Rw

bk
β

bk
bk+1

qw
bk+1

= qw
bk
⊗ γ

bk
bk+1

(2)

where,
α

bk
bk+1

=
∫∫

t∈[tk ,tk+1]
Rbk

t (ât − bat)dt2

β
bk
bk+1

=
∫

t∈[tk ,tk+1]
Rbk

t (ât − bat)dt

γ
bk
bk+1

=
∫

t∈[tk ,tk+1]
1
2 Ω(ω̂t − bωt)γ

bk
t dt

(3)

where α
bk
bk+1

, β
bk
bk+1

and γ
bk
bk+1

are the pre-integrated measurements, and

Ω(ω) =

[
−bωc× ω

−ωT 0

]
.

2.3. Point Feature Projection

For a pin-hole camera model, the projection πc(∗) from the camera coordinate
Pc =

[
xc yc zc

]T ∈ R3 to the camera image plane p =
[

u v 1
]T can be defined as:

p =

 u
v
1

 = πc(Pc) =
1
zc

KPc =
1
zc

 fx 0 cx
0 fy cy
0 0 1

 xc
yc
zc

 (4)

where ( fx, fy, cx, cy) represent camera intrinsic parameters.

2.4. Line Feature Projection

The Plücker coordinates [29] is used for line parameterization. A 3D line L representing
the Plücker coordinates is constructed as L =

[
nT dT ]T , where n ∈ R3 represents the

normal vector of the plane determined by the line and the coordinate origin, and d ∈ R3

represents the line direction vector. According to the description in [30], the transformation
of a 3D line L from the world coordinate Lw to the camera coordinate Lc can be defined as:

Lc =

[
nc
dc

]
=

[
Rc

w bpc
wc×Rc

w
0 Rc

w

]
Lw (5)

and the projection from the camera coordinate to the camera image plane can be defined as:

l =

 l1
l2
l3

 =

 fy 0 0
0 fx 0

− fycx − fxcy fx fy

nc = Knc (6)

where K represents the projection matrix of line Lc.
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3. Proposed System Implementation
3.1. System Framework

The proposed system mainly includes two parts: front-end image tracking (measure-
ments preprocessing and initialization), back-end nonlinear optimization, marginalization
and loop closure detection, as shown in Figure 1. In the front end, the system extracts point
and line features from the image, and carries out a motion estimation of adjacent image
frames combined with IMU pre-integration. By aligning visual and inertial information,
visual inertial joint initialization is performed to restore metric scale, and estimate inertial
bias and gravity vector. Then, after judging whether the current frame is a keyframe accord-
ing to the selection criteria, the system uses the semi-direct method to track keyframes and
non-keyframes, respectively. In the back end, the system adopts a cost function to obtain
the optimal state estimation by minimizing prior information, IMU residuals and visual
re-projection errors, and uses improved marginalization to decompose the high-dimension
matrix step-by-step, corresponding to the cost function, which optimizes the solution and
improves the computational efficiency. The key processes are described in detail in the
following sections.

Figure 1. The system framework.

3.2. Front-End Tracking Based on Semi-Direct Methods
3.2.1. Visual-Inertial Initializaiton

We conducted measurement preprocessing, and completed the visual-inertial ini-
tialization by aligning the results of vision-only Structure from Motion (SFM) and IMU
pre-integration. The system first performed this process to restore the metric scale and es-
timate the inertial bias and the gravity vector. The specific initialization process can be
referred to in [11].
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3.2.2. Keyframe Selection

After initialization, the system determines whether the current frame is a keyframe
based on scene changes and IMU pre-integration. The overall output accuracy of the system
depends largely on the quality of the keyframes that were inserted. The selection criteria
for keyframes are as follows: First, the average parallax of tracked points between the
current frame and the latest keyframe is beyond a certain threshold. Second, the number of
tracked points goes below a certain threshold. Third, the translation calculated by IMU
pre-integration exceeds a preset threshold after the latest keyframe is inserted. If any of the
above criteria are met, the current frame is considered a keyframe.

3.2.3. Semi-Direct Method for Tracking

(a) For keyframes, we detected point features using the Accelerated Segment Test
(FAST) [31] algorithm and tracked adjacent frames using an optical flow based on Kanade-
Lucas-Tomasi (KLT) [32]. Then, we eliminated outliers by Random Sample Consensus
(RANSAC) combined with the essential matrix model. Meanwhile we detected line seg-
ments using the Line Segment Detector (LSD) [33] algorithm, and matched them using Line
Band Descriptors (LBD) [34] between the current frame and the reference frame. In addition,
we also removed outliers for line-matching using geometric constraints.

(b) For non-keyframes, as shown in Figure 2, we first extracted the key points p
from the last keyframe In in the sliding window, and used transformation to construct the
matching 3D points Pw in the world coordinate. Then, we projected the 3D points onto the
current frame In+1, and obtained the pixel intensity residual δI(T, p) as:

δI(T, p) = In+1(πc(T · Pw))− In(p), ∀p ∈ R (7)

where R is the image area formed by the key points p. By minimizing the photometric
error, the relative pose Tn+1

n can be calculated [15]:

Tn+1
n = arg min

T

∫∫
R

ρ[δI(T, p)]dp (8)

where ρ[·] = 1
2‖·‖

2.

Figure 2. Direct image alignment.

However, the current frame pose, which was only obtained by Equation (8), is insuf-
ficiently accurate. Therefore, we need to find more co-visibility feature points between
the current frame and the co-visibility keyframes in the sliding window. As shown in
Figure 3, based on the pose solved by Equation (8), we projected the co-visible 3D points
Pwi in the world coordinate onto the current frame. By minimizing the photometric error



Appl. Sci. 2022, 12, 9265 6 of 18

of co-visibility points, the corresponding 2D feature points pi
′ in the current frame can

be obtained:
pi
′ = arg min

pi
′

1
2∑

∥∥In+1
(
pi
′)− In+1(πc(Tc

w · Pwi))
∥∥2, ∀i (9)

Figure 3. Pose refinement.

After feature-points-matching was completed, we again optimized the camera pose
Tc

w to minimize the re-projection errors:

Tc
w = arg min

Tc
w

1
2∑

i
‖pi − πc(Tc

w · Pwi)‖2 (10)

3.3. Back-End Optimization
3.3.1. Sliding Window Formulation

The sliding window [28] limits the number of keyframes and prevents the number
of poses and features from increasing over time, so that back-end optimization is always
within a limited complexity. The full state variables in the sliding window are defined as:

χ = [x1, x2, ..., xn, Pw1, Pw2, ..., Pwm, Lw1, Lw2, ..., Lwo]
xi = [pw

bi
, vw

bi
, qw

bi
, ba, bg], i ∈ [1, n]. (11)

where xi is the ith IMU state. pw
bi

, vw
bi

, and qw
bi

represent position, velocity and orienta-
tion, respectively. ba and bg represent acceleration bias and gyroscope bias, respectively.
Pwi(i ∈ [1, m]) represent the point landmarks, and Lwi(i ∈ [1, o]) are the 3D line representa-
tion formed by the Plücker coordinates. m and o are the number of point and line features
in the sliding window, respectively.

The cost function, which simultaneously optimizes visual and IMU variables, is shown
in Equation (12):

min
χ

{
‖rp −Hpχ‖2 + ∑

k∈B
rB‖(ẑ

bk
bk+1

, χ)‖2
∑

bk
bk+1

+ ∑
p∈P

ρ(rP‖(ẑ
cj
p , χ)‖2

∑
cj
p
) + ∑

l∈L
ρ(rL‖(ẑ

cj
l , χ)‖2

∑
cj
l

)

}
(12)

where {rp, Hp} are the prior information from marginalization, rB(ẑ
bk
bk+1

, χ) are the IMU

measurement residuals, B is the set of IMU states. rP (ẑ
cj
p , χ) and rL(ẑ

cj
l , χ) are the point

and line feature re-projection errors, respectively. P and L are the set of observed point and
line features, and ρ is the Cauchy loss function, which minimizes the influence of outliers.
Therefore, the matching error terms can be expressed as follows:

(a) IMU measurement residual
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According to Equations (1)–(3), the IMU measurement residuals for two consecutive
frames can be calculated as follows:

rB(ẑ
bk
bk+1

, χ) =



δα
bk
bk+1

δβ
bk
bk+1

δθ
bk
bk+1

δba
δbg

=



Rbk
w (pw

bk+1
− pw

bk
− vw

bk
∆tk +

1
2 gw∆t2

k)− α̂
bk
bk+1

Rbk
w (vw

bk+1
− vw

bk
+ gw∆tij)− β̂

bk
bk+1

2[qw−1

bk
⊗ qw

bk+1
⊗ (γ̂

bk
bk+1

)−1]xyz

babk+1
− babk

bωbk+1
− bωbk

(13)

where [∗]xyz extracts the vector part of the quaternion.

(b) Point feature error term

As shown in Figure 4, the point feature re-projection error is represented as the
distance between the observed projection position and currently estimated projection
position of the 3D point, which can be defined as:

rP (ẑ
cj
p , χ) = p

cj
p − πc

(
T

cj
w · Pwp

)
(14)

where p
cj
p is the observed point in camera frame j and Pwp is the matching 3D point.

Figure 4. Illustration of the visual reprojection errors.

The Jacobian of the point feature re-projection error relative to the pose increment can
be obtained by the chain rule:

∂rP
∂δξ

=
∂rP
∂p

∂p
∂δξ

(15)

with
∂rP
∂p

= −

 fx
zc

0 − fx xc
zc2

0 fy
zc
− fyyc

zc2

 (16)

∂p
∂δξ

=

 1 0 0 0 zc −yc
0 1 0 −zc 0 −xc
0 0 1 yc xc 0

 (17)

(c) Line feature error term
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According to Figure 4, the line feature re-projection error is represented as the distance
from two endpoints (ps = [u1 v1 1]T and pe = [u2 v2 1]T) of the matching line segment to
the projecting line l. Combining Equations (5) and (6), this can be calculated as below [29]:

rL(ẑ
ci
l , χ) =

[
d(ps

ci
l , lci

l )
d(pe

ci
l , lci

l )

]
(18)

where,

d(p, l) =
pTl√
l2
1 + l2

2

(19)

The Jacobian line feature re-projection error relative to the pose increment can be
obtained as follows:

∂rL
∂δξ

=
∂rL
∂l

∂l
∂Lc

∂Lc

∂δξ
(20)

with

∂rL
∂l

=


u1l22−l1l2v1−l1l3

(l1
2+l22)

3
2

v1l1
2−l1l2u1−l2l3

(l1
2+l22)

3
2

1

(l1
2+l22)

1
2

u2l22−l1l2v2−l1l3

(l1
2+l22)

3
2

v2l1
2−l1l2u2−l2l3

(l1
2+l22)

3
2

1

(l1
2+l22)

1
2

 (21)

∂l
∂Lc

=

 fx 0 0 0 0 0
0 fy 0 0 0 0

− fxcx fxcy fx fy 0 0 0

 (22)

∂Lc

∂δξ
=

[
−[Rc

wnw]× − [pc
w]×[R

c
wdw]× −[Rc

wdw]×
−[Rc

wdw]× 0

]
(23)

3.3.2. Improved Marginalization

Marginalization is performed to bound the computational complexity, and the illus-
tration is shown in Figure 5. If the second latest frame is a keyframe, the system will
marginalize the oldest frame, including the pose of the oldest frame and some observed
visual landmarks. When the oldest frame has co-visibility with other keyframes in the
sliding window, that is, they observe the same visual landmarks, marginalization will keep
the constraint on other keyframes. Otherwise, the system will retain the IMU measurements
attached to this non-keyframe but remove the visual measurements.

Figure 5. Illustration of marginalization.

This process is solved by the Gauss–Newton iterative method and defined in the form
Hδx = b: [

Hm Hmp
HT

mp Hp

][
δxm
δxp

]
=

[
bm
bp

]
(24)
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where bm represents the set of states that are to be marginalized and bp represents the set
of preserved states [23,24].

Through the Schur complement, δxp can be obtained:

(Hp −HT
mpH−1

m Hmp)δxp = bp −HT
mpH−1

m bm (25)

which describes the basic marginalization. Thus, the states in bm are marginalized together.
Equation (25) requires calculating HT

mpH−1
m Hmp, in which the computational complexity is

O(i3 + i2 × j + j2 × i), supposing that Hm and Hp have dimensions of i× i and j× j.
The above basic marginalization method has high computational complexity, so we

adopted the improved marginalization method to solve this problem. Firstly, we divided
the state vector xm which was be marginalized into two parts: one was uncorrelated
states, containing visual landmarks, the other was correlated states, containing the pose of
keyframes, velocity and IMU bias. Uncorrelated states were not related to each other, only
to correlated states [24].

We described this process using an example, as shown in Figure 6. The states that
are to be marginalized are represented by dashed lines, where Lpi ∈ R3 and Lli ∈ R6

(1 ≤ i ≤ 2) are points and line segments, respectively, Pj ∈ R6 (1 ≤ j ≤ 4) are the pose of
keyframes, and bk ∈ R9 (1 ≤ k ≤ 4) are velocity and IMU bias.

Figure 6. States in the sliding window.

Figure 7 shows the corresponding Hessian matrix. The state variable that is to be
marginalized is xm(Lp1 , Lp2 , Ll1 ,Ll2 , P1, b1), while the state variable that is to be preserved is
xp(P2, b2, P3, b3, P4).

Figure 7. The Hessian matrix corresponding to Equation (24).
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Firstly, uncorrelated states in xm were marginalized, which only contain points and
line segments (Lp1 , Lp2 , Ll1 and Ll2). The computational complexity for the marginaliza-

tion of Lp1 in Figure 7 was mainly determined by H
Lp1
mp

T
HLp1

−1H
Lp1
mp , which is approxi-

mately Op1 = O(33 + 32 × 21 + 3× 212). The maximum computational complexity will be
maxOp1 = O(33 + 32 × 51 + 3× 512), supposing that Lp1 can be observed by P2, P3 and
P4. The Hessian matrix after the marginalization of Lp1 is shown in Figure 8.

Figure 8. The Hessian matrix after marginalization of Lp1 .

Lp2 will be marginalized after the marginalization of Lp1 , which requires calculating

H
Lp2
mp

T
HLp2

−1H
Lp2
mp , and the computational complexity is approximately

Op2 = O(33 + 32 × 36 + 3× 362).
The remaining Ll1 and Ll2 were marginalized in the same way, with a computational

complexity of Ol1 = Ol2 = O(63 + 62 × 51 + 6 × 512). The Hessian matrix after the
marginalization of uncorrelated states is shown in Figure 9. Then, correlated states that
contain P1 and b1 in xm were marginalized, by calculating Ap − AT

mpA−1
m Amp, with a

computational complexity of Or = O(153 + 152 × 36 + 15 × 362). Therefore, the total
computational complexity will be O = Op1 +Op2 +Ol1 +Ol2 +Or.

Figure 9. The Hessian matrix after the marginalization of all landmarks.
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Through the above analysis, it is obvious that, compared with the basic marginalization
method corresponding to Equation (25), the improved marginalization method greatly
reduces the amount of computation.

3.3.3. Loop Closure Detection

For loop closure detection, we adopted Bags of Words (DBoW2) [35], a state-of-the-
art bag-of words place recognition approach. The loop closure detection module will be
activated when the current frame is selected as a keyframe. If a loop closure is detected,
the drift accumulated during the exploration will be greatly reduced [10].

4. Experimental Results and Analysis

We compared SDPL-VIO with the state-of-the-art methods: SVO [17], PCSD-VIO [22],
PL-VIO [11] and VINS-Mono [10] on the EuRoC datasets [36]. The EuRoC datasets were
collected by various sensors installed on the MAV, and divided into three series of flight
scenarios, including a series of motion sequences ranging from easy to difficult. First,
the comparison results of the accuracy and robustness performance based on the datasets
are shown in Section 4.1. Then, to demonstrate the computation performance of SDPL-VIO,
the time usage statistics results are illustrated in Section 4.2. Finally, the loop-closure
detection capability of SDPL-VIO is evaluated in Section 4.3.

4.1. Accuracy and Robustness Performance

We implemented the above methods on the EuRoC datasets. In order to intuitively
reflect the tracking effect of our proposed semi-direct method, and because PL-VIO lacks
the loop-closure module, we disabled the loop-closure module of the above methods.
A comparison of root–mean–square error (RMSE) on the EuRoC datasets is shown in
Table 1, and their histograms are also provided, as shown in Figure 10. Table 1 shows
that SDPL-VIO works robustly and accurately, and other methods also work well. Com-
pared with point features, the combination of point and line features can strengthen the
constraints between images, are insensitive to illumination changing environment, deal
with the dynamic environment, and reduce the error caused by fast rotation motion.
Thus, due to the introduction of line features, the accuracy of SDPL-VIO is better than SVO,
PCSD-VIO and VINS-Mono, which only uses point features for tracking. In easy sequences
such as MH01 and V101, which have rich features, good illumination, and slow motion,
the feature-based method can extract a high number of point and line features. In such
environments, the quality of tracking is about the same, so the accuracy of SDPL-VIO is
comparable to PL-VIO. In difficult sequences, such as MH05, V203 with motion blur, fast
motion, low texture, etc., the feature-based method faces challenges due to the lack of
sufficient visual features. Our proposed semi-direct method combines the excellent perfor-
mance of direct methods in low-texture environments. The feature-based method provides
an accurate initialization state and generates keyframes that provide good priors for the
direct method, while the direct method uses direct image alignment to move the frame
very close to its final pose, while using a refinement step to reduce the pose estimation
error. Therefore, SDPL-VIO performs relatively well in difficult sequences.

Table 1. RMSE (m) of the five methods.

Sequence SDPL-VIO PCSD-VIO PL-VIO VINS-Mono SVO

MH01 0.13 0.16 0.14 0.16 0.17
MH02 0.15 0.17 0.15 0.19 0.27
MH03 0.18 0.22 0.19 0.20 0.43
MH04 0.31 0.35 0.33 0.36 1.36
MH05 0.23 0.28 0.25 0.30 0.51
V101 0.06 0.10 0.07 0.09 0.20
V102 0.10 0.11 0.08 0.11 0.47



Appl. Sci. 2022, 12, 9265 12 of 18

Table 1. Cont.

Sequence SDPL-VIO PCSD-VIO PL-VIO VINS-Mono SVO

V103 0.13 0.18 0.14 0.20 N/A
V201 0.08 0.09 0.07 0.09 0.30
V202 0.11 0.14 0.12 0.16 0.47
V203 0.22 0.26 0.24 0.28 N/A

Figure 10. RMSE (m) of the five methods.

Figure 11 shows a comparison of the trajectories obtained by SDPL-VIO, PCSD-VIO,
PL-VIO and VINS-Mono on the MH01, MH05 and V202 datasets, respectively. The ground
truth is represented by the red line, while the results of SDPL-VIO, PCSD-VIO, PL-VIO and
VINS-Mono are represented by the blue line, the green line, the purple line and the yellow
line, respectively.

Figure 12 shows the translation errors on the MH01, MH05 and V202 datasets, in which
the blue represents SDPL-VIO, the green represents PCSD-VIO, the purple represents
PL-VIO, and the yellow represents VINS-Mono. It can been seen that, in the MH01 sequence,
due to the rich scene features and good illumination conditions, there is not much difference
in the accuracy of the four methods. The maximum error of SDPL-VIO is 0.37 m in the
sequence of MH01, while that of PCSD-VIO is 0.41 m, that of PL-VIO is 0.41 m and that
of VINS-Mono is 0.40 m, respectively. The MH05 dataset includes fast motion and large
illumination changes. The combination of point and line features is more robust to fast
rotation in the trajectory, and the semi-direct method is more adaptable to low-texture
environments, so SDPL-VIO has the highest accuracy. PCSD-VIO and VINS-Mono only
extract point features, and they struggle to extract corner points with large grayscale
differences from surrounding pixel blocks. Therefore, the number of effective feature points
is reduced, and the accuracy is the lower than the other two methods. The maximum error
of SDPL-VIO is 0.73 m in the sequence of MH05, while that of PCSD-VIO is 0.85 m, that
of PL-VIO is 0.78 m and that of VINS-Mono is 0.90 m, respectively. For the V202 dataset,
SDPL-VIO still performs better than the other three. The maximum error of SDPL-VIO is
0.33 m, while that of PCSD-VIO is 0.37 m, that of PL-VIO is 0.36 m and that of VINS-Mono
is 0.42 m, respectively. From Figures 11 and 12, it can been seen that, due to the semi-direct
method tracking point and line features, SDPL-VIO has a better performance than the other
three methods in challenging sequences, such as fast motion, large illumination changes or
poorly textured environments, etc.
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Figure 11. The comparison of trajectories on the MH01, MH05 and V202 datasets.
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Figure 12. The comparison of translation errors on the MH01, MH05 and V202 datasets.

4.2. Computational Performance

To evaluate the computational performances of SDPL-VIO, the average times taken
for tracking and marginalization were measured and analyzed.
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4.2.1. Average Time for Tracking

Firstly the computational performances when tracking the image were analyzed
to compare SDPL-VIO and PL-VIO, and the comparison results are shown in Table 2.
PL-VIO simultaneously extracts point and line features for each frame, which is very
time-consuming. SDPL-VIO uses the semi-direct method for tracking, and takes much less
time than PL-VIO. This is because non-keyframes account for the majority of the tracked
features and the system uses the direct method, with the advantage of rapidity when
tracking non-keyframes in the front end, and has no need to extract image features and
calculate descriptors. This strategy effectively reduces the average front-end tracking time.
Taking V201 as an example, as shown in Figure 13, according to the keyframe selection
strategy, the number of selected keyframes is 127, accounting for about 23% of the total
frames, while 77% of the frames were selected to be non-keyframes. However, the time
needed to track keyframes accounted for 69% of the total time, while the time needed to
track non-keyframes accounted for only 31%. Although the tracking time was reduced,
the accuracy of SDPL-VIO was not significantly reduced; this was still comparable with
PL-VIO, and even higher in some environments, as shown in Section 4.1.

Table 2. Average time (ms) spent tracking an image.

Sequence SDPL-VIO PL-VIO

MH01 28.54 84.40
MH02 33.55 88.05
MH03 27.51 85.73
MH04 30.45 83.18
MH05 30.10 83.10
V101 29.65 82.52
V102 29.48 83.35
V103 32.81 87.61
V201 30.15 81.24
V202 31.65 89.76
V203 33.56 90.40

Figure 13. The ratio of the number and tracking time between keyframes and non-keyframes on the
V201 dataset.

4.2.2. Average Time for Marginalization

Marginalization is another time-consuming aspect of the back-end, so the average time
consumption was also analyzed. Taking V102 as an example, as explained in Section 3.3.2,
when the back end of SDPL-VIO used the basic marginalization method, one-step marginal-
ization was carried out, resulting in a very large amount of computation, and the average
time needed for marginalization was 39 ms. When the back end used the improved
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marginalization method, the high-dimension matrix corresponding to the cost function
was decomposed step by step. Therefore, the amount of computation was significantly
reduced, and the average time needed for marginalization was 16 ms.

4.3. Loop Closure Detection Evaluation

The most obvious advantage of the feature-based method compared with the direct
method is that the feature-based method could be used for loop closure detection, which can
reduce the drift accumulated during the long-term operation. Therefore, the loop-closure
detection ability of SDPL-VIO was finally evaluated to verify the integrity and reliability of
the system. From the comparison results on the MH03 dataset, as shown in Figure 14, the
accuracy of SDPL-VIO with loop closure detection is clearly shown to improve.

Figure 14. The comparison of translation errors on the MH03 dataset.

The analysis of multiple experiments shows that SDPL-VIO can consider both speed
and accuracy, which increases the operation efficiency without reducing the operation
precision, and is superior to other methods in terms of comprehensive performance.

5. Conclusions

In this paper, a novel, semi-direct, point-line, visual inertial odometry for MAVs
was proposed, which extracts point-line features from the image and uses the semi-direct
method to track keyframes and non-keyframes. The proposed method also adopts the
sliding window strategy and uses the improved marginalization method to decompose
the high-dimensional matrix step by step, according to the cost function, to optimize the
solution. Experiments on the EuRoC datasets show that the accuracy and real-time perfor-
mance of SDPL-VIO is better than that of other state-of-the-art VIO methods, especially in
challenging datasets containing fast motion, large illumination changes or poorly textured
environments. The SDPL-VIO performance, in terms of accuracy and efficiency, validated
that it is suitable for navigational uses in MAVs with low-cost sensors. In future work,
we aim to adopt a faster line detector that could be more conducive to continuous and
real-time tracking.
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Abbreviations
The following abbreviations are used in this manuscript:

MAVs Micro Aerial Vehicles
IMU Inertial Measurement Unit
VIO Visual Inertial Odometry
VIN Visual Inertial Navigation
OKVIS Keyframe-based visual-inertial SLAM using nonlinear optimization
BRISK BRISK: Binary robust invariant scalable keypoints
ORB Oriented FAST and Rotated BRIEF

ORB-SLAM2
ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and
RGB-D Cameras

PL-SLAM PL-SLAM: Real-time monocular visual SLAM with points and lines
DSO Direct Sparse Odometry
VINS-Mono VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator

PL-VIO
PL-VIO: Tightly-Coupled Monocular Visual–Inertial Odometry Using Point and
Line Features

SVO SVO: Fast semi-direct monocular visual odometry

PL-SVO
PL-SVO: Semi-direct Monocular Visual Odometry by combining points and
line segments

SVL Semi-direct monocular visual and visual-inertial SLAM with loop closure detection

PCSD-VIO
PC-SD-VIO: A constant intensity semi-direct monocular visual-inertial odometry
with online photometric calibration

EuRoC the European Robotics Challenge
SFM Structure from Motion
FAST the Accelerated Segment Test
KLT Kanade-Lucas-Tomasi
RANSAC Random Sample Consensus
LSD Line Segment Detector
LBD Line Band Descriptors
DBoW2 Bags of Words
RMSE root-mean-square error
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