
Citation: Herrera-Alcántara, O.

Fractional Derivative Gradient-Based

Optimizers for Neural Networks and

Human Activity Recognition. Appl.

Sci. 2022, 12, 9264. https://doi.org/

10.3390/app12189264

Academic Editor: Valentina E. Balas

Received: 3 August 2022

Accepted: 12 September 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Fractional Derivative Gradient-Based Optimizers for Neural
Networks and Human Activity Recognition
Oscar Herrera-Alcántara

Departamento de Sistemas, Universidad Autónoma Metropolitana, Mexico City 02200, Mexico; oha@azc.uam.mx

Abstract: In this paper, fractional calculus principles are considered to implement fractional deriva-
tive gradient optimizers for the Tensorflow backend. The performance of these fractional derivative
optimizers is compared with that of other well-known ones. Our experiments consider some human
activity recognition (HAR) datasets, and the results show that there is a subtle difference between
the performance of the proposed method and other existing ones. The main conclusion is that
fractional derivative gradient descent optimizers could help to improve the performance of training
and validation tasks and opens the possibility to include more fractional calculus concepts to neural
networks applied to HAR.

Keywords: fractional derivative; gradient descent optimizer; human activity recognition

1. Introduction

In the context of machine learning, neural networks are one of the most popular and ef-
ficient techniques to model data, and gradient descent methods are widely used to optimize
them. The fundamental gradient descent optimizer considers a factor with an opposite
direction to the gradient of the objective function. Other optimizers consider momentum
and velocity analogies to improve the training convergence and the generalization capacity.

Effectively, starting with the basic update rule of gradient descent optimizers, the fun-
damental factor updates the free parameters in the opposite direction of the gradient gt on
the approximation error surface, and the learning rate η modulates the feedback to move
forward to obtain a minimum [1].

A batched version vanilla gradient descent (GD) updates the parameters considering
all the training samples, but it is impractical for large datasets. The GD update formula is

∆θt = −ηgt. (1)

Alternatively, a stochastic gradient descent (SGD) version updates the parameters for
each i-th training sample. Hence, the SGD update formula is

∆θt,i = −ηgt,i (2)

and although it could introduce fluctuations, on one hand, it can be useful to explore the
optimization space, but on the other hand, it can introduce unnecessary variance in the
parameter updates, and it makes the learning rate a critical factor. Considering this, a mixed
version of minibatch gradient descent proposes to split the dataset in subsets to deal with
this tradeoff [2].

Adagrad [3] is the other evolved version that considers adaptation of the learning rate
based on the memory of the gradients and aims to give helpful feedback for sparsed features
of input data. Adagrad computes a historical diagonal matrix Gt,ii, accumulating the sum
of squares of the gradients to modify the adjustment of each parameter θi which aims to

Appl. Sci. 2022, 12, 9264. https://doi.org/10.3390/app12189264 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12189264
https://doi.org/10.3390/app12189264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7488-0333
https://doi.org/10.3390/app12189264
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12189264?type=check_update&version=2

Appl. Sci. 2022, 12, 9264 2 of 21

deal with the disparity of frequent/infrequent features of training samples. The Adagrad
update formula is

∆θt,i = −
η√

Gt,ii + ε
gt,i (3)

that considers ε > 0 in the denominator to avoid a zero division.
Adadelta [4] is a variant of Adagrad that aims to lessen the accumulation of square

gradients along all the time for Gii, and instead it defines an average window given
0 ≤ γ ≤ 1 to ponderate squares of current and previous one gradients according to

E[g2]t = γE[g2]t−1 + (1− γ)g2
t (4)

so, it can be conceived as the root mean squared error of the gradients:

RMS[g]t =
√

E[g2]t + ε (5)

where ε > 0 is also included to avoid a division by zero, given that the original update
formula for Adadelta is

∆θt = −
η

RMS[g]t
gt. (6)

To preserve the same “unit of measure”, the learning rate η is replaced by the RMS of
parameter updates in this way:

RMS[∆θ]t =
√

E[∆θ2]t + ε =
√

γE[∆θ2]t−1 + (1− γ)∆θ2
t + ε (7)

up to t− 1 since ∆θ is still being calculated. Therefore, the Adadelta update rule is

∆θt = −
RMS[∆θ]t−1

RMS[g]t
gt. (8)

RMSProp [5] is considered an extension of Adagrad that maintains a moving average
square of the gradients instead of using all the historical, and divides the gradient by the
root mean square of that average. In this sense, it has a great similarity with Equation (6)
presented as the former Adadelta rule.

Other optimizers consider momentum (update memory) based on the update of the
previous iteration, analogous to the physical concept of particle inertia, so when “the
ball moves” in the same direction from the current to the next update, it accelerates the
convergence, and it opposes when it changes directions, providing more stability and
better convergence.

Adam [6] mixes the average of past gradients mt and past squared gradients vt together
with a momentum approach, in such a case that mt = β1mt−1 + (1− β1)gt contains a
previous memory value followed by a second term based on the gradient. Similarly,
vt = β2vt−1 + (1− β2)g2

t first involves a memory update term followed by a squared
gradient term. Since mt and vt are initialized to zero, and to avoid zero-bias tendency, other
formulas are obtained for the first momentum bias-corrected m̂t =

mt
1−βt

1
and for the second

momentum bias-corrected v̂t =
vt

1−βt
2
. The updated Adam formula is

∆θt,i = −
η√

v̂t + ε
m̂t (9)

that also considers ε > 0 in the denominator to avoid a zero division.
Some other gradient descent optimizers have been proposed, but now just only one

more is discussed, the AdamP optimizer [7]. AdamP is a variant of Adam that appeals to
weight normalization and effective automatic step size adjustment over time to stabilize the
overall training procedure that improves the generalization. The normalization considers

Appl. Sci. 2022, 12, 9264 3 of 21

projections in the weight space via the projection operator Πθ(x) := x− (θ · x)θ applied to
the momentum update mt = βmt−1 + gt, so the AdamP rule is ∆θt = −ηqt where

qt =

{
Πθt(mt), if cos(θt, gt) ≤ δ

dim(θ)

mt, otherwise
(10)

for δ > 0, and where cos(a, b) is the cosine similarity between two vectors.
Table 1 summarizes these previously described optimizers. In addition, it also in-

cludes a version of SGD with γ momentum, as well as SGDP [7] that includes weight
normalizations via projections based on SGD, analogous to how AdamP is built based on
Adam. The first column indicates the name, the second column the update rule, and the
third column a comment. It is emphasized that the update rule for some optimizers, such
as Adagrad, Adadelta and Adam, involves ε > 0 to avoid a division by zero.

Table 1. Update rules for several gradient descent optimizers.

Name Update Rule Comment for the Update

GD ∆θt = −ηgt It is opposed to the gradient.
SGD ∆θt,i = −ηgt,i It is opposed to the gradient for each training sample.

Adagrad ∆θt,i = −
η√

Gt,ii+ε
gt,i

It is opposed to the gradient with adaptive decreasing
learning rate for each sample.

Adadelta ∆θt = − RMS[∆θ]t−1
RMS[g]t

gt
It is opposed to the gradient with adaptive learning rate for

each sample.

RMSProp ∆θt = − η
RMS[g]t

gt
It is opposed to the gradient, and divides η using the RMS

of the average square of windowed gradients.

SGD with Momentum γ ∆θt,i = −γ∆θt−1 − ηgt,i
It uses one-slot memory of parameter updates and direction

opposed to the gradient for each training sample.

Adam ∆θt,i = −
η√

v̂t+ε
m̂t

It is opposed to the gradient and combines average of past
gradients mt as well as average of past squared gradients vt.

AdamP ∆θt = −ηΠθt (mt) or −ηmt
It is opposed to the gradient and also considers weight

normalization via the projection of mt.

SGDP ∆θt,i = −ηΠθt,i (γ) or −ηγ
It is opposed to the gradient and also considers weight

normalization via the projection of γ.

All previous optimizers consider the gradient gt as the cornerstone update factor that
comes from a first-order derivative of the objective function. The purpose of this work is to
present optimizers that introduce a fractional derivative gradient in the update rule, as well
as an implementation for the Tensorflow backend. This proposal is mainly based on the
fractional differential calculus theory [8–11] and on previous works [12,13].

Fractional calculus is not a novel topic [14] but it has recently taken relevance in
several fields, including linear viscoelasticity [15], fractional control [16], partial differential
equations [17], signal processing [18], image processing [19], time series prediction [20], and
mathematical economics [21], among others, and of course neural networks in the age of
deep learning [12,13,22]. Given that neural network architectures have several challenges
such as generalization enhancement, gradient vanishing problems, regularization and
overfitting, it seems that fractional calculus still has a lot to contribute.

The rest of the paper is organized as follows. In Section 2, details of the proposed
fractional derivative gradient update rule are presented. In Section 3, experiments are
described to obtain performance comparisons with known optimizers. It allows to support
the main conclusion regarding the improvement between the performance of the proposed
method and other existing ones. In Section 4, some discussions are presented based on the
experiments, and some future work directions are commented on.

2. Materials

In this section, the Caputo fractional derivative definition is reviewed, as well as its
relationship with the backpropagation algorithm for neural networks.

Appl. Sci. 2022, 12, 9264 4 of 21

2.1. Fractional Derivatives

There is no unified theory for fractional calculus, and evidence of this is that there is
no single definition for fractional derivatives. See, for example, the Grünwald–Letnikov,
the Riemann–Liouville and the Caputo definitions [10,13,23]. The Caputo fractional deriva-
tive, for a, x ∈ R, ν > 0 and n = [ν + 1], is defined as

C
a Dν

x f (x) =
1

Γ(n− ν)

∫ x

a
(x− y)n−ν−1 f (n)(y)dy (11)

and it seems to be the most popular since, in contrast to Grünwald–Letnikov and Riemann–Liouville,
the Caputo fractional derivative of Equation (11) is zero for f (x) = C, with C ∈ R, which
matches with the integer derivative version [12]. In Equation (11), a (x− y)n−ν−1 kernel
can be identified that convolves with f (n). The application and study of other kernels and
their properties to define more fractional derivatives is an open research area.

An interesting property of the fractional ν-order derivative operator Dν
x applied to xp

is that [24]

Dν
xxp =

Γ(p + 1)xp−v

Γ(p− v + 1)
(12)

and, in particular for ν = 1
2 and p = 1, it allows to calculate the 1

2 derivative of x:

D
1
2
x x =

Γ(2)x
1
2

Γ(3
2)

, (13)

moreover, if the v = 1
2 derivative is calculated again with p = 1

2 , i.e., if D
1
2
x is applied again

to Equation (13),

D
1
2+

1
2

x x =D
1
2
x (D

1
2
x x) = D

1
2
x

Γ(2)x
1
2

Γ(3
2)

=
Γ(2)
Γ(3

2)

Γ(3
2)

Γ(1)
x0 = 1, (14)

which is consistent with the first-order derivative D(1)
x x = 1.

2.2. Backpropagation for Neural Networks

In supervised learning, given an input data set X and the corresponding desired
outputs O, the training sample set can be expressed as {Xi, Oi}N

i=1, where N is the number
of samples.

For a neural network with an architecture conformed by a single input layer X,
followed by L = H + 1 layers that considers H hidden layers and an output layer O
with activation functions ϕ(x), the matrix of synaptic weights wl

kj indicates the connection
between the neuron k of layer l + 1 and the neuron j of the current layer, l ∈ [1, L− 1].
A special case is for l = 0, where the weights connect the input data X with the neurons of
the first hidden layer.

The error of neuron k at the output layer is eki = aL
ki − oki, where subindex i refers to

the neural network receiving the i-th input pattern. Consequently, given the i-th training
sample, the error Ei of the output layer considering all its nL neurons is

Ei =
1
2

nL

∑
k=1

e2
ki =

1
2

nL

∑
k=1

(aL
ki − oki)

2 (15)

then, the total error E over all the N training samples is

E =
N

∑
i=1

Ei =
1
2

N

∑
i=1

nL

∑
k=1

(aL
ki − oki)

2 (16)

Appl. Sci. 2022, 12, 9264 5 of 21

and the learning process via the backpropagation algorithm aims to minimize E by adjusting
the free parameters of the weight matrix.

Essentially, a backpropagation training consists of repeated forward and backward
steps. The forward step evaluates progressively the induced local fields V l , multiplying
the inputs Il of the l-th layer and the corresponding synaptic weights W l = wl

kj. For the

first layer, I1 = X, so the induced local field vector at layer l can be expressed as the dot
product V l = Il ·W l where l ∈ [1, L].

The output of neuron k at layer l is al
k = ϕ(vl

k), where vl
k is the k-th local induced field

of V l , and by convention for l = 0 the “output vector” a0 is equal to I = X, the input data
set. Of course, each activation function ϕ can be different for each layer.

For the backward step, once the outputs aL of the L-th layer have been calculated,
the local gradients δl

k are evaluated, and it allows to obtain the gradient descent updates in
reverse order for l = L, L− 1, . . . , 1.

Indeed, for the gradient descent optimizer, the weight updates ∆wl
kj are given by

∆wl
kj = −η

∂Ei

∂wl
kj

(17)

seeking a direction for weight change that reduces the value of Ei [1].
Since the local gradient is

δl
k =

∂Ei
∂vk

(18)

and considering that

∂Ei

∂wl
kj

=
∂Ei
∂vk
· ∂vk

∂wl
kj

=
∂Ei
∂vk
· al−1

j = δl
kal−1

j (19)

then, ∆wl
kj can be expressed as

∆wl
kj = −η · δl

k · a
l−1
j . (20)

At the output layer, δL
k involves two factors, the error eki and the derivative of the

activation function as follows:
δL

k = eki · ϕ′(vL
k) (21)

whereas for hidden layer l, the local gradient considers the contribution of errors via the k
neurons of the l + 1 layer, hence

δl
j = ϕ′(vj) ·

nl+1

∑
k=1

δl+1
k · wl+1

kj . (22)

To be consistent with the nomenclature of Section 1, let gt = δl
k · a

l−1
j , where al−1

j is
the output of neuron j of the previous layer, i.e., an input to the layer l. Additionally, let
∆θt,i = ∆wl

kj when the i-th training sample is presented to the neural network.

2.3. Fractional Derivative and Gradient Descent

Essentially, the same approach of the gradient descent for the first-order derivatives is
applied to the fractional gradient Dν

wl
kj

Ei. In this case, the weight updates are

∆wl
kj = −ηDν

wl
kj

Ei (23)

and the main difference comes when applying the chain rule, as follows:

Appl. Sci. 2022, 12, 9264 6 of 21

Dν
wl

kj
Ei =

∂Ei

∂wl
kj
· Dν

wl
kj

wl
kj = δl

k · a
l−1
j ·

(wl
kj)

1−ν

Γ(2− ν)
, (24)

which is identical to that of the integer derivative but multiplied by the fractional factor
(wl

kj)
1−ν

Γ(2−ν)
.

Note that the property of Equation (12) for p = 1 is applied to obtain the fractional
ν-order derivative of wl

kj. Additionally, note that in the case of ν = 1, it is reduced

to the already known integer case since the factor (wl
ji)

1−ν = 1 and Γ(2− ν) = 1, then
Equation (24) can be conceived as a generalization of the integer gradient descent, for ν > 0.

2.4. Tensorflow Implementation of Fractional Gradient Optimizers

Tensorflow is a platform for machine learning, and it has been widely used for the
deep learning community since it provides open-source Python libraries to train and deploy
many applications [25]. Tensorflow also includes efficient support for GPU devices, as well
as integration with high-level APIs, such as Keras [26]. Tensorflow is available for several
operating systems and is also available through Jupyter notebook cloud services, such as
Google Colab [27].

The module tf.optimizers contains classes for gradient descent optimizers, such as SGD,
Adadelta, Adagrad, Adam, among others. For example, the SGD optimizer is located in
the Tensorflow–Keras module tf.keras.optimizers.SGD, and accepts some parameters, as is
shown in the next fragment of code:

t f . keras . opt imizers .SGD(
l e a r n i n g _ r a t e =0 .01 ,
momentum= 0 . 0 , . . .

)

These parameters have default values, such as momentum = 0, that means that
the default update rule is ∆w = −learning_rate ∗ gradient. Given a positive value of
momentum, the update rule according to the API documentation is ∆w = velocity where
the “velocity” is defined as velocity = momentum ∗ velocity− learning_rate ∗ gradient. So,
the velocity stores a single slot memory value as described in Section 1, and it corresponds
to the ∆θt,i factor in the fifth row of Table 1.

Since the main goal is to introduce the fractional factor of Equation (24) to the gradient
descent optimizers, a simple and elegant solution is to multiply the current gradient by
this factor. However, there are some aspects to be considered. First, note that Equation (24)
involves a power 1− ν that will be negative for ν > 1, and consequently, it could produce
a division by zero (in the practice, Tensorflow obtains NaN values). A possible solution is
to aggregate ε > 0, as it was shown in Section 1. However, there is a second consideration;
when 1− ν = p

q , and q is even (for example ν = 1
2 or ν = 3

4), then negative values of wl
kj

generate complex values. To deal with these two situations and to preserve real values, wl
kj

was replaced by |wl
kj|+ ε, so the proposed fractional gradient factor f ν

w is

f ν
w :=

(|wl
kj|+ ε)1−ν

Γ(2− ν)
. (25)

A strong motivation to replace wl
kj by |wl

kj|+ ε is that it allows to have a limit for f ν
w

when ν→ 1. In such a case,

lim
ν→1−

(|wl
kj|+ ε)1−ν

Γ(2− ν)
= lim

ν→1+

(|wl
kj|+ ε)1−ν

Γ(2− ν)
= 1, (26)

that supports the idea of conceiving Equation (24) as a more general case of the integer
gradient descent update rule.

Appl. Sci. 2022, 12, 9264 7 of 21

For the Tensorflow implementation, a new class FSGD with fractional gradient was
defined based on the SGD optimizer. The update_step method was modified as follows:

D e f i n i t i o n of t e n s o r s : cons tants and v a r i a b l e s . Choose v > 0 .
v = 0 . 5
one_v = 1−v
two_v = 2−v
gamma_2_v = math .gamma(two_v)
eps i = 0 .000001
c l a s s FSGD(optimizer . Optimizer) :

. . .
def update_step (s e l f , gradient , v a r i a b l e) :

tmp1 = t f . abs (v a r i a b l e) + t f . constant (epsi , t f . f l o a t 3 2)
tmp2 = t f . constant (one_v , t f . f l o a t 3 2)
fw = t f . pow(tmp1 , tmp2)/gamma_2_v
gradient = t f . mult iply (gradient , fw)

The same procedure applies to other gradient descent optimizers listed in Table 1,
and each fractional version uses the prefix “F”. For example, FAdam is the fractional version
of Adam, and it was obtained modifying the _resource_apply_dense method of the Adam
class. The modification includes the next source code:

c l a s s FAdam(keras . opt imizers . Optimizer) :
. . .

def _resource_apply_dense (s e l f , grad , var , apply_s ta te=None) :
tmp1 = t f . abs (var) + t f . constant (epsi , t f . f l o a t 3 2)
tmp2 = t f . constant (one_v , t f . f l o a t 3 2)
fw = t f . pow(tmp1 , tmp2)/gamma_2_v
grad = t f . mult iply (grad , fw)

The source code for AdamP was adapted from [7] and despite it including modifi-
cations for the weight normalization via projections, the section of interest to update the
gradient is identical to Adam. Thus, the same modifications apply to the fractional version
named FAdamP. In a similar manner, it also applies to FSGDP as the fractional version
of SGDP.

The source code of all fractional optimizers FSGD, FAdagrad, FAdadelta, FRMSProp,
FAdam, FSGDP and FAdamP is available for download.

3. Results

Once the fractional optimizers FSGD, FAdagrad, FAdadelta, FRMSProp, FAdam,
FSGDP and FAdamP were implemented, they were compared with their counterparts
available in Tensorflow–Keras, as well as with SGDP and AdamP obtained from [7].

The fractional versions with prefix “F” and ν = 1.0 coincide with the original non-
fractional versions, since according to Equation (26) they are special cases of the fractional
derivatives, and it was comprobated experimentally.

The comparisons were organized in three experiments. The first experiment considers the
well-known dataset MNIST [28], whereas Experiments 2 and 3 use the HAR datasets [29,30].

3.1. Experiment 1

Experiment 1 uses MNIST with 10-fold cross-validation, 15 epochs, architecture of
3 dense layers with ReLu, and an output layer with softmax for 10 classes.

Three subexperiments are described below.

3.1.1. Experiment 1.1

It considers a learning rate η = 0.001 and momentum γ = 0 for FSGD because
the main idea is to evaluate the fundamental effect of the fractional factor f ν

w. In this
case, ν = 0.1, 0.2, . . . , 1.9 since the experiments show that larger values of ν have worse

Appl. Sci. 2022, 12, 9264 8 of 21

performance. Obviously, it considers the case ν = 1.0, whose results match with SGD, and
it was corroborated obtaining a correlation of 0.999.

The results of the cross-folding accuracy are shown in Table 2, where the rows corre-
spond to folds 1 to 10. It is possible to appreciate that small values of ν close to zero produce
low accuracies, and the worst case is for ν = 0.1 that reports an accuracy of 12.3% at the
third fold. Conversely, as ν increases, so does the accuracy, which reaches a maximum and
then begins to decrease slowly.

Table 2. Comparison between SGD and FSGD. The case ν = 1.0 matches with SGD.

FSGD (ν = 0.1, . . . , 1.9)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

18.7 24.7 33.8 43.2 55.9 69.6 81.9 87.2 89.3 90.9 92.3 93.2 94.0 94.7 95.2 95.1 95.3 94.2 92.2
13.7 17.0 23.3 30.1 44.2 74.5 83.0 87.9 90.4 92.1 93.7 94.6 95.1 95.4 95.6 95.6 95.8 95.8 94.3
12.3 13.7 18.2 23.0 37.9 73.3 83.1 88.0 90.2 91.7 92.8 93.8 94.3 94.8 94.9 95.1 94.5 94.5 91.8
19.7 25.0 32.3 42.4 53.8 71.3 83.4 87.8 90.0 91.2 92.6 93.7 94.5 95.0 95.3 95.5 95.4 94.7 93.3
22.8 26.9 33.7 54.4 68.3 80.5 86.9 89.6 91.0 92.5 93.2 93.9 94.5 94.9 95.3 95.5 95.5 95.2 93.8
14.8 16.7 18.4 21.0 24.7 61.2 82.1 87.7 89.9 91.3 92.2 93.2 94.3 94.7 95.1 95.2 95.4 94.4 92.8
19.2 22.9 29.8 42.9 55.5 77.8 85.4 88.0 90.2 91.5 92.6 93.4 94.1 94.6 94.9 95.1 95.0 94.4 93.0
19.5 26.2 34.5 40.0 45.6 73.1 84.0 88.3 90.0 91.6 92.6 93.5 94.3 94.9 95.4 95.6 95.9 95.3 94.0
22.7 29.0 36.4 43.2 46.0 49.9 78.2 86.6 89.5 90.8 92.0 92.9 93.6 94.2 94.7 95.1 95.3 94.5 93.5
25.4 32.9 42.6 51.5 58.6 77.0 85.6 88.4 90.4 91.6 92.8 93.7 94.3 94.9 95.4 95.6 95.5 95.0 93.3

In Figure 1, the boxplots of all data of Table 2 are shown. In both of them, it is possible
to appreciate the optimal performance for ν = 1.7 (the average accuracy is 95.85 and the
standard deviation is 0.36). The improvement is about 4% better than SGD (ν = 1.0), and
these values are highlighted in bold in Table 2 for comparison purposes.

From the results of Experiment 1, the importance of the fractional gradient factor f ν
w

stands out, since the best performance is achieved for ν > 1.0, instead of the traditional
v = 1. It is shown that f ν

w provides additional freedom degree to optimize the neural
network parameters.

Figure 1. Experiment 1.1: Boxplots for accuracies of FSGD with 10-cross folding and ν = 0.1, 0.2, . . . , 1.9.

Appl. Sci. 2022, 12, 9264 9 of 21

3.1.2. Experiment 1.2

This experiment considers FSGD with the same values for learning rate η and momen-
tum γ. The learning rate is increased 100 times with respect to Experiment 1.1, and then
η = γ = 0.1 that aims to have a balance on their contribution to the weight updates.
The fractional order varies from ν = 0.1 to 1.9 with step = 0.2, and additionally ν = 1.0,
which corresponds to SGD as a special case.

The results of Experiment 1.2 are shown in Table 3 and Figure 2, where it is possible to
see (highlighted in bold in Table 3) that cases ν = 1.1 and ν = 1.9 have better performance
than others, including the case ν = 1.0 which corresponds to SGD with momentum γ = 0.1.
Although these cases in the last fold (see the last row of columns ν = 1.1 and ν = 1.9)
have a slightly smaller value than those of ν = 1.0, the rest of the data show a consistent
enhancement over the rest of the folds, as it is illustrated in the boxplots of Figure 2, where
the boxplots for ν = 1.1 and ν = 1.9 are better positioned above the case ν = 1.0.

Table 3. Experiment 1.2: Comparison between SGD and FSGD with η = 0.1 and momentum γ = 0.1.
The case ν = 1.0 corresponds to SGD.

ν

Fold 0.1 0.3 0.5 0.7 0.9 1.0 1.1 1.3 1.5 1.7 1.9

1 99.0 99.0 99.0 98.9 99.1 98.9 99.0 99.0 98.9 99.0 99.0
2 98.6 98.9 98.9 98.9 98.9 98.9 99.0 99.0 99.0 98.8 99.1
3 98.9 98.6 96.1 99.0 98.9 96.7 99.0 99.0 98.8 98.8 99.0
4 98.9 98.8 98.9 98.9 98.8 98.8 98.8 98.8 98.6 98.9 98.9
5 98.7 98.7 98.7 98.8 98.7 98.7 98.8 98.7 98.7 98.8 98.8
6 98.9 98.9 99.1 98.9 98.8 96.6 99.0 98.8 98.8 98.4 99.0
7 99.1 99.0 99.0 99.1 98.9 99.0 99.0 98.9 99.1 98.7 99.2
8 99.3 99.2 98.9 99.2 98.5 99.1 99.2 99.3 99.1 99.1 99.1
9 98.7 98.7 98.8 98.8 98.8 98.8 98.8 98.8 98.7 98.7 98.9
10 98.8 98.9 99.0 98.9 99.0 99.1 98.9 99.0 98.9 99.0 98.8

Figure 2. Experiment 1.2: Boxplots accuracies for FSGD with η = γ = 0.1, ν = 0.1, 0.3, . . . , 1.9 and 1.0.

From Experiment 1.2, it is deduced that the use of momentum contributes to better
performance close to 99%, while FSGD without momentum in Experiment 1.1 barely
reaches about 95.6% for the last fold.

3.1.3. Experiment 1.3

Other experiment considers FSGD with η = 0.001 and a high value for momentum
γ = 0.9. The results are shown in Table 4 together with the boxplots of Figure 3. Addition-
ally, in Table 5, the correlation of the columns of Table 4 are shown, and it is notorious the
high correlation between all columns for different values of ν = 0.1 to 1.9, which means
that a high value of momentum and low learning rate diminishes the effect of the fractional
factor f ν

w. In fact, the correlation matrix of Table 5 makes this evident since all the correlation

Appl. Sci. 2022, 12, 9264 10 of 21

values are higher than 0.91, in spite of the value of ν. Moreover, the performance for γ = 0.9
decreases about 2% with respect to Experiment 1.2 with lower momentum γ = 0.1, as is
appreciated when comparing Tables 3 and 4.

Figure 3. Accuracy boxplots for FSGD with 10-cross folding, momentum = 0.9 and ν = 0.1, 0.2, . . . , 1.9.

Table 4. Comparison between SGD and FSGD with momentum. The case ν = 1.0 reduces to SGD.

FSGD with Momentum = 0.9 (ν = 0.1, . . . , 1.9)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

97.3 97.4 97.4 97.3 97.4 97.4 97.3 97.3 97.3 97.4 97.5 97.3 97.4 97.3 97.2 97.3 97.3 97.3 97.4
97.6 97.6 97.5 97.6 97.6 97.6 97.5 97.6 97.6 97.6 97.6 97.6 97.6 97.5 97.5 97.5 97.5 97.6 97.6
97.4 97.4 97.4 97.4 97.4 97.3 97.4 97.4 97.3 97.4 97.4 97.4 97.4 97.4 97.4 97.3 97.3 97.4 97.4
97.5 97.3 97.4 97.4 97.4 97.4 97.5 97.6 97.4 97.6 97.5 97.4 97.4 97.4 97.5 97.4 97.4 97.4 97.4
97.6 97.7 97.6 97.8 97.7 97.7 97.7 97.7 97.7 97.7 97.7 97.7 97.8 97.7 97.8 97.7 97.7 97.8 97.6
97.7 97.8 97.7 97.7 97.8 97.8 97.7 97.7 97.8 97.8 97.8 97.7 97.8 97.7 97.7 97.7 97.7 97.8 97.7
97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.5 97.6 97.6 97.5 97.6 97.5 97.6 97.5 97.6 97.7 97.7 97.6
98.1 98.0 98.0 97.9 98.0 97.9 98.0 98.0 98.1 98.0 97.9 98.1 98.0 98.0 98.0 98.0 98.0 98.0 98.0
97.2 97.2 97.2 97.2 97.3 97.1 97.1 97.1 97.3 97.2 97.2 97.2 97.2 97.1 97.2 97.2 97.1 97.2 97.2
97.8 97.8 97.7 97.7 97.7 97.7 97.8 97.7 97.8 97.7 97.8 97.7 97.7 97.7 97.7 97.7 97.8 97.7 97.7

Table 5. Correlation matrix for FSGD: learning rate = 0.001, momentum = 0.9 and ν = 0.1, 0.2, . . . , 1.9.

ν

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.1 1
0.2 0.96 1
0.3 0.97 0.99 1
0.4 0.93 0.96 0.95 1
0.5 0.95 0.98 0.98 0.94 1
0.6 0.95 0.98 0.97 0.97 0.97 1
0.7 0.99 0.97 0.98 0.96 0.95 0.96 1
0.8 0.98 0.94 0.95 0.96 0.92 0.94 0.98 1
0.9 0.96 0.97 0.98 0.95 0.98 0.96 0.96 0.94 1
1.0 0.97 0.94 0.95 0.95 0.94 0.96 0.97 0.98 0.95 1
1.1 0.94 0.95 0.96 0.94 0.94 0.94 0.94 0.97 0.94 0.95 1
1.2 0.96 0.98 0.98 0.96 0.98 0.96 0.97 0.94 0.98 0.94 0.93 1
1.3 0.94 0.98 0.98 0.98 0.98 0.97 0.96 0.95 0.97 0.95 0.96 0.98 1
1.4 0.98 0.97 0.98 0.97 0.95 0.97 0.99 0.98 0.97 0.98 0.96 0.97 0.97 1
1.5 0.92 0.92 0.92 0.97 0.92 0.91 0.95 0.95 0.94 0.92 0.90 0.94 0.94 0.94 1
1.6 0.96 0.97 0.98 0.97 0.97 0.96 0.97 0.95 0.98 0.94 0.92 0.98 0.97 0.98 0.96 1
1.7 0.96 0.96 0.97 0.97 0.94 0.96 0.98 0.95 0.96 0.95 0.92 0.95 0.94 0.98 0.95 0.98 1
1.8 0.95 0.97 0.97 0.96 0.98 0.99 0.96 0.93 0.97 0.95 0.91 0.97 0.97 0.96 0.94 0.98 0.97 1
1.9 0.97 0.98 0.98 0.96 0.97 0.97 0.97 0.96 0.98 0.96 0.94 0.98 0.96 0.99 0.92 0.98 0.97 0.97 1

Appl. Sci. 2022, 12, 9264 11 of 21

3.2. Experiment 2

Experiment 2 uses the HAR dataset Actitracker [29]. It was released by Wireless Sensor
Data Mining (WISDM) lab and refers to 36 users using a smartphone in their pocket at a
sample rate of 20 samples per second. The dataset contains acceleration values for x, y
and z axes, while the user performs six different activities in a controlled environment:
downstairs, jogging, sitting, standing, upstairs, and walking. The number of samples is
1,098,209, which was originally split into 80% for training and 20% for testing.

To obtain better experimental support, these data were merged, and cross-validation
with K = 4 folds was applied with shuffle.

The source code was adapted from [31], and it considers a 2D-convolutional neural
network (2D-CNN) with two dense layers and ReLu activation function, followed by a
softmax layer.

Fractional optimizers were studied in two groups based on their performance; the first
group is FSGD, FSGDP, FAdagrad and FAdadelta, and the second group is FRMSProp,
FAdam and FAdamP. It gives place to Experiments 2.1 and 2.2.

3.2.1. Experiment 2.1

The source code of [31] was modified to include FSGD, FSGDP, FAdagrad and FAdadelta.
Because of space saving, the boxplots of accuracies for K = 4 folds are illustrated in

Figures 4–7, but tables with numerical data are not included. The following observations
can be made:

• Figure 4. The highest score for FSGD is 82.8% at ν = 1.7.
• Figure 5. The highest score for FSGDP is 82.71% at ν = 1.7 (a marginal difference with

respect to FSGD).
• Figure 6. FAdagrad just reaches its maximum 84.64% at ν = 1.6.
• Figure 7. The worst performance of these four optimizers is for FAdadelta with a

maximum of 63.11% at ν = 1.8.

In this experiment, is obvious the influence of the fractional factor f ν
w to enhance the

performance compared with the traditional first-order case. However, these results are not
the best possible because they can be improved by other optimizers, as will be shown in
the next experiment.

Figure 4. Experiment 2.1: FSGD cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Appl. Sci. 2022, 12, 9264 12 of 21

Figure 5. Experiment 2.1: FSGDP cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Figure 6. Experiment 2.1: FAdagrad cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Figure 7. Experiment 2.1: FAdadelta crossfolding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Appl. Sci. 2022, 12, 9264 13 of 21

3.2.2. Experiment 2.2

In Experiment 2.2, the modification to the source code of [31] was to include fractional
FRMSProp, FAdam and FadamP versions.

Figures 8–10 show the boxplots from accuracies of the K = 4 folds for FRMSProp,
FAdam and FadamP, respectively, with ν in the interval 0.1 to 1.9 and step equals to 0.1.

In Figure 8, a few candidates can be identified as “the winners”, although there is no a
strong dominant case. The most relevant cases of Figure 8 are

• FRSMProp at ν = 0.5. This case has a superior and more compact behavior compared
with the integer case v = 1.0.

• FRSMProp at ν = 1.4. This case has similar performance to that of RMSProp (ν = 1.0,
average 89% and standard deviation 1.68), but the case ν = 1.4 is slightly higher
(average 89.5% and standard deviation 1.52).

In Figure 9, FAdam with ν = 1.1 can be considered better than for ν = 1.0 since
the first has an average accuracy equals to 87.7 (1.15% over the case ν = 1.0) although it
certainly has a slightly larger standard deviation (+0.43) than for the case ν = 1.0.

According to Figure 10, FAdamP with ν = 1 (i.e., AdamP) can be considered the best
(just in FadamP category) since is not possible to identify a convincingly better case than
accuracy 88% and standard deviation = 0.84. However, when comparing group 2, FadamP
is improved by FRSMProp at ν = 1.4.

In general, for this Experiment 2.2, the best cases correspond to FRSMProp, but it is also
important to mention that group 2 outperformed the group 1 accuracies of Experiment 2.1.

Figure 8. Experiment 2.2: FRMSProp cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Figure 9. Experiment 2.2: FAdam cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Appl. Sci. 2022, 12, 9264 14 of 21

Figure 10. Experiment 2.2: FAdamP cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

3.3. Experiment 3

In Experiment 3, the dataset “Human Activity Recognition Using Smartphones” [30]
was used. It contains data from 30 subjects performing one of six activities: walking,
walking upstairs, walking downstairs, sitting, standing and laying. The data were collected
while wearing a waist-mounted smartphone, and the movement labels were manually
obtained from videos.

Originally, the dataset was split into 70% for training and 30% for testing. Both training
and testing subsets were mixed to obtain a unified dataset and to apply cross-validation
with K = 4 folds and shuffle, that produces a fold size of 25% of the whole, which yields to
75% for training and 25% for testing, trying to match the original split of 70% + 30%.

The optimizers were studied with the same groups of Experiment 2, because of
their behavior.

3.3.1. Experiment 3.1

The source code was adapted from [32] to include optimizers FSGD, FSGDP, FAdagrad
and FAdadelta. Crossfolding was applied for each optimizer, moving ν from 0.1 to 1.9 with
steps of 0.1.

The learning rate was 0.001 and the momentum γ was equal to 0.1. The results for
FSGD, FSGDP, FAdagrad and FAdadelta are shown in Figures 11–14 as boxplots, where it
is possible to see essentially the same tendency for each optimizer: increasing conform ν
increases to reach a maximum and then decreases. FSGD and FSGDP decrease abruptly for
ν ≥ 1.7 (see Figures 11 and 12). The highest average accuracies are at ν = 1.6 for FSGD and
FSGDP with accuracies of 76.3% and 76.4%, respectively.

In the case of Figure 13 for FAdagrad, the maximum average accuracy is 80.9% at
ν = 1.7. FAdadelta in Figure 14 presents the worst performance, given that the maximum
is 53.5% at ν = 1.8.

Again, in this experiment, it is possible to appreciate the influence of the fractional
factor f ν

w to modify the accuracy.

3.3.2. Experiment 3.2

In Figures 15–17, boxplots are shown for the accuracies of K = 4 folds of FRMSProp,
FAdam and FadamP respectively.

Appl. Sci. 2022, 12, 9264 15 of 21

Figure 11. Experiment 3.1: FSGD cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Figure 12. Experiment 3.1: FSGDP cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Figure 13. Experiment 3.1: FAdagrad cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Appl. Sci. 2022, 12, 9264 16 of 21

Figure 14. Experiment 3.1: FAdadelta cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

From these three figures, the next relevant cases were observed for each case independently:

• FRMSProp. In Figure 15, the case ν = 1.0 is improved by the rest of the cases,
except ν = 1.8.

• Fadam. In Figure 16, the case ν = 1.0 is improved by the accuracy at ν = 1.2.
• FadamP. In Figure 17, the case ν = 1.0 is improved by the accuracy at ν = 0.9.

In this experiment, FRMSProp does not have better performance than FAdam and
FAdamP; however, the fractional order seems to slightly modify the performance, and
in most cases, a value other than 1.0 provides better accuracy.

Figure 15. Experiment 3.2: FRMSProp cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Appl. Sci. 2022, 12, 9264 17 of 21

Figure 16. Experiment 3.2: FAdam cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Figure 17. Experiment 3.2: FAdamP cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

3.3.3. Experiment 3.3

Finally, the same experiments 3.2 and 3.2 were repeated with 10 folds, and similar
results were obtained. An overview of the accuracies of both groups, group 1 (FSGD,
FSGDP, FAdagrad, FAdadelta) and group 2 (FRMSProp, Fadam, FAdamP), is shown as
boxplots in Figures 18 and 19. The boxplots correspond to each optimizer listed in groups 1
and 2, for ν ∈ [0.1, 1.9] with increments of 0.1.

In Figure 18, it is possible to appreciate the highest accuracy for FAdagrad at ν = 1.7,
whereas in Figure 19, the highest accuracy is for FAdam at ν = 1.2.

Appl. Sci. 2022, 12, 9264 18 of 21

Figure 18. Experiment 3.2: Group 1, cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Figure 19. Experiment 3.2: Group 2, cross-folding accuracies, K = 4 folds, ν ∈ [0.1, 1.9].

Once the experiments have been carried out, it is convenient to mention that, similar
to the integer case, a geometric interpretation can be given to Equation (24) as a gradient

Appl. Sci. 2022, 12, 9264 19 of 21

at the region of interest on the error surface. The main benefit of fractional v-derivative
over the integer version is the expansion of the region of search around the test point given
by v and the weights wl

kj [33]. In this sense, the benefit is provided by the factor f v
w of

Equation (25), and to explore the effect of non-locality, a 3D plot is shown in Figure 20. It is
possible to identify four regions with different behavior:

1. Region A: For v → 0+. The factor f v
w follows |wl

kj| and it could produce divergence

for wl
kj and consequently for f v

w, and for the fractional gradient Dν
wl

kj
Ei.

2. Region B: For v = 1. The integer case corresponds to the red line f v
w = 1. No context

information is considered, just the local point.
3. Region C: For 1 < v < 2. The surface f v

w reaches a local maximum f v∗
w = 8.75 at

v∗ = 1.77 for ε = 0.01.
4. Region D: For v→ 2−. f v

w tends to zero as fast as |wl
kj| increases. It promotes that small

weights increase its values and move to the flatter region, where they will stabilize.

The Cartesian axes in Figure 20 are as follows:

• x-axis. The weights wl
kj.

• y-axis. Fractional value v ∈ (0, 2).
• z-axis. The fractional factor f v

w that modifies the integer order gradient.

Figure 20. Plot for the fractional factor f v
w with ε = 0.01

In Figure 20 there is a yellow plane at f v
w = 1 used as reference for the red line of the

integer case.
It is noteworthy that in region C, the experimental accuracies of the fractional optimiz-

ers (depending of v) follow a similar behavior to f v
w. For now, it is just an observation that

merits exploring the possible relationship between the optimal fractional order v∗ and the
region of best accuracy for fractional optimizers.

4. Discussion

Unlike other optimizers that have been proposed, alluding mainly to concepts such
as momentum or velocity, in this paper, gradient descent variants are proposed based on
fractional calculus concepts, and specifically on the Caputo fractional derivative.

The proposed fractional optimizers add the prefix “F” to original names, and their
update formulas essentially aggregate the f ν

w factor defined in such a way that the limit
exists when the v-order derivative tends to 1, which leads to a more general formula that
includes the integer order as a special case.

Fractional optimizers are slightly more expensive computationally because they re-
quire computing the f ν

w factor. However, they are still very competitive because the
computation is performed efficiently through Tensorflow, and the additional advantage
is that the fractional factor transfers non-local exploring properties, rather than just con-
sidering an infinitely small neighborhood around a point on the error surface as in the

Appl. Sci. 2022, 12, 9264 20 of 21

integer case, which experimentally is traduced in the improvement of the performance of
fractional optimizers.

The fractional factor f ν
w provides an additional degree of freedom to the backpropa-

gation algorithm, and consequently, to the learning capacity of neural networks, as was
shown in several experiments.

The fractional optimizers were successfully implemented in Tensorflow–Keras with
modifications to the original source code to obtain FSGD, FSGDP, FAdagrad, FAdadelta,
FRMSProp, FAdam and FAdamP classes. Everything indicates that it is possible to apply
the same methodology to modify other gradient-based optimizers, as well as making
implementations in other frameworks.

Three experiments were carried out with MNIST and two HAR datasets. The results on
crossfolding show that in all the experiments, a fractional order provides better performance
than the first order for the same neural network architectures.

In the experiments, FSGD, FSGDP, FAdagrad and FAdadelta (group 1) basically follow
the same pattern of increasing their performance as the ν-order does, obtaining a maximum
and then decreasing.

Other optimizers, such as FRMSProp, FAdam and FAdamP (group 2), do not follow
the same pattern, and seem to be less susceptible to the fractional order change. From the
experiments, it can be said that FRMSProp has an “intermediate” pattern between the
optimizers of group 1 and group 2.

Even so, essentially in all the experiments, the best performing derivative order was a
fractional value.

Therefore, based on the results, it is possible to affirm that fractional derivative gradient
optimizers can help to improve the performance on the training and validation task,
and opens the possibility to include more fractional calculus concepts to neural networks
applied to HAR.

The Tensorflow–Keras implementations of this work are available in a repository
to contribute to the deep learning and HAR communities to improve and apply these
techniques based on fractional calculus.

Future works include exploring more fractional derivative definitions and HAR
datasets with fractional regularization factors as well as studying the effects in vanishing
gradient problems with other neural network architectures.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Tensorflow-Keras implementations of this work are available at
http://ia.azc.uam.mx/.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Haykin, S.S. Neural Networks and Learning Machines, 3rd ed.; Pearson Education: Upper Saddle River, NJ, USA, 2009.
2. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
3. Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.

J. Mach. Learn. Res. 2011, 12, 2121–2159.
4. Zeiler, M.D. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701.
5. Tieleman, T.; Hinton, G. Neural Networks for Machine Learning; Technical Report; COURSERA: Mountain View, CA, USA, 2012.
6. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization, 2014. In Proceedings of the 3rd International Conference for

Learning Representations, San Diego, CA, USA, 7–9 May 2015.
7. Heo, B.; Chun, S.; Oh, S.J.; Han, D.; Yun, S.; Kim, G.; Uh, Y.; Ha, J.W. AdamP: Slowing Down the Slowdown for Momentum

Optimizers on Scale-invariant Weights. In Proceedings of the International Conference on Learning Representations (ICLR),
Virtual Event, 3–7 May 2021.

8. Podlubny, I. Mathematics in Science and Engineering. In Fractional Differential Equations; Academic Press: Cambridge, MA, USA,
1999; Volume 198, p. 340.

http://ia.azc.uam.mx/

Appl. Sci. 2022, 12, 9264 21 of 21

9. Oustaloup, A. La dérivation non Entière: Théorie, Synthèse et Applications; Hermes Science Publications: New Castle, PA, USA, 1995;
p. 508.

10. Luchko, Y. Fractional Integrals and Derivatives: “True” versus “False”; MDPI: Basel, Switzerland, 2021. [CrossRef]
11. Miller, K.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993.
12. Bao, C.; Pu, Y.; Zhang, Y. Fractional-Order Deep Backpropagation Neural Network. Comput. Intell. Neurosci. 2018, 2018, 7361628.

[CrossRef] [PubMed]
13. Wang, J.; Wen, Y.; Gou, Y.; Ye, Z.; Chen, H. Fractional-order gradient descent learning of BP neural networks with Caputo

derivative. Neural Netw. 2017, 89, 19–30. [CrossRef] [PubMed]
14. Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011,

16, 1140–1153. [CrossRef]
15. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity, 2nd ed.; World Scientific: Singapore, 2022; Number 2, p. 628.
16. Muresan, C.I.; Birs, I.; Ionescu, C.; Dulf, E.H.; De Keyser, R. A Review of Recent Developments in Autotuning Methods for

Fractional-Order Controllers. Fractal Fract. 2022, 6, 37. [CrossRef]
17. Yousefi, F.; Rivaz, A.; Chen, W. The construction of operational matrix of fractional integration for solving fractional differential

and integro-differential equations. Neural Comput. Appl. 2019, 31, 1867–1878. [CrossRef]
18. Gonzalez, E.A.; Petráš, I. Advances in fractional calculus: Control and signal processing applications. In Proceedings of the 2015

16th International Carpathian Control Conference (ICCC), Szilvasvarad, Hungary, 27–30 May 2015; pp. 147–152. [CrossRef]
19. Henriques, M.; Valério, D.; Gordo, P.; Melicio, R. Fractional-Order Colour Image Processing. Mathematics 2021, 9, 457. [CrossRef]
20. Shoaib, B.; Qureshi, I.M.; Shafqatullah; Ihsanulhaq. Adaptive step-size modified fractional least mean square algorithm for

chaotic time series prediction. Chin. Phys. B 2014, 23, 050503. [CrossRef]
21. Tarasov, V.E. On History of Mathematical Economics: Application of Fractional Calculus. Mathematics 2019, 7, 509. [CrossRef]
22. Alzabut, J.; Tyagi, S.; Abbas, S. Discrete Fractional-Order BAM Neural Networks with Leakage Delay: Existence and Stability

Results. Asian J. Control 2020, 22, 143–155. [CrossRef]
23. Ames, W.F. Chapter 2—Fractional Derivatives and Integrals. In Fractional Differential Equations; Podlubny, I., Ed.; Mathematics in

Science and Engineering; Elsevier: Amsterdam, The Netherlands, 1999; Volume 198, pp. 41–119. [CrossRef]
24. Garrappa, R.; Kaslik, E.; Popolizio, M. Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and

Tutorial. Mathematics 2019, 7, 407. [CrossRef]
25. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 8 September 2022).
26. Chollet, F.; Zhu, Q.S.; Rahman, F.; Lee, T.; Marmiesse, G.; Zabluda, O.; Qian, C.; Jin, H.; Watson, M.; Chao, R.; et al. Keras. 2015.

Available online: https://keras.io/ (accessed on 4 July 2022).
27. Google Inc. Google Colab. 2015. Available online: https://colab.research.google.com (accessed on 4 July 2022).
28. Deng, L. The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 2012,

29, 141–142. [CrossRef]
29. Actitracker. Available online: http://www.cis.fordham.edu/wisdm/dataset.php (accessed on 4 July 2022).
30. Reyes-Ortiz, J.L.; Anguita, D.; Ghio, A.; Oneto, L.; Parra, X. Human Activity Recognition Using Smartphones Dataset. Available

online: https://archive.ics.uci.edu/ml/machine-learning-databases/00240 (accessed on 4 July 2022).
31. HAR Using CNN in Keras. Available online: https://github.com/Shahnawax/HAR-CNN-Keras (accessed on 4 July 2022).
32. Jason, B. How to Model Human Activity from Smartphone Data. Available online: https://machinelearningmastery.com/how-

to-model-human-activity-from-smartphone-data/ (accessed on 4 July 2022).
33. Khan, S.; Ahmad, J.; Naseem, I.; Moinuddin, M. A Novel Fractional Gradient-Based Learning Algorithm for Recurrent Neural

Networks. Circuits Syst. Signal Process. 2018, 37, 593–612. [CrossRef]

http://doi.org/10.3390/ books978-3-0365-0494-0
http://dx.doi.org/10.1155/2018/7361628
http://www.ncbi.nlm.nih.gov/pubmed/30065757
http://dx.doi.org/10.1016/j.neunet.2017.02.007
http://www.ncbi.nlm.nih.gov/pubmed/28278430
http://dx.doi.org/10.1016/j.cnsns.2010.05.027
http://dx.doi.org/10.3390/fractalfract6010037
http://dx.doi.org/10.1007/s00521-017-3163-9
http://dx.doi.org/10.1109/CarpathianCC.2015.7145064
http://dx.doi.org/10.3390/math9050457
http://dx.doi.org/10.1088/1674-1056/23/5/050503
http://dx.doi.org/10.3390/math7060509
http://dx.doi.org/10.1002/asjc.1918
http://dx.doi.org/10.1016/S0076-5392(99)80021-6
http://dx.doi.org/10.3390/math7050407
tensorflow.org
https://keras.io/
https://colab.research.google.com
http://dx.doi.org/10.1109/MSP.2012.2211477
http://www.cis.fordham.edu/wisdm/dataset.php
https://archive.ics.uci.edu/ml/machine-learning-databases/00240
https://github.com/Shahnawax/HAR-CNN-Keras
https://machinelearningmastery.com/how-to-model-human-activity-from-smartphone-data/
https://machinelearningmastery.com/how-to-model-human-activity-from-smartphone-data/
http://dx.doi.org/10.1007/s00034-017-0572-z

	Introduction
	Materials
	Fractional Derivatives
	Backpropagation for Neural Networks
	Fractional Derivative and Gradient Descent
	Tensorflow Implementation of Fractional Gradient Optimizers

	Results
	Experiment 1
	Experiment 1.1
	Experiment 1.2
	Experiment 1.3

	Experiment 2
	Experiment 2.1
	Experiment 2.2

	Experiment 3
	Experiment 3.1
	Experiment 3.2
	Experiment 3.3

	Discussion
	References

