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Abstract: The addressing and discovering service is a vital infrastructure of the Internet. New
applications and scenarios in next-generation networks rely on the secure and stable operation of
domain name services, which puts forward new security challenges for the original domain name
mechanism. While previous security enhancements of network services struggled to strike a balance
between security, performance, and compatibility, hindering further use of core network services, the
TEE (Trusted Computing Environment) technology can provide trusted and confidential services
in untrusted network environments by verifiable hardware signatures. In this paper, we present a
novel trustworthy service architecture with the preservation of security and privacy for addressing
messages. The scheme provides a secure enclave to generate authenticatable responses between
clients and targets, thus ensuring the privacy of services. We further build a new TEE compilation
model to ensure that the built resolver application can provide trusted and secure services within
TEE while keeping the availability without the TEE hardware. Experimental results show that our
approach can enhance the privacy and security of addressing services such as DNS (Domain Name
System) without sacrificing the quality of service and breaking the infrastructures of existing services.

Keywords: privacy; TEE; compatibility; DNS; digital signature

1. Introduction

With the advent of the Internet and next-generation networks, traditional network
services are playing a new role in emerging scenarios such as IoT (Internet of Things) and
IoV (Internet of Vehicles) [1–3]. As the infrastructure of the Internet, DNS is playing more
roles, including: (i) domain name resolution services; (ii) routing and load balancing for
the application layers of the Internet; (iii) verification for mail servers; (iv) discovering
and addressing services for digital devices [4,5]. However, the proliferation of connected
devices has led to increased opportunities for data and identity leakage due to the coverage
of new embedded technologies and interconnected networking.

As a fundamental and widely used Internet service, discovering and addressing
services such as DNS and Multicast DNS (mDNS) have to run properly to prevent com-
munication from collapsing. Once basic services such as DNS are attacked, the entire
Internet will be affected [6–8]. These services are not only an address translation service
but also provide authentication and improve security services for Internet applications.
However, current services are concentrated on availability and ignore security [9–11]. The
vulnerabilities of services can be exploited to attack network systems and collapse all live
hosts and applications [12,13]. When being collected by an eavesdropper with pervasive
monitoring, the plaintext information carried in transactions can lead to serious threats to
privacy. Attackers may lead applications to fake servers controlled by hackers and commit
illegal acts such as phishing fraud and sensitive data leakage.

The massive amount of data composed of various traces of Internet applications
provides worthy attack targets for big data analysis technology. The machine learning
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algorithm may be utilized to further analyze the application’s behaviors according to logs.
Data that does not involve sensitive information, such as DNS query records, may also
lead to serious data leakage accidents through machine learning methods such as neural
networks and feature learning [14]. Another practice challenge is that they often run in
an untrusted cloud environment, such as Cloudflare and Google, so the client is not sure
whether the resolved result is trusted. Cloud services turn out to be vulnerable to outside
threats or privileged hypervisors [15]. Users cannot prevent servers from reserving or
leaking communicated messages. Because of the complexity of applications and limitations
in systems, data security based on software alone often fails [16,17].

To address the above issues, we devise the usage of TEE [18] as an important way to
enhance the security and privacy of the data and execution in network services. The basic
idea is to use Intel Software Guard Extensions (SGX) [19] to implement a trusted service
called DoTT (Domain service over Trusted Transport Layer Security). DoTT establishes a
trusted TLS connection between the addressing client and resolver, which runs in a secure
container to prevent eavesdropping and snooping. We further reconstruct the build process
of the resolver application to make it run on both the TEE and normal environments for
backward compatibility. The contributions of our paper are listed as follows:

1. To enhance the security of DNS, we design a privacy-preserving and trustworthy
addressing and discovering service based on TEE technology.

2. To deal with the hardware limitations of SGX and reduce the cost of adopting the new
framework, we build a novel compilation model for the widespread deployment of
trusted services and the correctness of refactored code.

3. To evaluate compatibility and compare our scheme with existing improvements, we
implement a prototype system using Intel SGX. Experimental results show that the
proposed DoTT can effectively maintain the low latency of DNS when preserving
privacy.

We arrange the rest of the paper as follows. To begin with, we will provide back-
grounds and related work on Internet services and TEE in Section 2. In Section 3, we
propose a novel privacy-preserving and back-compatible architecture to run network ser-
vices in untrusted cloud environments. Section 4 evaluates compatibility experiments
and compares our scheme with existing improvements. Finally, we give a conclusion in
Section 5.

2. Backgrounds and Related Work
2.1. The Addressing and Discovering Service

When an application requests a website or a networking service by a domain name,
the application first sends a query request to the recursive resolver. If the resolver caches the
appropriate IP address, it will forward the address directly to the application. Otherwise,
the resolver queries other name servers (NS) such as root name servers, top-level domain
name servers (TLD), and authoritative name servers, as well as hierarchical trees. The
iterative queries continue until it retrieves a DNS record containing the requested IP address,
which will be forwarded back to the requester in turn. The application can request the
actual webpage once the DNS lookup returns the IP address for a queried domain name.

The security of the DNS infrastructure is one of the core requirements for Inter-
net services. To address the drawbacks of DNS, many improvements and extensions
follow [12,14]. DNS evolved from a simple name-IP conversion service to a complex and
secure resolution service. Table 1 presents the feature comparison of existing methods. The
plain DNS denotes the normal DNS protocol. If the performance of the new mechanism
is on the same order of magnitude as plain DNS when handling DNS requests, we think
it has performance advantages. Deployability denotes deployment friendliness; that is,
whether this method needs to update or migrate the existing DNS software. If the proposed
DNS scheme is compatible with the existing technologies, such as TLS and HTTPS, we
think it is easy to deploy. If one scheme can provide integrity and origin authentication
for DNS data, we consider it to have authentication features. The security of the DNS
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infrastructure is one of the core requirements for Internet services. The breach in DNS
security and privacy will affect the trust-worthiness of the Internet in turn. The DNSSEC
scheme [8] is first proposed to complement the original protocol for DNS data integrity
and origin authentication. The Internet Engineering Task Force (IETF) further proposes
DNS-over-HTTPS (DoH) and DNS-over-TLS (DoT) to standardize DNS encryption and
protect DNS from eavesdropping and manipulation of DNS data. With increasing focus
on privacy and iterative updating of the software and system, DNS clients supporting
DoT and DoH are increasing. However, two significant drawbacks remain. The only score
DoTT did not achieve against the plain DNS was performance, which is an essential cost of
securing a system. On the other hand, the prototype system we implemented only utilizes
SGX features without further optimization. We will discuss more details about DoTT in
Section 3.

Table 1. Feature comparisons among previous DNS schemes.

Scheme Privacy Authentication Performance Deployability

Plain DNS 7 7 3 3

DNSSEC 7 3 7 3

DNSCrypt/DNSCurve 3 3 7 3

ConfidentialDNS 3 3 7 7

DNS-over-TLS 3 7 7 3

DNS-over-
HTTPS 3 7 7 3

DoTT (Our) 3 3 7 3

The first is software vulnerabilities. As mass devices need cross-domain communica-
tion, the Internet needs perfect resource addressing technology to ensure that the related
information can be efficiently addressed, located, and queried. In the original design and
still dominant use of DNS, queries are sent in plaintext. The metadata in a DNS query
contains sensitive information, including accessed hostname, websites, as well as IP ad-
dresses identifying personal devices. This means that anyone on the network path between
personal devices and DNS resolvers can see the query. The breach in DNS security and
privacy will affect the trust-worthiness of the Internet in turn. The resource records are
not signed and anti-counterfeiting protected. Therefore, the DNS protocol is vulnerable to
caching and malicious attacks such as poisoning, eavesdropping, tampering, etc. Further, it
may reveal significant information about users and result in a serious threat to individual
privacy [13]. The resolver can still associate all queries with the customer’s sensitive data.
There is a great challenge to ensure the integrity of DNS programs and the reliability of
responses. The second is backward compatibility. A large spectrum of improved systems
and architectures for DNS have been proposed without considering the compatibility with
existing systems. Hence, they are difficult to be adopted by network operators. The use of
secured protocols comes with problems, including compromising conventional network ar-
chitectures. For example, 10 years after DNSSEC was put forward, it has not been deployed
on a large scale. The deployment of DNSSEC is only 3% of the total in the second-level
domain [12].

DNSSEC [20] is the earliest DNS security protocol to reduce the risk of a man-in-the-
middle attack and ensure the integrity of DNS data by issued certificates. Since DNS has
not considered the security mechanism in the domain name resolution, the extension gives
resolvers the ability to perform authentication and data integrity checks on the replies.
The root service of the Internet domain name started to deploy the DNSSEC service in
2010, which marked the development of the domain name service to the security service.
Full deployment of DNSSEC ensures that the end-user connects to the actual website or
another service that corresponds to a specific domain name. However, we have to deploy
this technology at every step of the lookup, from the root servers to the final authoritative
servers. Hence, its current usage is still low. Moreover, DNSSEC simply verifies that the
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resolved address we are requesting is valid but does not encrypt data. The vulnerability
may be exploited by hackers to collect information about users.

DNSCurve [21] is another security extension of DNS based on the existing DNS
architecture. It uses the more efficient elliptic curve encryption algorithm to reduce the
computational cost for encryption and cryptographically authenticates all DNS responses.
Encrypting DNS messages using DNSCurve does not introduce additional query latency
since the server’s public key is stored in NS records and sent to the client. DNSCrypt is
an implementation of DNSCurve and has been deployed on OpenDNS to address privacy
issues. ConfidentialDNS uses a similar DNS extension mechanism to offer privacy for the
DNS protocol. It proposes a new resource record type, ENCRYPT, to transmit the public
key of the DNS server to the client. However, DNSCrypt and ConfidentialDNS have not
applied for inclusion in standardized documents, which limits the large-scale deployment.

Unlike the traditional security extension standard, DNS-over-TLS (DoT) [22] focuses
more on the encryption of DNS interaction messages. Network applications, including file
transfers, web browsing, and remote desktop, rely on the TLS to securely exchange data and
handle privacy authentication and integrity. The IETF Request For Comments (RFC) [22]
defined a way to encrypt and transmit DNS packets using TLS. DoT is a privacy-preserving
mechanism designed to address DNS spoofing and cache pollution and makes data tam-
pering more difficult, which can defend against such attacks by encrypting messages by a
secure TLS channel.

DNS-over-HTTPS (DoH) [23] uses HTTPS or HTTP/2 for private connections. The
use of HTTPS encryption for web servers has gained widespread acceptance. The resolving
results returned by DNS servers are signed, and any misbehavior will be caught. Unlike
its competitor DoT, DoH does not encrypt a single query but transmits it through an
encrypted tunnel between the client and the server. Hence, we are unable to identify DNS
queries from all other web traffic. Although famous web browsers, including Mozilla, have
announced the support for DoH in published browsers, it will bypass child pornography
and lose visibility over network traffic. The DoH makes it impossible for network operators
to maintain control.

2.2. Intel SGX

TEE is a secure container that runs and protects sensitive code and data inside a CPU.
As the operating system becomes larger and more complicated, it is impossible to get
rid of a diverse set of vulnerabilities [18,24]. Typical encryption algorithms and security
mechanisms are suitable for data storage and transmission but often fail to preserve the
security of data during execution and usage. While applications can create encrypted
memory areas for program execution in a user layer, such as Intel SGX [19] and ARM
TrustZone [25]. These areas can be seen as enclaves isolated from any other privileged
code in a host. The processor only allows code that is measured and loaded in the enclave
to access sensitive data. Applications running in enclaves are free from sniffing and
corruption when interacting with normal system interfaces. Even if privileged system
software, including BIOS and OS, is compromised, the enclave still ensures that the code and
data are not tampered with or monitored, which ensures the integrity and confidentiality
of the code and data.

Intel SGX is one of the most widely used TEEs in practice [26]. Intel has added SGX
support to most CPUs after its sixth-generation architecture. TrustZone requires signature
verification from hardware manufacturers to run in a secure execution environment, which
limits its deployment by software developers [25]. The Intel CPU provides a dedicated
execution environment isolated from the normal operating system. Developers can divide
the core functions of applications into hardened enclaves to improve the security of their
applications while reducing the attack surface [27]. To realize the switching between the
two environments, bridge functions will pass ECALL/OCALL instructions to enter and
exit the enclave environment [28]. The code of E/OCALL has been generated automatically
according to a function declaration file. However, mandatory code separation brings many
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challenges to the development of SGX applications [29]. Developers often have to refractor
existing codes to adapt to SGX-specific development models [30].

SGX supports two types of authentication, local authentication (LA) and remote
authentication (RA) [31]. Utilizing the RA feature, an enclave can prove that it has not been
compromised and is running on a genuine SGX-enabled hardware platform. The remote
authentication protocol involves two intel-controlled services: Quoting Enclave (QE) and
an Intel Attestation Service (IAS), which act as authentication providers and verifiers,
respectively. As important research progress in the field of trusted computing, Intel SGX
offers an efficient solution for anonymous authentication and verification [28,32,33]. Besides
shielding systems [34,35], SGX is also used to enhance the security of applications such as
machine learning [33–37], intrusion detection framework [36], serverless [26,38], and cloud
computing.

This strong isolation of SGX makes it difficult to share code or data between enclaves.
The authors of [27] propose a single-address-space approach, which runs all processes
in a single enclave and enables memory-sharing in library OSes. To evaluate network
trust and incent collection nodes to share security-related data for intrusion detection, the
authors propose [36] an SGX-enabled decentralized intrusion detection framework based
on blockchain to avoid forking and honestly perform intrusion detection.

The remote authentication in Intel SGX is a key step for relying on parties to build
secure connections between a client, which holds the sensitive data and the enclave. To fill
this gap between practical developments and formal proof for attestation services in SGX,
the authors of [31] adopt a formal approach for the verification of third-party attestation
and prove Intel SGX provides the announced confidentiality of secrets and integrity of the
evidence.

One of the security concerns about SGX is side-channel attacks. To mitigate the
side-channel attack and system call snooping against the SGX technology, the authors
of [39] adapt the ORAM protocol to present a data-oblivious filesystem. To further address
notorious performance issues of ORAM, the authors of [40] leverage an external device,
FPGA, to implement a trusted storage service within a completely isolated environment
secure from side-channel attacks.

2.3. The List of Abbreviations

Table 2 provides the list of abbreviations used in this paper.

Table 2. The list of abbreviations used in this paper.

Abbreviation Term

DNS Domain Name System
IoT Internet of Things
IoV Internet of Vehicles
TEE Trusted Computing Environment
SGX Software Guard Extensions
TLS Transport Layer Security

DoTT Domain service over Trusted Transport Layer
Security

DoT DNS-over-TLS
DoH DNS-over-HTTPS

ECALL Enclave Calls
OCALL Outside Calls

NS Name Server
RA Remote Attestation
QE Quoting Enclave
IAS Intel Attestation Service

DCAP Data Center Attestation Primitives
mDNS Multicast DNS

3. A Trusted and Backward-Compatible Addressing Service

Security and privacy have become important considerations when using network
services in the ever-changing public environment. DNS is being used on kinds of platforms,
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operating systems, and applications. It must be hardened to avoid undesired or malicious
attacks.

3.1. Trusted Service

To offer confidentiality and integrity for DNS programs, we propose a trusted and
backward-compatible DNS based on the Intel SGX. In this service, a resolver running
in an enclave is introduced into the traditional DNS infrastructure. After verifying the
attestation evidence of a resolver and establishing an authenticated TLS channel, the DoTT
encapsulates the encrypted query content in a standard DNS message to keep it from
exposure and disclosure to unwanted parties.

The flow of the authenticatable DNS service for privacy-preserving is illustrated in
Figure 1. The DNS client is a stub process that can run in a normal environment without
the SGX hardware. This stub is responsible for receiving and forwarding DNS resolution
requests from various web applications, such as browsers that run on the same host as
these applications. Benefiting from the design of DNS, we can enhance the privacy of
DNS by simply replacing the regular certificate validation in TLS with a Quote report
validation from an IAS. This change has less impact on the existing architecture and is
transparent to the upper-layer web applications. We assume that: (i) the DNS stub (denoted
as S) has deployed a list of trusted DoTT values (denoted as L); (ii) there is a channel
between the DoTTs (denoted as D); (iii) public domain name servers (denoted as NS) are
safe and faithful; (iv) there are no vulnerabilities and malicious code inside the enclave.
This assumption is reasonable since enclave code is often developed by users themselves
and has been audited.

Figure 1. DoTT: The privacy enhancement framework for DNS based on TEE (Intel SGX).

The DoTT consists of two stages: (i) the remote attestation and the establishment of a
secure channel between the DNS client (stub) and the DNS resolver (DoTT); (ii) the private
DNS query based on the TLS channel. The first stage closely integrates TLS with the remote
authentication using SGX features as follows:
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1. When web applications initiate a DNS query (denoted as R), the S will check whether
a TLS connection has been established.

2. The S directly forwards R to D using the encrypted channel if the connection is
established. When D receives the request, it will get the IP address corresponding to
the request from the NS as the conventional recursive resolving method and return it
to S.

3. The S will challenge D by sending a nonce to it if the connection is not established. To
convince R that it is a genuine Intel SGX enclave running on an authenticatable DNS
resolver, D first performs the LA with the quoting enclave (donated as Q) in the local
machine. If S succeeds in generating an authentication message (denoted as M), Q
will sign the hash value of the authentication result, which comprises the public key
of D.

4. After receiving the report, S can forward it to the IAS, which is a public webserver
to provision a message generated by genuine Intel hardware. We can also adopt
the Intel SGX DCAP [31] (Data Center Attestation Primitives) as an alternative to
provision attestation services into a user-side database. After registering the genuine
information to DCAP during the deployment phase, the whole remote attention
procedure can be finished without an Internet connection in DCAP. After validating
the reported signature using the certificate of IAS, S will check the enclave identify
(MRENCLAVE) is in the list L. Then, the DNS stub can assure that DoTT is running
a genuine SGX enclave and uses the public key hash in M for the following TLS
connection.

5. Once S confirms the authentication and validation of M, it will exchange a symmetric
session key (donated as K) to encrypt subsequent DNS queries. Therefore, S and D
can communicate in an authenticated and privacy-preserving way with K.

3.2. Backward-Compatible Service

As shown in Figure 1, DoTT is separated into two parts: the untrusted system runs
in normal environments, and the trusted part runs in an enclave. To ensure the minimum
attack surface, SGX limits the code that can be run in an enclave. In the SDK provided by
SGX, only basic operation functions are included, while file I/O and network communica-
tion functions are forcibly separated into untrusted codes. Hence, the existing codes must
be refactored to run in SGX. The code separation in the development model of SGX brings
challenges to the transplantation of existing software [41]. First, it takes a lot of time to
divide the code into trusted and untrusted parts. Second, there is no guarantee that the
reconstructed code is completely compatible with the original. The code refactoring risks
damaging the existing system.

To avoid the problem of rewriting all DNS codes, we propose a new compiling model,
as shown in Figure 2. We first replace the part of the existing code that needs to be run
in SGX with a scaffold function. This tool will selectively execute the SGX and normal
functions with the same logic according to the runtime environment. For example, the
original file reading function fread(args. . . ) can be replaced by common_ecall (read, ret,
sgx_fread, fread, args. . . ). common_call will be extended to a branch function during the
compilation process. It will first check whether the current host has the SGX feature at the
runtime. If it is supported, the function sgx_fread of the SGX version will be called, and
the original fread function will be called in turn. The parameters (args) can be transferred
from the normal environment to the enclave by using the sgx_edger, a compilation tool
provided by Intel SGX SDK through stub functions.
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Figure 2. The backward-compatible compilation model for refactoring the code of a DNS resolver.

In addition to the code, we need to refactor the linking process. The SGX technology
limits the use of standard libc functions and only provides a small number of system
abstractions for developers due to security considerations and design limitations. In
addition to simple macro replacement (common_ecall), we also need to move the code to
be run in an SGX enclave to a common file. During the linking process, this common code
will be compiled into a static (.a) file first and then linked with SGX runtime libraries into a
signed resolver.signed.so file. At the same time, we will compile and generate a normal
resolver.so file. This compilation and linking process are all performed automatically.
We chose Bazel [42], a scalable and extensible build system, to define a new library rule
named enclave_library in the implementation. The prototype is enclave_library (name, edl,
trusted_hdr, trusted_src, untrusted_src, hdrs, untrusted_deps) where name indicates the
generated library name, edl indicates the original SGX interface description file, trusted_hdr
and trusted_src, respectively, indicate the header file and source codes to be compiled into
trusted .so file, and untrusted_src and untrusted_deps indicate the untrusted source codes
dependent files.

Notes that untrusted code can call the code in the trusted file, while trusted code
cannot call untrusted code conversely. The compilation model we propose will generate
two sets of codes and runtime libraries for an application. In a non-SGX environment,
untrusted code plus trusted code is the same as the code logic in the original DNS resolver.
To make the non-SGX runtime of DoTT compatible with the authentication process, when
the DNS stub launches a challenge, the non-SGX DoTT will return an empty Quote, and
then the stub will ignore the report verification and continue the TLS establishment process.
This change does not affect the security assumptions in the DoTT.

Through this new compilation model, we only need to make small changes to the
original code and move part of the code to a new file. Since we have also generated a
non-SGX version of runtime libraries, we can first test DoTT in the normal environment and
verify that the logic of the changed program is still correct. Unlike other enclave-specific
applications developed for SGX, we can make an application both run in SGX and a normal
environment at the same time through the new compilation and extension, thus enhancing
the backward compatibility and reducing the risk of code refactoring.
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3.3. Optimization for SGX

We use DoTT to encrypt and decrypt the DNS stub and NS to ensure the privacy and
security of DNS messages. However, SGX is only an extended instruction set of CPU, which
can only perform various arithmetic operations and lacks the network communication
function required by TLS. Therefore, we started a network listening process and a network
request process in the untrusted part of DoTT, one for receiving DNS query requests, the
other for forwarding requests to NS and receiving resolution results. The ECALL/OCALL
overhead of SGX will also reduce the processing performance of DoTT. To reduce the
forwarding operation of ECALL/OCALL between the system and the enclave, we also
started two threads in the DoTT enclave, one of which will immediately respond and
decrypt the message after the external process receives the query request. When receiving
the resolving result, the other thread will use the session key to perform an encryption
operation and return the result to a DNS client in the form of ciphertext.

We set up a cache in the enclave to improve the resolving speed of DoTT. Every time
DoTT responds to a DNS query request, it first checks the previous response list. It directly
extracts the result from the list and encrypts them if the request has been parsed before, thus
omitting the interaction with NSs. However, all available physical memory of an enclave
is limited to a maximum of 128 M. Thus, the cache list will soon be full. To overcome this
problem, we maintain a cache list with a size of 20 M. If the list exceeds this size limit, we
use sgx_seal to save part of the cache on a disk. When a new DNS request is processed
next time, if no resolution record is retrieved from the list of caches in memory, we use
sgx_unseal to load 1M records from the disk into the enclave at a time. We will initiate
a domain name resolution request to NSs only after retrieving the cache in memory and
disk. Thus, the interaction with NSs is minimized. With the release of next-generation SGX
hardware and its support for dynamic memory [43], the impact of memory on the DoTT
will be weakened.

Intel SGX SDK provides a standard library for multithreading. Multithreading is an
effective way to achieve concurrency. DoTT is an I/O-intensive application as a networking
service. However, it has to utilize the OCALL/ECALL mechanism to handle external
network requests. The dual I/O workload may degrade response performance. When
the OCALL operation of an SGX function is completed in the background, the DoTT can
perform other processing operations. When a response process enters the enclave, DoTT
will create a poll object and put it into the waiting queue. The poll uses a red and black tree
as the index structure of ECALL and OCALL queues. The poll queue and the scheduler
will check whether a thread needs to be awakened due to the callback finish of the system
call or enclave response. If there are no ECALL/OCALL executes, the scheduler will be
recycled to the thread pool.

3.4. Security Analysis

The DNS protocol did not fully consider network security issues at the beginning of
the design., while our proposed DoTT ensures the credibility of the results with the RA
and trusted execution features provided by TEE [44]. Although SGX limits the length of
the verification report, we can still ensure that the verification results are generated in a
trusted environment through hash values. The privacy between DoTT and public root
servers and iterate servers is protected by the same TLS. Note that DoTT only plays the
role of DNS resolver. Its connection with the NS is an ordinary TLS connection. Although
we can refactor the NS to run it in an SGX enclave, SGX only exists in desktop CPUs at
present, while NS generally runs in servers equipped with high-end chips, which generally
do not yet support SGX features. The IAS and MREnclave ensure that DoTT establishes a
trusted TLS connection according to the expected behavior and performs the specified DNS
processing without leaking DNS query messages and metadata to external applications.
The DNS client already holds a certificate from IAS as well as a trusted list during the
deployment process. Therefore, a malicious user cannot tamper with the generator of the
evidence and forge the verifier of the evidence at the same time. If the authentication step
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in the last section fails, a valid TLS connection cannot be established, and the following
DNS query will fail. Finally, we use the disk as a cache to enhance system performance. The
contents of the cache are also stored as ciphertext and can only be decrypted by a properly
loaded DoTT enclave. Therefore, there is no risk of compromise as well.

4. Experimental Results

To test the feasibility of DoTT, we carried out some experiments to compare DoTT with
other DNS enhancement methods based on TLS. We test the performance of the proposed
framework in accessing different domain names on the prototype system developed using
the C++ language based on SGX SDK. The characteristics of methods in DNS encryption
are further compared. We evaluate the latency details of the DNS query using a modified
DNS benchmarking tool BIND. The DNS query delay is calculated by averaging the DNS
query. All of our evaluations are performed on an Intel Core i7-7700 CPU @3.60 GHz with
16 GB RAM.

We first test the performance of DoTT on a normal host and a host that supports
SGX features. As shown in Figure 3, the Plain DNS had the highest performance since no
security enhancements were adopted. While DoTT (Non-SGX) indicates the performance of
DoTT running on a normal host. There are two reasons why DoTT performance is weaker
than the Plain DNS: (i) one is the loss due to the use of TLS encryption; (ii) the other is the
extra function calls resulting from the refactoring of the original code to allow two sets of
runtime libraries to be generated from the same set of code. However, the loss from direct
function calls is still less than the loss from ECALL/OCALL in the DoTT running in a host
enabling the SGX feature.

Figure 3. The latency of response among the plain DNS, DoTT (Non-SGX), and DoTT (SGX) resolvers.

As shown in Figure 4, we run the benchmark using 6 threads and keep the number of
active DNS queries varying from 1000 to 10,000. We gradually increase the concurrency
of DNS queries to simulate an increasing number of resolved requests. The baseline is
a plain DNS resolver that only relays DNS queries and responses. The average latency
for processing requests in DoTT is about the same as that of a plain DNS resolver. We
also use a symmetric secret key to ensure the privacy of the result. With the hardware
acceleration of SGX, although our method has an additional layer of encryption to ensure
privacy, the response rate is equivalent to that of DNSSEC. For other TLS-based methods, it
brings performance degradation for the handshake and exchange of secret keys. Although
our method also uses a modified Sigma protocol [44], due to SGX coming with hardware
encryption instructions, we can archive a higher response rate.
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Figure 4. Performance evaluation among kinds of secure DNS resolvers.

To test the performance of enabling TLS connections in DNS on the address resolution,
one way is to establish a TLS connection for each connection. The other is to establish a
TLS connection in advance and reuse this connection in the next resolving request. When
testing, we can control the client stub and resolving server at the same time, and this change
is invisible to the user program. We use the curl tool to initiate domain name resolution
requests. In order to expand the test coverage, we selected 10 well-known websites as
target domain names.

As shown in Figure 5, if the TLS connection is reestablished every time, the latency
overhead of DoTT is 18% higher than that of DoT. If the TLS connection is maintained, the
overhead of DoTT is only 8% higher than that of DoT. In practice, DNS clients and resolving
servers often reuse TLS connections until a TTL expires. If we consider the overhead of
TLS in a larger scope; that is, the goal of initiating domain name resolution is to request
web resources, then the TLS connection of DNS will have less influence on the whole
resource request process. Note that we have not tested the performance of TLS between the
resolution server and the domain name server since DoTT and DoT both use the traditional
untrusted domain name resolution process at this stage.

(a) (b)

Figure 5. Performance evaluation of establishing TLS connections between DoT and DoTT. (a) Es-
tablishing TLS connections for each new request, and (b) reusing the existing connections for new
requests.
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We also evaluate the performance of DNS caching in DoTT and DoT in Figure 6.
In DNS implementations, resolving servers often results in the speeding up of response
requests. To prevent memory from being sniffed and polluted by privileged applications,
such as operating systems, SGX uses a separate memory model. We still perform our
domain resolution experiments on 10 well-known websites. Figure 6a,b show the evaluation
results for caching 10 and 100 domains, respectively. Note that we have used the error
bar to show the test results and the standard deviation in addition to the mean value.
As expected, the response speed of DoT is significantly higher when the DNS caching
feature is turned on, while the response time is almost constant. The response time also
gets a significant improvement for DoTT. Although SGX has to perform encryption and
decryption operations to prevent OS intervention when exchanging data between CPU and
memory, these encryption operations are efficiently implemented by hardware instructions.
Therefore, secure memory access in SGX has less impact on applications compared to
normal memory operations. On the other hand, we see a large deviation disturbance
in the response time of DoTT, which is because the prototype system we implemented
only utilizes SGX features without further optimization beyond those of SGX. Further
optimization of DoTT will be our future work.

(a) (b)

Figure 6. Performance evaluation of caching the resolved results between DoT and DoTT. (a) Caching
10 results, (b) caching 100 results.

5. Conclusions

To fully utilize the advantages of new technologies in the next-generation networks,
key elements of network architectures, including DNS, must be evolved to cope with
the challenges brought by the provision of these high-value services. DNS has become
one of the most critical components in emerging services. As more and more work pays
attention to the security and privacy of services, the problem of addressing privacy leakage
is becoming prominent. Based on the analysis of the existing technology of DNS privacy
enhancements, a new method of DNS privacy-preserving is proposed. We adopt the TEE
technology, which is different from previous methods, and the public-key cryptography
infrastructure to encapsulate the attestation flow under the existing DNS architecture,
which not only preserves the privacy of DNS but also improves the deployability for
the DNS resolver and protects the privacy of network services by hardware-enhanced
signatures. To keep the backward compatibility of the built application, we build a new
compilation-link model to reduce the refactoring of existing code and conform to the logic
of DNS messages in the normal and SGX environments. Experimental results show that
DoTT reduces the communication overhead between the DNS client and the DNS resolver
and effectively maintains the low latency of DNS when preserving the privacy and security
of data.
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In future work, we will transplant and test other network services, such as trusted
time and databases, into SGX to verify the feasibility and performance overhead of re-
placing existing services with trusted computing. Secondly, we will test the performance
of the proposed mechanism in more comprehensive simulation environments, such as
NS2 and OPNET. Last but not least, we will rewrite the protection system using the Rust
language, which is widely used in the security field, and evaluate its performance with the
current system.
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