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Abstract: Food is a necessity in people’s lives. Equally importantly, alcoholic beverages are also
highly demanded globally due to the indispensable role they play in cultural, social, and ritual events.
However, the production of food and alcoholic beverages suffers from a variety of contaminants,
such as toxins, pesticides, antibiotic residues, and heavy metals, which are seriously harmful to
human beings. These urgent threats have raised the awareness of the need to improve product
quality and safety via developing effective, rapid, and economical monitoring and detecting methods.
Fortunately, due to their numerous advantages, including high sensitivity, short response time, low
cost, and easy portability, electrochemistry sensors have made huge contributions to ensuring the
quality of food and alcoholic beverages. The purpose of this review is to introduce applications
of electrochemical sensors to foods and alcoholic beverages, and to highlight the important role of
carbon-based materials (i.e., carbon dots, carbon nanotubes, and graphene) as electrochemical sensors
in detecting various contaminants. In addition, the preparation methods of these carbon-based
electrochemical sensors and corresponding detection mechanisms are discussed in detail. It is hoped
that this review can inspire more innovative detection technologies for ensuring the safety of food
and alcoholic beverages.

Keywords: carbon-based materials; electrochemical sensor; food safety; alcoholic beverage safety;
chemical contaminants

1. Introduction

Food is a necessity for human beings and the ongoing improvement in living stan-
dards leads to increasingly higher requirements for food production. Consequently, food
safety is regarded as a major issue involved in social progress, economic development, and
public health [1,2]. Currently, food safety is mainly challenged by the excessive presence
of illegal additives, pesticide residues, organic contamination, biological toxins, veteri-
nary drugs, and heavy metals added during the preparation, post-treatment, and storage
processes. Similarly, alcoholic beverages are a globally popular drink that contain differ-
ent constituents, including ethanol, water, peptides, organic acids, and sugars. Possible
contaminants, such as carcinogens, methanol, mycotoxin, and amine, pose great threats
to human health, thus leading to an increase in the public awareness about the safety of
food and alcoholic beverages. Therefore, there is an urgent need to develop advanced
analytical techniques characterized by high sensitivity, short response time, low cost, and
easy portability [3–6].

In recent decades, numerous analytical methods and equipment have been exploited to
meet the increasing need for qualitative or/and quantitative detection of various chemical
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contaminants and hazardous substances existing in foods and alcoholic beverages. The clas-
sical analytical methods can be mainly categorized as chromatography and spectroscopy
disciplines. For instance, the commonly used chromatographic techniques include hydrody-
namic chromatography (HDC), high-performance liquid chromatography (HPLC), size ex-
clusion chromatography (SEC), gas chromatography (GC), HPLC-mass spectrometry-mass
spectrometry (HPLC-MSMS), matrix-assisted laser desorption/ionization (MALDI-TOF),
and gas chromatographic-MSMS (GC-MSMS) [7–10]. Although these chromatographic
methods have advantages in terms of high separation efficiency, accurate quantitation
ability, and excellent detection sensitivity, the extremely high cost of equipment and main-
tenance, and the complicated operation process involved, have seriously limited their
ability to be applied to food and alcoholic beverages in a portable and fast way. Compared
with chromatographic techniques, spectroscopic methods such as near-infrared (NIR),
ultraviolet-visible (UV-vis), Raman, and fluorescence spectroscopies are more efficiently
and conveniently operated and analyzed, even without the destruction of analytes. How-
ever, the disadvantages are also evident, such as the requirement of multistage pretreatment
and the lack of wide applicability. Because of these shortcomings, novel advanced analy-
sis methods are expected to realize the rapid and efficient analysis of contaminants and
residues [11,12].

Benefiting from numerous advantages, such as rapid response, high selectivity, flexi-
bility, and portability, electrochemical sensors have become powerful candidates via trans-
ducing the specific interaction between analytes and sensors into recognizable electrical
signals. Moreover, electrochemical sensors are cheap, simple, and applicable for various
types of analytes. Generally speaking, electrochemical sensors are composed of sensitive
components, conversion components, electronic circuits, and structural accessories [13].
As one of the important components, the active electrode, which is typically composed
of nanomaterials with multiple properties, determines the sensitivity and functionality
of electrochemical sensors [14–16]. Among various types of electrodes, the advent of
carbon nanomaterials-based electrodes involving carbon dots (CDs), carbon nanotubes
(CNTs), and graphene have created new possibilities for fast, reliable, and economical
detection of contaminants and toxins in foods and alcoholic beverages [17–19]. To ensure
superior performances, additional ions, molecules, or polymers are usually added for
functionalizing the raw carbon-based materials with enhanced electrocatalytic activity,
electro-chemiluminescence, photoelectricity, etc. [20].

The currently reported literature has demonstrated the superiority of carbon-based
electrochemical sensors in the application of food and alcohol detection [21,22], and some
recently published reviews have also summarized the syntheses of carbon nanomaterial-
based electrodes and their application performances [23–26]. However, very few reviews
have systematically illustrated their design principle and working mechanism [27]. A deep
understanding of the relationship between the structure of carbon-based materials and
their detection performances, and their application scopes, is still lacking. Therefore, a
timely overview of the above issues is highly desirable, and can offer useful guidance
for developing new types of highly efficient electrochemical sensors. In this review, we
firstly introduce the structures and characteristics of carbon material-based electrochemical
sensors. Then, their working mechanisms are also discussed by presenting some prototype
examples. Finally, the perspectives and challenges in this field are provided based on our
personal understandings.

2. Electrochemical Techniques

Electrochemical sensors have become a widespread analysis technique with the merits
of low cost, high accuracy, fast response, and good reliability, and have drawn substantial
attention for the qualitative or/and quantitative analysis of foods and alcoholic bever-
ages [28,29]. The design of high-quality electrochemical sensors needs a full understanding
of their basic detection principles. Figure 1a shows that samples without pretreatment can
be first added into the electrochemical cell. Then, upon applying electricity, the electrochem-
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ical sensor converts the physical and chemical response into recognizable electrochemical
response signals. Through analyzing the correlation between the detected substances and
corresponding electronic signals, the contaminants in foods and alcoholic beverages can
be quickly identified. As shown in Figure 1b, a typical three-electrode electrochemical
system includes a working electrode (WE), a reference electrode (RE) (e.g., Ag/AgCl),
and a counter electrode (CE) (e.g., carbon rod, platinum). Recently, functional carbon-
based nanomaterials such as CDs, CNTs, graphene oxide (GO), and porous carbon were
selected as candidates for the working electrode (WE) due to their excellent conductivity
and durability [30,31]. Of note, the selectivity, linearity, sensitivity, stability, detection
limit, dynamic range, and response time of the resultant electrochemical sensors can be
dramatically improved by further regulating the composition and the structure of adopted
carbon nanomaterials [32–34]. Additionally, versatile electrochemical analysis methods
are also required to be established for efficiently extracting the unique information from
different analytes in food and alcoholic beverages. Specifically, the current-type (gener-
ating an amperometric current), potential-type (generating a potentiometric potential),
conductivity-type (measurably altering the conductive properties of a medium between
electrodes), and impedimetric-type (measuring impedance through an electrochemical
impedance spectroscopy method) are the four types of golden protocols [35–38].
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Figure 1. Principle and test methods of electrochemical sensors. (a) The detection principle of an
electrochemical sensor. (b) The basic configuration of an electrochemical sensor. (c) The diagrams of
cyclic voltammetry (CV), linear sweep voltammetry (LSV), differential pulse voltammetry (DPV),
and square wave voltammetry (SWV) curves.

In practice, cyclic voltammetry (CV), linear sweep voltammetry (LSV), differential
pulse voltammetry (DPV), and square wave voltammetry (SWV) (Figure 1c) are most
commonly selected according to the properties of the detected substance [39–42]. So, it is
necessary to understand the working principles of those electrochemical analysis methods,
which is helpful for more rationally and accurately analyzing the contaminants in food
and alcohol beverages. First, CV is a commonly used electrochemical analysis method
operated by scanning the response current one or more times in a triangular waveform
under varyingly applied voltage. The reversibility of electrode reaction, intermediate, phase
boundary adsorption, phase transformation, and the mechanism of coupled reactions can
be acquired and judged according to the presented shape of CV curves [43]. Second, LSV
is another electrochemical analysis method in which a linear change in voltage is applied
on the electrode; that is, the potential changes linearly with the applied voltage recording
the current on the working electrode at the same time. The peak current measured in
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the LSV curve has a linear relationship with the concentration of the measured analytes,
which is the basis of quantitative analysis [44]. Third, DPV is an electrochemical method
that involves the superposition of a linearly increasing voltage with a rectangular pulse
of constant amplitude. As a result of the rapid development of electronic circuits, pulse
voltammetry has been widely used in the field of electrochemical analysis. For instance, the
quantitative determination of various analytes and the mechanism of complex electrode
reactions can be decoded due to pulse voltammetry’s high sensitivity and low detection
limit. Moreover, by combining differential pulse voltammetry with other methods such
as stripping voltammetry, the detection sensitivity can be greatly improved [45]. Finally,
SWV is an effective electrochemical technique that can be utilized for electrode mechanism
understanding and electro-kinetics measurement. It is worth mentioning that SWV can
efficiently suppress the background current, thereby obviously increasing the signal-to-
noise ratio and reducing the detection limit [46,47].

3. Carbon Nanomaterial-Based Electrochemical Sensors

Carbon is one of the most abundant elements in nature, and carbon-based materials
(Figure 2) have been continuously studied and utilized in different fields. Generally speak-
ing, according to the dimension of the carbon-based materials, they can be divided into
zero-dimensional materials (their dimensions in all directions are in the order of nanome-
ters, e.g., CDs), one-dimensional materials (their dimensions in two directions are in the
order of nanometers, e.g., CNTs and carbon nanofibers), and two-dimensional materials
(their dimension in only one direction is in the order of nanometers, e.g., graphene and
GO) [48–55]. As early as the 18th century, it was known that graphite was formed by sp2

and diamond was formed by sp3 hybridized carbon atoms. Furthermore, the fullerenes,
such as C60 and C70, and CNTs, were discovered in 1985 and 1991, respectively [56,57].
These studies not only expanded the scope of the carbon material family, but also marked
the start of a new era for the research of carbon nanomaterials. In particular, the discovery
of graphene in 2004 triggered a new wave of research [58]. Due to their excellent electrical
conductivity, wide potential window, high electrocatalytic activity, and chemical modifi-
ability, carbon-based materials have been accepted as one of the best candidates for the
construction of electrochemical sensors [59]. In the following section, we summarize the
exploration and application of typical carbon-based materials, including CDs, CNTs, and
graphene, as electrochemical sensors in food and beverage safety due to their low cost,
good conductivity, and facile fabrication process.
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3.1. CDs

In 2004, Xu et al. discovered that CDs can present fluorescence during the process of
electrophoresis [56]. CDs are defined as zero-dimensional nanoparticles having a size of
less than 10 nm that are mainly composed of carbon elements. CDs have been widely used
in electroluminescence, medical imaging, environmental monitoring, chemical analysis,
photocatalysis, and energy conversion due to their colorful optical properties, good water
solubility, low toxicity, environmental friendliness, abundant raw source, low cost, and
good biocompatibility [60,61]. Regarding CDs’ preparation, a variety of methods, includ-
ing arc discharge, laser ablation, electrochemical oxidation, acidic oxidation, microwave,
ultrasonic, calcination, hydrothermal, template synthesis, and hydrosol condensation poly-
merization, have been reported [62–64]. Interestingly, CDs can be functionalized easily
with other materials, such as organic, polymeric, and inorganic species, via reacting with
surface carboxylic acid moieties. In the following section, we illustrate the applications of
CD-based materials in the development of electrochemical sensors for H2O2, dopamine
(DA), triclosan, glucose, acetaminophen, Cu2+ ions, uric acid, etc.

Acting as a neuromodulator of ionotropic synapses, DA sets a threshold for the striatal
activity involved in many diseases and drug addiction. In addition, DA is available
as an intravenous medication acting on the sympathetic nervous system. Hence, the
determination of DA in vivo/vitro becomes increasingly important in practice [65,66].
As shown in Figure 3a, Zhu et al. [67] prepared a new type of N-doped CDs by a one-
step microwave irradiation method. The N-doped CDs obtained by this method had a
highly sensitive electrochemical response to DA, with a linear range of 0.05~8 µM and a
detection limit of 1.2 nM. Moreover, in contrast to traditional detection methods requiring
complex pretreatment and producing a large quantity of organic waste, the developed
electrochemical sensing detection can be performed by directly adding DA to the detection
system for qualitative and quantitative analysis. Huang et al. [68] designed a new type
of DA sensor (Figure 3b) based on a Au@CDs-CS/glassy carbon electrode (GCE), which
has high sensitivity and excellent performance stability and can suppress the background
interference currents from ascorbic acid (AA) and uric acid (UA). Under the optimum
experimental conditions, the linear range of 0.01~100.0 µM and the detection limit of
0.1 nM (S/N = 3) were obtained. Dai and co-workers [69] reported that CDs and chitosan
were combined to construct a composite electrode. It was found that the signal was
significantly higher than that of the bare electrode. Moreover, the composite electrode
has higher sensitivity for the detection of triclosan, and also shows good results for the
detection of actual samples such as toothpaste and gargle daily water, with the linear range
of 10~1.0 mM and the detection limit of 0.92 nM (Figure 3c). As shown in Figure 3d, Sheng
et al. [70] used CDs-Chitosan (CS)/hemoglobin composite membrane for electrochemical
detection of H2O2, which showed good sensitivity and robust usability. The linear current
response for H2O2 was from 1 to 118 µM with a detection limit of 0.27 µM at the signal-to-
noise ratio of 3, and the apparent Michaelis–Menten constant was 0.067 mM. Their work
showed that loading metal nanoparticles can further significantly improve the sensitivity
and selectivity of the electrochemical sensors, presenting a superior detection performance
to the pure approach. Based on the easy modification of CDs, the rich carboxyl or amino
functional groups on their surface are conducive to the grafting of small organic molecules
for the detection of special chemicals. For example, Zhang et al. [71] selected nitrogen-
doped carbon dots (N-CDs) containing amino groups as the raw electrode due to their
good conductivity and redox performance. In addition, a Ferrocene (Fc) and β-cyclodextrin
(β-CD) host–guest complex was introduced to improve the solubility, electrical stability,
and bioavailability. Accordingly, based on the CV and DPV techniques in phosphate buffer
solution, this ternary detection system, Fc CD/N-CDs, was found to be a suitable choice for
the detection of uric acid via the establishment of a new method. Shao et al. [72] used CDs
to interact with N-(2-aminoethyl)-N,N′,N′-tris(pyridine-2-yl-methyl)ethane-1,2-diamine
(TPEA) for the detection of Cu2+. Benefiting from the good conductivity of CDs and
the strong complexing ability of TPEA with Cu2+, the detection of Cu2+ content in the
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mouse brain was as good as the result of inductively coupled plasma-atomic emission
spectrometry (ICP-AES), indicating that this method has good feasibility and application
prospects (Figure 3e). Li and coworkers [73] successfully synthesized the CDs/octahedral
Cu2O nanocomposites, which exhibited good linear response, low detection limit, high
selectivity, and wide detection range toward the electrocatalytic oxidation of glucose and
the electrocatalytic reduction of H2O2. Yang et al. [74] prepared an ultra-sensitive sensor of
Au NP/CD nanocomposites protected by Fc derivatives and graphene, which can be used
for simultaneous detection of vitamin C, DA, UA, and paracetamol.
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with permission from [68]. Copyright the Royal Society of Chemistry, 2013. (c) Hydrothermal
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As summarized in Table 1, CDs have been widely used as electrode materials for
the detection of chemical substances in bulk food, but their application to alcoholic bev-
erages still needs to be further studied. Modifications such as doping nitrogen, grafting
organic molecules, and loading metal nanoparticles can greatly improve the sensitivity,
selectivity, durability, and repeatability of CD-based electrochemical sensors. However, the
resultant complex electrode systems greatly hinder the exploration of underlying detection
mechanisms. Therefore, in the future, more attention should focus on the development of
electrode systems with an accurate structure and single components.
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Table 1. Typical applications of electrochemical sensors based on CD materials associated with
electrochemical techniques for the detection of different target analytes.

Analytes Materials Electrochemical
Techniques Linear Range Detection Limit Sample Ref.

Dopamine N-doped CDs DPV 0.05~8 µM 1.2 nM Serum [67]
Dopamine Au@CDs-CS DPV and CV 0.01~100 µM 0.1 nM Spiked sample [68]
Triclosan CNDs-chitosan CV 10 nM~1.0 mM 9.2 nM Water [69]

H2O2 Hb-CNDs-chitosan CV 1~118 µM 0.27 µM Toothpaste [70]
Uric acid Fc@β-CD/N-CD DPV 5~120 µM 0.08 µM Urine [71]
Cu2+ ions CDs-TPEA DPASV 1~60 µM 100 nM Spiked sample [72]
Glucose CDs/Cu2O NPs CV 0.02~4.3 mM 8.4 µM - [64]

Acetamteinophen Fc-S-Au/CDs CV 0.5~46 µM 0.1 µM Urine [74]

CDs: carbon dots; CV: cyclic voltammetry; mM: millimolar; µM: micromolar; nM: nanomolar; H2O2: hydrogen
dioxide; CNDs: nitrogen-doped carbon dots; Hb: hemoglobin; Fc: ferrocene; DPV: differential pulse voltammetry;
TPEA: N-(2-aminoethyl)-N,N′,N′-tris(pyridine-2-yl-methyl)ethane-1,2-diamine; DPASV: differential pulse anodic
stripping voltammetry; Cu2O: cuprous oxide, CS: chitosan.

3.2. CNTs

CNTs, also known as bucky tubes, are one-dimensional tubular nanomaterials with
special structures. CNTs are mainly coaxial round tubes with a single to dozens of layers
composed of sp2 hybridized carbon atoms [75,76]. In theory, CNTs can be regarded as hollow
tubes rolled by graphene sheets. According to the number of rolled layers of the graphene
sheets, CNTs can be subdivided into single-walled carbon nanotubes (SWCNT) formed by
a hexagonal grid structure, and multi-walled carbon nanotubes (MWCNT) assembled from
several to dozens of concentric cylinders with regular layer spacing [77,78]. Because their
unique structure is completely different from that of bulk carbon materials, CNTs can exhibit
excellent properties, such as unique electrical, special magnetic, and strong light absorption
properties. Because of their excellent electrical conductivity, large specific surface area, good
biocompatibility, easily functionalization, and abundant active sites, CNTs are also an advan-
tageous option in the design of electrochemical sensors [79–81]. In the following section, we
illustrate the applications of CNTs-based materials in the development of electrochemical
sensors for food and beverage safety, as summarized in Table 2.

Wine is a complex drink mixed with hundreds of compounds, among which, phenolic
compounds exist at much lower levels of concentration than other organics [82]. To
evaluate the antioxidant properties of the wine samples, the gallic acid (GA, as one of the
main phenolic components) oxidation process was constructed using 30% (m/m) carbon
nanotube-modified electrodes [83]. The linear range of 0.5–15 µM and the detection limit
of 0.3 µM were obtained in an optimized experimental condition. Finally, the proposed
procedure was successfully used for estimating the determination of total polyphenols
in the samples of red and white wines. Compared with traditional analytic methods,
electrochemical analytic methods with CNT-modified electrodes have the advantages of
high detection limit, small demand for raw materials, and strong selective identification
of specific pollutants [84]. Furthermore, Ziyatdinova and co-workers [85] researched the
oxidation peaks of phenolic antioxidants existing in red or white dry wine samples based
on MWNT/GCE using differential pulse voltammetry in the phosphate buffer solution
of pH 4.0. The evaluation of wine antioxidant capacity (AOC) was established by a one-
step chronocoulometric method. The results demonstrated that the AOC of white wine
was significantly less than that of red wine (386 ± 112 vs. 1224 ± 184, p < 0.0001). The
presented effective measurement, AOC evaluation, made it possible for quality control at
different stages in the winemaking process, which usually cannot be accurately performed
due to the limitation of common analytic technology. It should be emphasized that CNT-
based composite materials via introducing metal oxides and metal nanoparticles have
recently shown great success in food and beverage safety testing. The possible reasons for
this were that the added metal components dramatically boosted electrical conductivity,
enhanced chemical signals, and promoted chemical interaction with the analyte. As shown
in Figure 4a, various phenolic compounds in wine samples were determined by CV, DPV,
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and EIS methods based on Fe3O4/modified carbon paste electrode (MCPE) in a three-
electrode system. In their work, the incorporation of Fe3O4/MCPE electrodes as a sensor
showed excellent sensitivity, selectivity, repeatability, reproducibility, stability, and low
preparation cost via optimizing scan rates and pH values. The detection limits equating
to 2.2–10 µM for sinapic acid, 2.6–10 µM for syringic acid, and 0.8–10 µM for rutin were
obtained. [86] Moreover, various types of metal nanoparticles were added onto the CNTs
to generate additional electrocatalytic sites and to increase the sensitivity and detection
limits of resultant electrodes [87]. A CS nanocomposite with Au-NP-decorated CNTs has
been developed as an electrochemical sensor for the detection of catechol. Due to highly
electrochemical active AuNPs, the excellent reproducibility and repeatability of catechol
detection in the range of 0 to 1 mM were obtained by CV analysis, with a detection limit
of 3.7 µM [88]. Ezhil Vilian et al. [89] reported Pt/MnO2/functionalized multi-wall CNT
(f-MWCNT) electrode material was synthesized by a simple and facile strategy. As shown
in Figure 4b, the as-prepared Pt/MnO2/f-MWCNT, having a larger effective surface area,
greater porosity, and more reactive sites than bare MWCNTs, exhibited excellent sensitivity
for catechin sensing. Under optimized conditions, a very low detection limit (0.02 µM) and
the linear range of 2–950 µM were obtained. The developed electrochemical sensor was
expected to be useful for industrial applications because of the electrochemical reactivity,
excellent reproducibility, and good long-term stability. Similarly, as shown in Figure 4c, a
novel electrochemical sensor based on GOX-NFM/MWCNT composite was developed by
electrospinning and coating methods to detect glucose in beer samples. The electrochemical
response of the sensor was analyzed by CV and CA, and excellent reproducibility and
repeatability to glucose detection in the range of 1–3 mM were found with a detection limit
of 20 µM [90].

Table 2. Application of electrochemical sensors based on CNT-based materials associated with
electrochemical techniques for the detection of different target analytes in foods and beverages.

Analytes Materials Electrochemical
Techniques Linear Range Detection Limit Sample Ref.

Gallic acid MCPE CV and DPV 0.5–15 µM 0.3 µM Wines [84]
Phenolic antioxidants MWCNT DPV ND ND Wines [85]

Phenolic compounds Fe3O4/MCPE CV and DPV and
ESI 0.22–0.26 µM 0.08 µM Wines [86]

Catechol AuNP-MWCNT CV 0–1.0 mM 3.7 µM Wines [88]
Catechin Pt/MnO2/f-MWCNT SWV 2–950 µM 0.02 µM Wines [89]
Glucose GOX-NFM/MWCNT CV and CA 1–3 mM 20 µM Beer [90]
TBHQ CuO NFs/NH2-CNTs DPV 0.01–3.9 µM 3 nM Edible oils [91]

Bisphenol A MWCNTs-βCD/SPCE CV 125 nM–2 µM 13.76 nM Water [92]

Methyl parathion MWCNT/zirconia CV 19.9–176.8 µM 9 nM Ethanolic
soybean [93]

Semicarbazide MIP/SWNTs-COOH/CS CV and PDV and
ESI 0.04–0.6 ng mL−1 0.025 ng mL−1 Sheep casings [94]

MCPE: modified carbon paste electrode; CV: cyclic voltammetry; CA: chronoamperometry; DPV: differential pulse
voltammetry; SWV: square wave voltammetry; ESI: electrochemical impedance spectroscopy; mM: millimolar;
µM: micromolar; nM: nanomolar; ng: nanogram; MWCNT: multi-walled carbon nanotube; Fe3O4: ferroferric
oxide; AuNPs: gold nanoparticles; Pt: platinum; MnO2: manganese dioxide; GOX: glucose oxidase; NFM:
nylon nanofibrous membrane; TBHQ: tert-butyl hydroquinone; CuO: copper oxide; NFs: nanoflowers; βCD: β-
cyclodextrin; SPCE: screen-printed carbon electrode; MIP: molecularly imprinted polymer; SWNTs: single-walled
carbon-nanotubes; CS: chitosan.
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diagram of the phenolic compounds’ electrochemical sensor preparation. Reprinted with permission
from [86]. Copyright MDPI, 2021. (b) SWV experiments for various concentrations of 0, 5, 10, 15, 30,
and 60 mM of green tea leaves extract diluted with catechin concentration. Reprinted with permission
from [89]. Copyright The Royal Society of Chemistry, 2015. (c) Sensing mechanism. OX and RED
are the oxidized and reduced mediator forms, respectively. Reprinted with permission from [90].
Copyright Hindawi, 2016. (d) Schematic illustration of TBHQ detection. Reprinted with permission
from [91]. Copyright Elsevier, 2021. (e) CV curves of different electrodes and different scan rates
in an aqueous electrolyte. Reprinted with permission from [92]. Copyright Elsevier, 2020. (f) The
schematic diagram of the fabrication procedure of the sensor. Reprinted with permission from [94].
Copyright Elsevier, 2020.

Furthermore, Balram et al. [91] reported a novel CuO NF/NH2-CNT composite syn-
thesized using the hydrothermal and ultrasound-assisted method. As shown in Figure 4d,
this composite as a working electrode material was used for detecting cytotoxic food
preservative tert-butyl hydroquinone (TBHQ). In this work, 3D CuO nanoflowers (NFs)
with exceptional chemical stability, non-toxicity, and electron correlation effects could
improve the reproducibility, testing repeatability, and stability of electrochemical sensors.
An excellent recovery efficiency in the range of 95.90–104.87% and a maximum relative
standard deviation (RSD) of 2.71% were obtained using Oils analysis. Recently, Bisphenol A
(BPA), one of the most extensively used plasticizers, was detected based on the reversibility
and irreversibility of electrochemical redox reactions. Younus Alia and co-workers [92]
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developed a simple, low-cost electrochemical sensor (Figure 4e) for detecting very low
concentrations of BPA in water using a WCNTs-βCD decorated screen-printed carbon
electrode (SPCE). The electrochemical response of the sensor for detecting BPA showed
a completely irreversible process including two electrons and two protons. The sensor
showed a two-step linear response from 125 nM to 2 µM and 2 to 30 µM, with a detection
limit of 13.76 nM. Moreover, a mesoporous MWCNT/zirconia composite was synthesized
by the sol-gel method to detect methyl parathion (MP) in food samples. In this work, the
electrochemical responses for MP were obtained by DPV with a detection limit of 9 nM
and in a linear interval of 19.9–176.8 µM. Specifically, the developed sensor was applied
in ethanolic soybean extract and showed satisfactory recovery and repeatability [93]. In
addition to modifying CNTs with metal or metal oxide nanoparticles, directly installing
active molecules on CNTs was also a very effective method for the rapid detection of
contaminants in food. Recently, as shown in Figure 4f, Yu et al. [94] reported that molecu-
larly imprinted polymer (MIP)/carboxylated single-walled carbon-nanotubes/chitosan
(MIP/SWNTs-COOH/CS) was prepared as an electrochemical sensor using MIP as the
recognition element. Three different electrochemical techniques, including CV, DPV, and
ESI, were applied for the detection of semicarbazide (SEM) in four different real samples.
The linear range of 0.04-0.6 ng mL−1 and the low detection limit of 0.025 ng mL−1 were
obtained at an optimized experimental condition.

Based on the good conductivity and strong recyclability of carbon nanotubes, we
first reviewed the detection and monitoring of chemicals in foods and alcoholic beverages
using CNT-based materials as sensor electrodes. Furthermore, a variety of electrochemical
analysis methods used for qualitatively and quantitatively detecting chemical substances
in foods were also introduced. In addition, compared with CDs, CNTs can be directly
used to detect the antioxidant and bioactive substances in alcoholic beverages due to the
multiple active sites exposed on CNTs surface. Although a large number of advances have
been achieved, more strategies aiming to construct a specific and effective sensor electrode
remain to be further studied.

3.3. Graphene

Graphene is a 2D honeycomb lattice structure composed of a single layer of sp2

hybridized carbon atoms. Graphene-based materials have been widely examined by re-
searchers in experiments and theoretical studies due to, among other factors, their high
chemical stability, thermal conductivity, and electron mobility [95,96]. As far as we know,
graphene has shown great application potential in the fields of electronics, optics, mag-
netism, biomedicine, catalysis, and sensors [97,98]. In particular, graphene is very suitable
for the development of sensing materials in electrochemical sensors by taking advantage of
its large specific surface area and high electron mobility. In the following section, we illus-
trate the applications of graphene-based materials in the development of electrochemical
sensors for food and beverage safety, as summarized in Table 3.
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Table 3. Application of electrochemical sensors based on graphene-based materials associated with
electrochemical techniques for the detection of different target analytes in foods and beverages.

Analytes Materials Electrochemical
Techniques Linear Range Detection Limit Sample Ref.

Atropine Graphene-PLA SWV 5–60 µM 1 µM Wines [99]

Amino acids Nanographene CA LRh, LRl, LRo,
LRt

DLh, DLl, DLo,
DLt

Wines [100]

Gallic acid CS–fFe2O3–ERGO DPV 1–100 µM 0.15 µM Wines [101]

Aflatoxin B1 FGO CV and PDV and
ESI 0.05–6.0 ng mL−1 0.05 ng mL−1 Wines [102]

Aflatoxin B1 RGO/MoS2/PANI@Au/Cs DPV 0.01–1.0 fg mL−1 0.002 fg mL−1 Wines [103]
Saccharomyces

cerevisiae PA-GO/SPE CA 10–107 CFU
mL−1 ND White wine [104]

trans-Resveratrol LPG CV and DPV 0.2–50 µM 0.16 µM Red wine [105]
trans-Resveratrol Gr-MoS2 DPV 1.0–200 µM 0.45 µM Red wine [106]

Caffeic acid SnO2-RGO DPV 0.15–25 µM 80 nM Red wine [107]

Fe3+ po-Gr-NR CV and DPV 37.5 nM–21.53
mM 18.7 nM Red wine [108]

Sunset yellow and
Tartrazine GN/TiO2 CV and SWV LRsy, LRtt DLsy, DLtt Foods [109]

Bisphenol A GNPs/GR CV 0.01 µM–10 µM 5 nM Milk [110]

TRA GCE|Gr-Au/MIPs CV 0.01–10 µM 0.0044 µM Foods and
medicines [111]

Vitamin C Au NPs/PCA-RGO CV 50–500 µM 17 µM Foods [112]
Aflatoxin B1 AuNPs/rGO/ITO CV Nr 6.9 pg mL−1 Foods [113]

PLA: polylactic; CV: cyclic voltammetry; CA: chronoamperometry; DPV: differential pulse voltammetry; SWV:
square wave voltammetry; ESI: electrochemical impedance spectroscopy; mM: millimolar; µM: micromolar; nM:
nanomolar; pg: picogram; fg: femtogram; CS: chitosan; Fe3O4: ferroferric oxide; ERGO: electrochemically reduced
graphene oxide; FGO: functional graphene oxide; RGO: reduced graphene oxide; MoS2: molybdenum disulfide;
PANI: polyaniline; AuNPs: gold nanoparticles; PA-GO: propionic acid-functionalized graphene oxide; LPG:
laser-induced porous graphene; po-Gr-NR: NR-treated partially oxidized graphene; GCE: glassy carbon electrode;
MIP: molecularly imprinted polymer; PCA: 1-pyrene carboxylic acid; LRh:0.1 nM–0.1 µM; LRl: 0.1–100 µM; LRo:
0.01–100 µM; LRt: 0.1 nM–10 nM; DLh: 0.1 nM; DLl: 0.1 µM; DLo: 10 nM; DLt: 0.1 nM; LRsy: 0.02–2.05 µM; LRtt:
0.02–1.18 µM; DLsy: 6 nM; DLtt: 8 nM.

Due to the 2D planar structure of graphene, the fabricated detection system can fully
contact the detected substances, which is conducive to accelerating mass transfer and there-
fore realizing rapid detection. In addition, the detection requirements of different pollutants
can be rationally met via grafting organic functional groups or compounding different
metal nanomaterials. Recently, Cioates Negut et al. [100] reported that oleamide-derivative
decorated graphene can be directly coated on carbon electrodes and used to detect amino
acids, such as L-histidine, L-tyrosine, L-ornithine, and L-lysine in wine (Figure 5a). In this
work, the proposed sensors exhibited excellent sensitivity, reliability, and reproducibility
for the quality determination of wines. Furthermore, an amperometric immunosensor for
Saccharomyces cerevisiae was constructed using functionalizing and coupling approaches,
as shown in Figure 5b. The immunosensor allowed the amperometric detection of the
yeast in buffer solution and white wine samples in the range of 10–107 CFU mL−1. Be-
cause this propionic acid-functionalized graphene oxide could provide a large number
of adsorption and sensing sites, the immunosensor successfully detected Saccharomyces
cerevisiae at the refermentation stage, exhibiting a low detection limit and high selectiv-
ity, and good reproducibility and storage stability [104]. The functionalized graphene
is not merely able to serve as a platform for aptamer sequencing, but also as the signal-
enlarging platform. Goud et al. [102] reported an electrochemical apta-sensor based on
hexamethylenediamine-functionalized GO as the signal-enlarging platform via carbodi-
imide amide-bonding. Aflatoxin B1 (AFB1) analyte molecule detection was accomplished
in phosphate buffer saline (PBS) solution using methylene blue as a signaling fragment and
FGO as the signal-enlarging platform. Under optimized conditions, a very low detection
limit was obtained with the linear range of 0.05–6.0 ng mL−1. Heteroatom doped graphene
is one of the significant strategies for graphene properties’ regulation. Nitrogen, phospho-
rus, oxygen, sulfur, and other atom-doped graphene have been extensively studied in the
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electrochemical catalysis field [114]. Identification and detection of iron (III) (ferriciron,
Fe3+) are challenging in the complex system using traditional detection techniques. As
shown in Figure 5c, the Fe3+ electrochemical sensor was constructed by depositing the
partially oxidized graphene sheets (po-Gr) on a glassy carbon electrode. The linear response
range and the limit of detection of Fe3+ were obtained from 37.5 nM to 21.53 mM and 18.7
nM in the presence of other valence ions, such as Fe2+, Cu2+, Pb2+, Hg2+, Mn2+, Ni2+,
Zn2+, Co2+, and Cd2+, respectively. Interestingly, in this work, partially oxidized graphene
sheets provided active sites for selectively capturing Fe3+, allowing it to be detected in low
concentrations in complex red wine samples [108].

Metal oxides are stable heterogeneous catalysts with abundantly exposed active sites,
and have been extensively studied in photocatalytic, electrochemical, and traditional ther-
mal catalytic reactions. As shown in Figure 5d, the CS-fishbone-shaped Fe2O3 (fFe2O3)-
electrochemically reduced graphene oxide (ERGO), having a large surface area, excellent
electronic conductivity, and high stability, was modified on the glassy carbon electrode
for detecting GA to estimate the antioxidant capacity of wines. Under the optimal con-
ditions, the good linear range and the low limit of detection of GA were obtained from
1 to 100 µM and 0.15 µM, respectively. In this work, ERGO and fFe2O3 hybrids have a
significant synergistic amplification effect on enhancing the electrochemical performance of
the electrode. Moreover, the good structural stability of the reported CS-fFe2O3-ERGO can
avoid contamination of the detection system [101]. Similarly, Zhang et al. [107] reported an
electrochemical sensor that was fabricated using SnO2 decorated graphene (SnO2-RGO)
composite, which exhibited excellent selectivity, reproducibility, and stability for caffeic
acid (CA) detection in commercial red wine samples.

Two-dimensional disulfide nanosheets, and particularly molybdenum disulfide (MoS2),
have aroused tremendous research interest in electrochemical aptasensor applications un-
der complicated conditions [115,116]. However, the facile aggregation and low electronic
conductivities of MoS2 decrease the number of electroactive sites on the electrode sur-
face, thereby restricting electron transfer and related electrochemical kinetics [117,118]. A
highly sensitive electrochemical sensor based on 2D nanocomposite for trans-resveratrol
(TRA) was fabricated using graphene-molybdenum disulfide (Gr-MoS2), as shown in Fig-
ure 5e. Under optimized conditions, the prepared sensor showed a linear response in
TRA concentration from 1.0 to 200 µM with a limit of detection of 0.45 µM due to the
synergistic effect between Gr and MoS2 [105]. Furthermore, Wang et al. [103] reported
reduced graphene oxide/molybdenum disulfide/polyaniline@gold nanoparticles/chitosan
(RGO/MoS2/PANI@AuNPs/Cs), among which Cs acted as an aptasensor and AuNPs were
dedicated to signal amplification, was constructed using facile hydrothermal and coating
methods. The Au-S bonds formed on the surface of MoS2 facilitate effective installation of
the aptamer. As-developed RGO/MoS2/PANI@AuNPs/Apt exhibited a wide linear range
from 0.01 fg mL−1 to 1.0 fg mL−1 and a remarkably low detection limit of 0.002 fg mL−1

due to the synergistic effects among distinct components.
In addition to coating catalysts on the surface of carbon electrodes, fabricating self-

supported electrodes can effectively increase the contact between the detected substance
and the sensor. Based on 3D printing technology, graphene-polylactic acid (graphene-PLA)
electrodes were fabricated for detecting atropine in contaminated beverage samples, such as
white wine, vodka, whisky, and energy drink. A linear concentration range between 5 and
60 µM associated with a detection limit of 1 µM was obtained using a SWV determination
protocol [109]. Moreover, as shown in Figure 5f, a novel flexible electrochemical sensor
using a direct laser-induced graphene (LIG) technique that transforms the commercial
Kapton tape into 3D porous graphene was developed for sensitive detection of trans-
tesveratrol (TRA) molecules in red wines. The prepared electrochemical sensor with
excellent repeatability, stability, reproducibility, and reliability guaranteed an excellent
linear response within the TRA concentration range from 0.2 to 50 µM and a low limit of
detection of 0.16 µM. Furthermore, the developed sensor can be applied for the evaluation
of TRA levels in red wines and grape skins with a satisfactory result [106].
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design of the electrochemical platform. Reprinted with permission from [100]. Copyright Wiley, 2019.
(b) Schematic display of the steps involved in the preparation and performance of the immunosensor
for Sacch. Reprinted with permission from [104]. Copyright Springer, 2018. (c) Electrochemical
synthesis of po-Gr and treatment of NR with po-Gr. Reprinted with permission from [108]. Copyright
Elsevier, 2017. (d) Illustration for the fabrication of CS–fFe2O3–ERGO/GCE and its application
for the detection of GA in wines. Reprinted with permission from [101]. Copyright Elsevier, 2015.
(e) Two-dimensional nanocomposite-based electrochemical sensor for rapid determination of trans-
resveratrol. Reprinted with permission from [106]. Copyright Elsevier, 2020. (f) Schematic illustration
of the preparation of LIPG-based electrochemical sensor for the detection of TRA in red wines and
grape skins. Reprinted with permission from [105]. Copyright Elsevier, 2020. (g) CV curves and
the possible electrochemical reaction mechanism of sunset yellow and tartrazine. Reprinted with
permission from [109]. Copyright Elsevier, 2013. (h) Sketch of the AuNP/RGO/SPCE-modified
nanostructured platform and its application for AA determination in milk. Reprinted with permission
from [112]. Copyright Elsevier, 2020. (i) Raman spectrum and CV curves for different concentrations
of AFB1. Reproduced with permission from [113]. Copyright PLOS, 2019.

Electrochemical sensors based on graphene composite materials have been widely
studied in daily food safety and drug monitoring. In order to maximize the detection
efficiency and accuracy, porous structures such as Co3O4, TiO2, and MnO2 were loaded
onto the surface of graphene to exhibit greater analytic performance in food and alcohol
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safety [119]. For instance, a composite of graphene and mesoporous TiO2, as a novel voltam-
metric sensor, was fabricated by a facile one-pot hydrothermal method. The developed
sensor exhibited well-defined and separated SWV peaks (i.e., 272 mV) for detecting sunset
yellow FCF and tartrazine in several food sample extracts using CV and SWV techniques,
as shown in Figure 5g [109]. With the aim of enhancing the sensitivity of the electrochemical
apta-sensors, Zhou et al. [110] reported gold nanoparticles dotted graphene (GNPs/GR) as
an efficient aptamer used for bisphenol A (BPA) detection in milk products. The fabricated
electrochemical sensor exhibited a wide range of concentrations and a low limit of BPA
detection by analyzing the current change of ferricyanide. Similarly, Yang et al. [111] re-
ported the composite of layer-by-layer films of graphene (Gr)-gold nanoparticles (Au) and
molecularly imprinted polymers (MIPs) as an electrochemical sensor used for efficiently
detecting trans-resveratrol by taking advantage of their synergistic effects. In addition
to the detection of chemical contaminants in foods, it is also important to monitor the
quality of nutrients in food. Au nanoparticles decorated reduced graphene oxide flakes
as an efficient detector were developed to monitor the quality control and quantitative
assessment of vitamin C in infant food by studying L-ascorbic acid (AA) oxidation. As
shown in Figure 5h, the oxidation of AA to dehydroascorbic acid showed a good linear
relationship in the range of 50–500 µM and a low detection limit of 17 µM [112]. Finally,
combining electrochemical sensing technology with other technologies, such as Raman
spectroscopy, FT-IR spectroscopy, and mass spectrometry, can further improve the detection
accuracy and sensitivity. A new Aflatoxin B1 sensor was developed based on Au nanos-
tructures/graphene nanosheets-modified indium tin oxide (ITO) substrate, which could
enhance the Raman effect and the electrochemical conductivity (Figure 5i). The presented
sensor was a simple, easy, and sensitive sensor for monitoring the low concentrations of
AFB1 with a detection limit of about 6.9 pg mL−1. It also allowed the determination of
AFB1 in spiked food samples [113].

Graphene is an excellent candidate in the design of electrochemical sensors due
to its excellent electrical conductivity, large specific surface area, good biocompatibility,
easy functionalization, and abundant active sites. Benefiting from the development of
functionalization strategies, highly efficient electrochemical sensors can be constructed
by doping heteroatoms on graphene. The heteroatom-doped graphene with an accurate
structure helps to explore the sensing mechanism at the molecular level. In addition, metal
nanoparticles or metal oxide particles are usually loaded on the surface of graphene to
improve the sensitivity of electrochemical sensors. However, the added metal salts will
greatly increase the cost and even deteriorate the stability of sensors. In future research,
it is hoped that researchers will directly use graphene as a 3D self-supported electrode in
electrochemical sensors based on graphene’s robust durability, which will provide technical
support for further practical industrial applications.

4. Conclusions and Perspectives

In summary, electrochemical sensors constructed by carbon-based composites can
acquire a wide linear response range and low detection limit in the detection of food
and alcoholic beverage contaminants. CV, LSV, SWV, and DPV are the most widely used
electrochemical sensing methods because they can discern the possible intermediates with
an extremely low detection limit, decode the nature of coupled chemical reactions, explore
the weak adsorption phenomenon, study the mechanism of complex electrode reactions,
and suppress the background current, respectively. Due to the good electrical conductivity,
wide potential window, and easy chemical modifiability, carbon material (i.e., CDs, CNTs,
and graphene)-based composite electrodes have been built with the introduction of metal
nanoparticles, polymers, organic acids, doped heteroatoms, metal-oxide nanoparticles, and
2D sulfides to offer high sensitivity, unique selectivity, good durability, and repeatability.
The presented electrochemical sensors have been widely used for detecting and monitoring
chemical contaminants including dopamine, acetaminophen, H2O2, GA, methyl parathion,
Cu2+ and Fe3+, Bisphenol A, sunset yellow FCF, Aflatoxin B1, and amino acids in foods and
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alcoholic beverages. Furthermore, electrochemical sensors have been practically applied
for the detection of chemical contaminants in white wine, red wine, beer, edible oils, water,
milk, and medicines.

Although most of the reported sensors exhibited potential as portable instruments,
most of them have been assessed only in the laboratory. Thus, developing novel construc-
tion methods and revealing the sensing mechanism underlying the molecular precision are
the core contents that must be studied continuously in order to realize applications in the
industrial model for food and beverage safety in the future. Due to the good electrical con-
ductivity and chemical modifiability of carbon materials, it is hoped that an electrochemical
sensor can be constructed based on single-atom functionalized carbon materials, which can
further reduce the cost and increase the detection sensitivity. Furthermore, using advanced
in situ characterization techniques, such as Fourier-transform infrared spectroscopy (FT-IR),
Raman spectroscopy, and Extended X-ray Absorption Fine Structure (EXAFS) to reveal
the sensing mechanism, can provide the theoretical support for the rational design and
construction of efficient sensing electrodes. Finally, to realize the online detection under
complex working conditions available for industrial applications, the proposed integration
of designed electrochemical sensors within a smart device, such as a phone, iPad, and
computer, is becoming a popular research topic in this field.
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