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Abstract: The modulation spectrum of ship radiated noise contains information on shaft frequency,
which is an important feature used to identify ships and a key parameter involved in calculating the
number of propeller blades. To improve the shaft frequency extraction accuracy, a ship shaft frequency
extraction method based on an improved stacked sparse denoising auto-encoder network (SSDAE) is
proposed. Firstly, the mathematical model of the ship radiated noise modulation spectrum is built
and data simulation is carried out based on this model, combined with the actual ship parameters.
Secondly, we trained the SSDAE model using the simulation data and made slight adjustments to
this model by using both simulation and measured data to improve it. Finally, the experimental
ship modulation spectrum information was input to the SSDAE model for denoising, enhancement,
and regression estimation. Accordingly, the shaft frequency was extracted. The simulation and
experimental results show that the shaft frequency extraction method based on the improved SSDAE
model has high accuracy and good robustness, especially under the conditions of both missing line
spectra and noise interference.

Keywords: ship radiated noise; modulation spectrum; improved SSDAE; regression estimation; shaft
frequency extraction

1. Introduction

In the process of a ship’s movement, propeller blades cut the water flow, creating
ship radiated noise with a periodic fluctuation envelope, which is audibly expressed as
a rhythmic time-varying loudness characteristic [1]. Therefore, the envelope spectrum of
ship radiated noise carries information such as shaft frequency and propeller number [2],
which can be used for ship identification with high robustness. In practical applications, the
accurate extraction of shaft frequency is a key step in calculating the number of propeller
blades, which plays an important role in the field of passive sonar target recognition.

At present, researchers have carried out much work concerning shaft frequency feature
extraction and have achieved considerable results in mathematical modeling [3–5]. These
studies reveal the physical mechanism of the modulation phenomenon of ship radiated
noise, and provide a mathematical basis for the simulation of ship modulation spectrum
data. In terms of shaft frequency extraction, a maximum likelihood estimation method of
propeller speed is proposed in [6], and a closed-loop detection method for shaft frequency
in propeller noise is proposed in [7]. In the work of [8], the application of a Duffing
oscillator in extracting line spectrum of weak amplitude demodulation of ship radiated
noise is studied. In the work of [9], a new method of envelope line spectrum denoising
based on complementary integrated empirical mode decomposition (CEEMD) and wavelet
threshold is investigated. The auditory spectrum extraction technology is improved to
obtain a significant envelope spectrum at a low signal-to-noise ratio in the work of [10]. In
the work of [11], a method for extracting the frequency characteristics of the ship radiated
noise envelope using a dual frequency method is proposed. The propeller shaft frequency
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feature extraction algorithm for underwater acoustic targets based on the average energy
accumulation and pulse sequence matching is proposed in [12]. These methods determine
the value of shaft frequency by looking for harmonic line spectrum clusters generated by
propeller blade modulation, which is better for shaft frequency extraction of high-quality
modulation spectra. However, due to the shaft imbalance of propeller blade assembly, the
envelope spectrum of ship radiated noise usually has different degrees of missing line
spectra [5]. In addition, the envelope spectrum tends to have a low signal-to-noise ratio and
is prone to non-harmonic line spectra due to the interference of environmental and other
ship radiated noise [13]. These questions are not widely appreciated in existing studies
and are the factors that cause inaccuracy with respect to shaft frequency extraction by
traditional methods.

Deep learning has achieved remarkable results in the fields of speech recognition and
computer vision. In recent years, deep learning models such as deep neural networks,
auto-encoder networks, and convolutional neural networks have been widely used for line
spectrum enhancement and target recognition of ship radiated noise [14–19]. Deep learning
can fit the complex mapping relationship from input to output through data learning to
achieve tasks of target classification and regression prediction [20,21]. It has a powerful
nonlinear modeling ability and is an effective means to deal with nonlinear problems in
ship shaft frequency extraction.

To improve the accuracy of shaft frequency extraction in the case of a missing line
spectrum and low signal-to-noise ratio, a ship shaft frequency extraction method based
on improved SSDAE is proposed in this paper. In this method, SSDAE is used to enhance
the propeller shaft frequency line spectrum and its harmonic line spectrum, and the depth
regression network is used to accurately estimate the ship shaft frequency. Experimental
results show that the robustness and the accuracy of shaft frequency extraction are improved
in the above cases. Additionally, this method has better stability under different spindle
speeds and has obvious advantages over the traditional algorithm in computing speed.
It has high practical application value in the target recognition system of the passive
sonar platform.

The remainder of this paper is organized as follows. In Section 2, we build the
mathematical model of ship radiation noise modulation spectrum. In Section 3, we propose
the improved SSDAE network model. The training and fine-tuning methods for improved
SSDAE are presented in Section 4. Experiment and result analysis of shaft frequency
extraction are demonstrated in Section 5. The conclusions of this work are highlighted in
Section 6.

2. Mathematical Model of Ship Radiation Noise Modulation Spectrum

The ship radiated noise signal obtained by the passive sonar system can be approxi-
mated as

s(t) = r(t) + q(t), (1)

where s(t) is the ship radiated noise signal, r(t) is the propeller noise with envelope
modulation characteristics, and q(t) is the non-modulated component of the propeller noise
as well as the radiated noise and environmental noise of other vibration systems of the ship.
The signal-to-noise ratio can be defined as:

SNR = 20 log

∫
|r(t)|dt∫
|q(t)|dt

dB, (2)

For a ship with the M-blade propeller, one cycle in its propeller noise time-domain
signal consists of M pulses, so it is divided into a group.

The modulated signal envelope is assumed to be modeled as an impulsive stochastic
process with a grouped structure, the same shape, the same repetition period, and a random
amplitude [22,23]. For a ship with the m-blade propeller, one cycle of propeller noise time-
domain signal includes M pulses, so it is divided into a group. Assuming that the shaft
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frequency period of the ship is T, the pulse repetition period is T/M. The envelope function
consisting of 2N + 1 groups of pulses can be expressed as

g(t) =
N

∑
n=−N

M−1

∑
m=0

anmu(t− mT
M
− nT), (3)

where anm is the amplitude of the mth pulse of the nth group, and u(t) is the expression of
the pulse waveform. Assuming that the single pulse waveform is Gaussian [24,25], u(t)
can be expressed as

u(t) =
1√
2π

e
−t2

2σ2 , (4)

where σ is a parameter that affects the pulse width. a is a mutually independent random
variable subject to a certain probability distribution. In the specific calculation, take the
average value of the amplitude a, and a satisfies

a ∼ U(
a
2

,
3a
2
), (5)

The propeller noise is a kind of cavitation noise, which is mainly generated by the
propeller blades periodically cutting water resulting in the fragmentation of bubble groups.
The signal is a non-stationary process [26], which can be regarded as the product of envelope
modulation signal and stationary signal, which is

r(t) = g(t) · c(t), (6)

In the simulation of ship radiated noise, the bubble cluster noise is approximated
as Gaussian noise [27]. The power spectrum analysis (Fourier transform) of propeller
cavitation noise signal is performed with

R( fn) = FFT(r(t)), (7)

where fn = n fs/N, n = 0, 1, . . . , N − 1, fs is the sampling frequency, N is the number of
sampling points of a signal. Approximating the modulation spectrum of the ship radiated
noise as the power spectral density of the propeller noise signal, then

S( fn) = 20lg|R( fn)| − 20lgN, (8)

The modulation spectrum of ship radiation noise consists of a line spectrum and a con-
tinuous spectrum [28], which is different from the power spectrum in that the line spectrum
in the modulation spectrum has the harmonic relationship and group structure, in which
the frequency corresponds to the fundamental line spectrum is the ship shaft frequency.

3. SSDAE-DRN Network
3.1. Theory of SSDAE

A denoising auto-encoder [29] (DAE) is a three-layer neural network consisting of
an input layer, a hidden layer, and an output layer, and the flow of the DAE algorithm is
shown in Figure 1. After adding noise to the original input x, the interference input x̃ is
obtained, and the input feature expression h is obtained through the encoding function
f θ . Then h is mapped to the output layer through the decoding function gθ to obtain the
reconstructed data z of the input data.



Appl. Sci. 2022, 12, 9076 4 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 16 
 

Then h is mapped to the output layer through the decoding function gθ to obtain the re-
constructed data z of the input data. 

x x y

f

h

g

L(x,y) 

 
Figure 1. Flowchart of DAE algorithm. 

Therefore, the encoding process of DAE can be expressed as 

θ δ= = + ( ) ( )h f x wx b , (9) 

where θ = (w,b) is the coding model parameter; w is the coding weight matrix, and b is the 
coding offset vector. The decoding process can be expressed as 

θ
δ= = +‘

' '( ) ( )z g y w h b , (10) 

where θ =' ' '( , )w b  is the decoding model parameter, 'w  is the decoding weight matrix, 
'b is the decoding offset vector, and δ  is the nonlinear activation function. The recon-

struction result z cannot accurately reproduce the input data x, for the training sample set 

== ( )
1{ }i N

iD x , the cost function of DAE is 

( )λθ
=

= − + + ‖ ‖ ‖ ‖
2( ) ( ) 2 ' 2

1

1( )
2

N
i i

DAE F FF
i

L z x w w
N

, (11) 

where λ  is is the weight, and the over-fitting can be reduced by decreasing the weight. 
In addition, a penalty factor is added to the cost function to limit the activation degree of 
the neurons in the overall hidden layer, which can realize the high-dimensional sparse 
feature extraction of the input data. Therefore, the cost function of the sparse denoising 
auto-encoder (SDAE) is 

( )λ ρ ρθ β ρ ρ
ρ ρ

′

= =

 −
 = − + + + + −
 − 

 ‖ ‖
2 2( ) ( ) 2

1 1

1 1( ) log (1 ) log
ˆ ˆ2 1

N k
i i

SDA FF Fi j j j

L z x w w
N

, (12) 

where ρ  is the sparsity parameter, β  is the weight of the control sparse constraint, and 
ρ̂ j  is the average activation of the input data corresponding to the jth node of the hidden 
layer [30]. 

SSDAE is a deep neural network formed by stacking several SDAE, and the output 
vector of the previous SDAE hidden layer is the input vector of the next SDAE. The train-
ing of SSDAE adopts the greedy layer-by-layer training method that can effectively alle-
viate the gradient dispersion phenomenon [31]; that is, each SDAE is trained separately to 
obtain the optimal weight of the network which is used as the SSDAE network weights. 
The network is then fine-tuned overall by the error back propagation (BP) algorithm [32] 
until the optimal parameters of the network are derived. The cost function of the fine-
tuning process of SSDAE is 

( )λθ ′

= =

= − + + ‖ ‖
2 2( ) ( ) 2

1 1

1( )
2

N L
i i

SSDAE FF F
i l

L z x w w
N

, (13) 

where L is the number of SDAE. There is no sparsity constraint for fine-tuning since the 
sparsity penalty has been included in the pre-training of each SDAE. 

Figure 1. Flowchart of DAE algorithm.

Therefore, the encoding process of DAE can be expressed as

h = fθ(x̃) = δ(wx̃ + b), (9)

where θ = (w,b) is the coding model parameter; w is the coding weight matrix, and b is the
coding offset vector. The decoding process can be expressed as

z = gθ′(y) = δ(w′h + b′), (10)

where θ′ = (w′, b′) is the decoding model parameter, w′ is the decoding weight matrix, b′

is the decoding offset vector, and δ is the nonlinear activation function. The reconstruc-
tion result z cannot accurately reproduce the input data x, for the training sample set

D =
{

x(i)
}N

i=1
, the cost function of DAE is

LDAE(θ) =
1
N

N

∑
i=1
‖z(i) − x(i)‖

2
F +

λ

2

(
‖w‖2

F + ‖w′‖
2
F

)
, (11)

where λ is is the weight, and the over-fitting can be reduced by decreasing the weight. In
addition, a penalty factor is added to the cost function to limit the activation degree of
the neurons in the overall hidden layer, which can realize the high-dimensional sparse
feature extraction of the input data. Therefore, the cost function of the sparse denoising
auto-encoder (SDAE) is

LSDA(θ) =
1
N

N

∑
i=1
‖z(i) − x(i)‖

2
F +

λ

2

(
‖w‖2

F + ‖w′‖
2
F

)
+ β

k

∑
j=1

(
ρ log

ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j

)
, (12)

where ρ is the sparsity parameter, β is the weight of the control sparse constraint, and ρ̂j
is the average activation of the input data corresponding to the jth node of the hidden
layer [30].

SSDAE is a deep neural network formed by stacking several SDAE, and the output
vector of the previous SDAE hidden layer is the input vector of the next SDAE. The training
of SSDAE adopts the greedy layer-by-layer training method that can effectively alleviate
the gradient dispersion phenomenon [31]; that is, each SDAE is trained separately to obtain
the optimal weight of the network which is used as the SSDAE network weights. The
network is then fine-tuned overall by the error back propagation (BP) algorithm [32] until
the optimal parameters of the network are derived. The cost function of the fine-tuning
process of SSDAE is

LSSDAE(θ) =
1
N

N

∑
i=1
‖z(i) − x(i)‖

2
F +

λ

2

L

∑
l=1

(
‖w‖2

F + ‖w′‖
2
F

)
, (13)

where L is the number of SDAE. There is no sparsity constraint for fine-tuning since the
sparsity penalty has been included in the pre-training of each SDAE.
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3.2. Improved Method of SSDAE
3.2.1. Establishment of Regression Model

SSDAE is an unsupervised deep neural network, which is usually applied to feature
extraction and data denoising, it can be used for target recognition combined with the
SoftMax [33] classification algorithm. To realize the extraction of ship shaft frequency, a
depth regression network (DRN) is connected after SSDAE. The modulation line spectrum
of ship radiated noise is enhanced by SSDAE, and the output vector of SSDAE is used as the
input vector of DRN to obtain the regression model based on SSDAE, namely SSDAE-DRN,
to realize the feature extraction of modulation line spectrum and the estimation of ship
shaft frequency. DRN is a supervised deep learning network with sequence sensitivity [34],
which can extract position and structural features of the line spectrum. During the training,
the labeled shaft frequency corresponding to the SSDAE denoising modulation spectrum
is taken as the output. Then, the features are extracted by the network and the mapping
relationship between the modulation spectrum and the shaft frequency is constructed. The
weight matrix of DRN is updated by the BP algorithm with the following cost function

JN =
1
N

N

∑
n=1

(tn − yn)2, (14)

The mean absolute error (MAE) is used as an index to measure the accuracy of shaft
frequency estimation of the model, the average MAE over N samples is defined as

MAE =
1
N

N

∑
n=1
|tn − yn| (Hz), (15)

where tn denotes the expected value of the output layer node, and yn represents the actual
output value of the output layer node. The improved SSDAE model (SSDAE-DRN) of ship
shaft frequency extraction is shown in Figure 2.
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3.2.2. Activate Function

The SSDAE-DRN network trained with different nonlinear activation functions has
different feature representation and fitting generalization capabilities, which can affect
the accuracy of shaft frequency extraction. We choose the Elu function as the activation
function of the hidden layer, and the expression is

ELU(x) =
{

x, x ≥ 0
α(ex − 1), x < 0

, (16)

Compared with traditional Sigmoid and Tanh functions, the ELU function can over-
come the problem of gradient disappearance during iteration [35]. Meanwhile, the ELU
function has a non-zero exponential distribution slope on (−∞, 0), which can effectively
alleviate the problem of hard saturation of negative input of Relu function. Images of Relu,
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Sigmoid, ELU, and Tanh activation function are shown in Figure 3. The traditional network
output layer is usually activated by SoftMax or Sigmoid function to achieve target classifi-
cation or numerical prediction. In this paper, we improve the activation function according
to the actual needs of ship modulation spectrum denoising and shaft frequency extraction.
SSDAE and DRN have actual output range constraints and no negative values for the
modulation spectrum so they are activated by the Relu function. The output of DRN is the
estimate of the modulation spectrum shaft frequency, so there is no activation function.
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3.2.3. Batch Normalization

To extract features better, reduce the dependency between parameters, and alleviate
the phenomenon of over-fitting, the nonlinear activation function is used after each layer of
weighted summation in the feature extraction network to enhance the nonlinear expression.
Meanwhile, in order to accelerate the convergence of the network, prevent gradient explo-
sion, and improve the accuracy of the model, a batch normalization (BN) layer is added
before the activation function so that the input will not always be in a negative interval.
The calculation of the BN layer can be seen in formula (17).

µB ← 1
m ∑m

i=1 xi

σ2
B ←

1
m ∑m

i=1 (xi − µB)
2

x̂i ←
xi−µB√

σ2
B+ε

yi ← γx̂i + β

, (17)

where ∑m
i=1 xi is the output of the dense layer, µB and σ2

B represent the mean and variance,
respectively, yi is the output of the BN, ε is the numerical stability constant, γ and β are the
optimizable parameters of the BN layer to ensure that the normalization can optimize the
distribution of activation values.

4. Training and Fine-Tuning of SSDAE-DRN

It is difficult to obtain the radiated noise of ships, especially the data under differ-
ent spindle speeds, which limits the training effect and generalization ability of the deep
learning algorithm. In Section 1, a mathematical model of ship radiated noise modulation
spectrum with arbitrary shaft frequency and blade number based on Gaussian pulse signal
is established, which creates conditions for ship modulation spectrum database extension
and SSDAE-DRN model training. Based on the analysis of the inherent physical character-
istics and the modulation spectrum data of the ship, the modulation signal parameters are
summarized (as shown in Table 1).
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Table 1. Modulation signal parameters of ship radiated noise.

Name Parameter Setting

Number of Blades 3~7
Shaft frequency 1~20 Hz

Frequency sampling interval 0.1 Hz
Modulation system 0~1

According to the mathematical model of the modulation spectrum and the signal
parameters shown in Table 1, the grid search algorithm is used for traversal simulation. The
modulation spectrum simulation data is obtained after normalization with shaft frequency
as the “label”, and the number of samples is 106. Among them, the simulated modulation
spectrum trace of a 4-blade propeller ship with a shaft frequency of 5 Hz under a typical
modulation system is shown in Figure 4. In the simulated envelope spectrum of ship
radiated noise shown in Figure 4, the line spectrum at 5 Hz is the shaft frequency line
spectrum, the line spectrum at 10 Hz is the second harmonic line spectrum, the line
spectrum at 15 Hz is the third harmonic line spectrum, and the line spectrum at 20 Hz is the
forth harmonic line spectrum. The envelope spectrum shown in the four subplots all have
different degrees of line spectrum missing, and in Figure 4 there is only the 4th harmonic
line spectrum of the shaft frequency.
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Figure 4. Simulated modulation spectrum. (a) A0 = 1.0, A1 = 0.5, A2 = 0.5, A3 = 0.5; (b) A0 = 1.0,
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According to the difference between blade modulation, the propeller noise envelope
modulation can be divided into uniform modulation and non-uniform modulation. In
uniform modulation, the modulation system is the same for each blade, and there is only a
leaf frequency line spectrum exists in the modulation spectrum, as shown in Figure 4d. In
non-uniform modulation, the modulation system of each blade is different, and in some
specific cases, there is a lack of line spectrum, as shown in Figure 4c. The absence of a
line spectrum will lead to the poor robustness of the shaft frequency extraction algorithm,
the existence of only a leaf frequency line spectrum will lead to the misjudgment of the
axis frequency. The actual ship modulation spectrum often has line spectrum components
lower than shaft frequency, which are important factors to reduce the accuracy of shaft
frequency extraction.

The training of SSDAE is divided into two steps: unsupervised pre-training and
supervised fine-tuning. Unsupervised pre-training takes the original simulation data after
adding noise as the network input, and adopts a greedy algorithm to train layer-by-layer,
so that the network learns to reconstruct the intrinsic features of the original data by
minimizing the cost function (as shown in Figure 5).
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Figure 5. Unsupervised pre-training diagram.

Next, the SSDAE-DRN model is trained according to Figure 5. The number of input
layer nodes is 1500 and the number of hidden layers is 6. The Adma optimizer is used
to optimize the network parameters, the learning rate is set to 0.001 and the number of
iterations is 200. To evaluate the performance of the model and avoid the overlapping
of shaft frequency and blade frequency of different data, which makes the model unable
to be generalized, data with shaft frequency as an integer and blade number as 7 in the
simulation data are used for training. The training and validation sets are divided according
to the proportion of 3:2. Experiments are carried out on networks with different activation
functions and batch normalization, and the cost function curves are shown in Figure 6.
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Figure 6. Cost function curves.

When using ELU function activation and BN layer for batch standardization, the
network cost function curve is smoother and the convergence value is smaller, which
has better reconstruction performance of the original data. After the model training is
completed, the simulated modulation spectrum is input into the pre-trained SSDAE-DRN
model, and the reconstructed results are shown in Figure 7.
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4.5 Hz; (c) input shaft frequency: 6.5 Hz; (d) output shaft frequency: 6.5 Hz; (e) input shaft frequency:
8.5 Hz; (f) output shaft frequency: 8.5 Hz.

The shaft frequencies corresponding to the input data shown in Figure 7 are 4.5 Hz,
6.5 Hz, and 8.5 Hz, respectively, and these non-integer shaft frequency samples are not
included in the training data. The comparison between the output data and the input data
shows that the harmonic line spectrum is significantly enhanced, the continuous spectrum
envelope is effectively suppressed, the submerged or missing shaft frequency line spectrum
is recovered, and the non-harmonic line spectrum is effectively eliminated.

Since the number of effective line spectra of the data used in the training model is 7,
the higher harmonic line spectra of the output are inevitably enhanced, but this does not
hinder the subsequent task of shaft frequency extraction. Input the modulation spectrum
data of the radiated noise of three ships into the model, and the reconstruction results are
shown in Figure 8. It can be seen that the SSDAE-DRN model has a good generalization
ability and denoising effect on the real data. In particular, Figure 8d,f reflect the ability of
the model to accurately restore the axial shaft frequency line spectrum and the harmonic
line spectrum between the shaft frequency and the leaf frequency line spectrum, which
is based on the leaf frequency line spectrum and the higher harmonics information. This
shows that the model possesses the sensitivity of line spectrum components and harmonic
relationships and is not affected by the change of position.

Then, the simulation data and some real historical data are mixed to form a new
dataset, which is used to fine-tune the regression part of SSDAE-DRN so that the model
has the capability of shaft frequency extraction. The real data comes from 2000 samples of
two cooperative ships in the Qiandao Lake at different speeds, which enables the model
to effectively extract line spectrum features, better learn continuous spectrum envelope
features and noise distribution rules, and improve the shaft frequency extraction perfor-
mance of the network. A total of 1500 real samples are randomly selected to fine-tune the
SSDAE-DRN model, and 500 samples are used to test the performance of the model. During
fine-tuning, the pre-trained SSDAE model parameters are frozen and will not participate
in the adjustment of the regression. The experimental results of the model with different
combinations of the dataset are shown in Table 2.
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Figure 8. Processing of real data. (a) Input of ship A, shaft frequency: 3.4 Hz; (b) output of ship
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8.6 Hz.

Table 2. Performance comparison of shaft frequency extraction on fine-tuned model.

Training Data Testing Data MAE

Simulated Data Simulated Data 0.58
Simulated Data Real Data 1.56

Simulated Data + Real Data Real Data 1.23

Using simulated data to fine-tune the model, the MAE is validated on the simulated
data at 0.58 Hz while it is increased by nearly 1 Hz when validated on the measured data.
This is mainly due to the fact that the real data are not used in the training of the SSDAE-
DRN model, so the model has limited denoising and enhancement effect on real data.
However, the regression part of the SSDAE-DRN model has feature extraction capability.
Real data are added to fine-tune the model so that it can effectively learn the reconstruction
features and improve the accuracy of shaft frequency extraction. Then the model is fine-
tuned with both simulated and real data and validated with real data. The MAE is reduced
by 0.33 hz, and the model’s performance is improved.

5. Experiment and Result Analysis of Shaft Frequency Extraction
5.1. Simulated Experiment

The performance of the SSDAE-DRN model for shaft frequency extraction is tested
in the following four cases: shaft frequency line spectrum missing, second harmonic line
spectrum missing, strong leaf frequency line spectrum only, and low signal-to-noise ratio.
The results of shaft frequency extraction are shown in Figure 9. The left is the trace map of
input data, the right shows the output trace map of the denoising and enhancement part of
SSDAE-DRN, and the red dots are the estimated shaft frequency of regression prediction.
It is worth noting that the input to the SSDAE-DRN model is the envelope spectrum of the
ship radiated noise and that the trace map is made up of the envelope spectra stacked in
chronological order.
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Figure 9. Trace map on simulation experiment of shaft frequency extraction. (a) Shaft frequency line
spectrum missing; (b) shaft frequency extraction of (a); (c) second harmonic line spectrum missing;
(d) shaft frequency extraction of (c); (e) strong leaf frequency line spectrum only; (f) shaft frequency
extraction of (e); (g) low signal-to-noise ratio; (h) shaft frequency extraction of (g).

It can be seen from Figure 9 that the SSDAE-DRN model can obtain a more accurate
shaft frequency estimation in the case of missing shaft frequency line spectra. The estima-
tion error increases in the other three cases but the shaft frequency can still be extracted
more accurately. The method proposed in this paper is compared with the method of
sequence matching in [13] on simulated data, and the results are shown in Table 3. Com-
pared with sequence matching, the method in this paper has higher accuracy and obvious
advantages, especially in the case of missing line spectra and noise interference.

Table 3. MAE of different methods on simulated data.

Type of Ship Method of Sequence Matching Method in This Paper

Normal line spectrum 2.56 0.43
shaft frequency line spectrum missing 4.15 1.28

second harmonic line spectrum missing 3.17 1.54
strong leaf frequency line spectrum only 5.49 1.32

noise interference (0 dB) 2.82 0.48
noise interference (−10 dB) 3.73 1.25
noise interference (−20 dB) 4.85 1.79

The ship shaft frequency extraction algorithm varies in its ability on different data, and
the extraction error increases as the true value increases. To obtain the error distribution of
this method, the test data are grouped and the shaft frequency is extracted for each group,
respectively. Results obtained by two methods are shown in Figure 10 after smoothing.
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Similar to the traditional method, the error of the method in this paper also increases
with the increase of the real shaft frequency. Compared with the method of sequence
matching, the error growth curve of this method is smoother, and the average absolute
error of extraction under the real shaft frequency of 20 Hz is only 2 Hz, which is 3.6 Hz
lower than the method of sequence matching. Therefore, the performance of the method in
this paper is more stable for ship targets with different speeds.

To better measure the performance of the model for shaft frequency extraction at
different speeds, the mean error rate is used as the evaluation index, which is defined as

MRE =
1
N

N

∑
n=1

∣∣∣∣ f n
0 − f n

1
f n
0

∣∣∣∣× 100%, (18)

where f n
0 and f n

1 are the real and estimated value of the shaft frequency of the nth sample.
The distribution of the error rate on the simulated data for the method in this paper and
the method of sequence matching is shown in Figure 11.
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The shaft frequency line spectrum and harmonic line spectrum in the ship modulation
are tight at low speeds, and the interference of the non-harmonic line spectrum makes
the traditional method prone to misjudgment. The shaft frequency of the majority of civil
ships is no higher than 10 Hz, and usually below 5 Hz during normal driving. Figure 11
illustrates that the method in this paper has a smaller average error rate and significant
improvement, especially in the low-speed condition of the ship.

5.2. Experiment on Real Data

In the simulation experiment, we trained the SSDAE-DRN model by using the simu-
lated ship radiated noise envelope spectrum and a small amount of real ship radiated noise
envelope spectrum. Next, we collected the real ship radiated noise data and extracted the
ship shaft frequency using the pre-trained SSDAE-DRN model. The main process is shown
in Figure 12.
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Figure 12. Flow chart of ship shaft frequency extraction.

The measurement experiment of ship radiated noise was carried out in a certain area of
Changjiang River, in January 2022, where the water depth was 14 m and a large number of
cargo ships, tankers, large junks, and law enforcement vessels passed by. The hydrophone
is fixed on a frame and placed at a depth of 12 m underwater, at a distance of 750 m from the
center of the channel, and the radiated noise is automatically recorded when the ships pass
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on the river near the hydrophone. The hydrophone used in the experiment is icListen-900
m produced by Ocean Sonics, and the effective measurement frequency band is 0~10 kHz.
The experiment equipment and time-frequency diagram of data are shown in Figure 13.
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phone is fixed on a frame and placed at a depth of 12 m underwater, at a distance of 750 
m from the center of the channel, and the radiated noise is automatically recorded when 
the ships pass on the river near the hydrophone. The hydrophone used in the experiment 
is icListen-900m produced by Ocean Sonics, and the effective measurement frequency 
band is 0~10 kHz. The experiment equipment and time-frequency diagram of data are 
shown in Figure 13. 
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A total of 720 cargo ship samples, 480 tanker samples, 960 large junk samples, and 480 law 
enforcement vessel samples are obtained after pre-processing. 

The multi-subband weighted fusion DEMON spectrum estimation method [35] is 
used to obtain the modulation spectrum of real ship radiated noise, and the real shaft 
frequency calibration of the sample is then performed by manual interpretation combined 
with the speed record. The modulation spectrum of the real data is input into the SSDAE-
DRN model to obtain the estimated value of ship shaft frequency. The results of shaft 
frequency extraction of ship radiated noise from four types of ships are shown in Figure 
14. The real shaft frequencies of the cargo ship, tanker, law enforcement vessel, and large 
junk in the figure are 4.9 Hz, 3.1 Hz, 5.1 Hz, and 1.5 Hz, respectively. The red circles in the 
figures are the estimated values of the shaft frequency calculated by the SSDAE-DRN 
model. 

Figure 13. Experiment equipment and time-frequency diagram of data. (a) Experiment equipment;
(b) time-frequency diagram of the data.

The acquired data are influenced by the sea state and the target distance during the
experiment and have the interference of environmental and other ship noise. The radiated
noise data of 10 ships in 4 categories are obtained, and the sampling rate is 32 kHz. The
ships sail at approximately uniform speed with a shaft frequency range of 2 Hz to 8 Hz. A
total of 720 cargo ship samples, 480 tanker samples, 960 large junk samples, and 480 law
enforcement vessel samples are obtained after pre-processing.

The multi-subband weighted fusion DEMON spectrum estimation method [35] is used
to obtain the modulation spectrum of real ship radiated noise, and the real shaft frequency
calibration of the sample is then performed by manual interpretation combined with the
speed record. The modulation spectrum of the real data is input into the SSDAE-DRN
model to obtain the estimated value of ship shaft frequency. The results of shaft frequency
extraction of ship radiated noise from four types of ships are shown in Figure 14. The real
shaft frequencies of the cargo ship, tanker, law enforcement vessel, and large junk in the
figure are 4.9 Hz, 3.1 Hz, 5.1 Hz, and 1.5 Hz, respectively. The red circles in the figures are
the estimated values of the shaft frequency calculated by the SSDAE-DRN model.
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cargo ship; (b) modulation trace map of tanker; (c) modulation trace map of law enforcement vessel;
(d) modulation trace map of large junk.
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It can be seen from Figure 14 that the estimation shaft frequency in this method can
be in good agreement with the shaft frequency line spectrum in the trace map. The shaft
frequency and its harmonic line spectrum of cargo ships and large junks have a high
signal-to-noise ratio and accurate extraction results. The shaft frequency and its harmonic
line spectrum of tankers and law enforcement vessels have a low signal-to-noise ratio.
Moreover, there is a significant line spectrum below the shaft frequency, which makes the
estimated value have a large bias at some points. The MAE and MRE of this method are
calculated using the estimated and calibrated values, and the comparison with the method
of sequence matching is shown in Tables 4 and 5.

Table 4. MAE of shaft frequency extraction on real data.

Type of Ship Method of Sequence Matching Method in This Paper

Cargo Ship 1.18 0.63
Tanker 1.94 0.71

Law Enforcement Vessel 1.75 0.62
Large Junk 1.73 0.50

Table 5. MRE of shaft frequency extraction on real data.

Type of Ship Method of Sequence Matching/% Method in This Paper/%

Cargo Ship 27.6 11.2
Tanker 35.3 11.8

Law Enforcement Vessel 21.6 8.3
Large Junk 20.9 7.5

Average Value 26.4 9.7

The experimental results show that the SSDAE-DRN model proposed in this paper
achieves better results on the real data with an average error rate of 9.7%, which is 16.7%
lower than the method of sequence matching and has high accuracy and stability under
the condition of line spectrum missing and noise interference. In addition, the extraction
performance of the SSDAE-DRN model will be better improved by using real data and hard
negative samples for training and fine-tuning. The proposed method realizes end-to-end
shaft frequency extraction. The computational cost is mainly concentrated in the training
and fine-tuning of the model, and only a simple weighted summation is required to extract
the shaft frequency. Therefore, it has faster extraction efficiency and has more advantages
than traditional methods in terms of real-time performance.

6. Conclusions

In this paper, the SSDAE-DRN model is proposed for achieving modulation spectrum
denoising, enhancement, and ship shaft frequency extraction. Meanwhile, the structure
and activation function of the traditional SSDAE network is improved and combined with
the depth regression network to improve the accuracy of ship shaft frequency extraction.

A mathematical model of a ship radiation noise modulation spectrum based on
Gaussian pulse sequences is established, and the simulation data set is generated based
on the mathematical model and ship-related parameters, which provides data support
for model training. The SSDAE-DRN is trained on simulation data and fine-tuned on
simulation and real data, which improves the accuracy of shaft frequency extraction and
network generalization performance.

The experimental results show that the SSDAE-DRN model proposed in this paper
has a good denoising and enhancement effect on the modulation spectrum of ship radiated
noise, and can effectively improve the accuracy of ship shaft frequency extraction. The
average error rate on the real ship radiated noise data in the Changjiang River is 9.7%,
which is 16.7% lower than that of the sequence matching method as a comparison. In



Appl. Sci. 2022, 12, 9076 15 of 16

particular, this method has high accuracy and stability in the case of line spectrum missing
and noise interference and also has good robustness under different spindle speeds.

Author Contributions: M.Z. gave academic guidance to this research work. The manuscript has
been modified by C.H., in the content and structure of the article. G.L. and Z.G. put forward feasible
suggestions for the research content. J.N. designed the core method proposed in this paper, wrote
the program, carried out relevant experimental verification, and drafted the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Free exploration project of Institute of acoustics, Chinese
Academy of Sciences.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sezen, S.; Bal, S. Computational and empirical Investigation of propeller tip vortex cavitation noise. China Ocean Eng. 2020,

34, 86–98. [CrossRef]
2. Hwang, H.S.; Paik, K.J.; Lee, S.H.; Song, G. Numerical Study on the Vibration and Noise Characteristics of a Delft Twist11

Hydrofoil. J. Mar. Sci. Eng. 2021, 9, 144. [CrossRef]
3. Tao, D.C. A study on ship-radiated noise rhythms(I)—mathematical model and power spectrum density. Chin. J. Acoust. 1985,

3, 50–62.
4. Thomas, M.; Lionel, F.; Laurent, D.P. Propeller Noise Detection with Deep Learning. In Proceedings of the ICASSP 2020—2020

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 306–310.
5. Cheng, Y.S.; Ma, K.; Qiu, J.X. Model of radiated noise modulation spectrum of ships with skewed propellers. Acta Acust. 2022,

47, 27–35.
6. Lourens, J.G.; Prcez, J. Passive sonar ML estimator for ship propeller speed. IEEE J. Ocean. Eng. 1998, 23, 448–453. [CrossRef]
7. Antoni, J.; Hanson, D. Detection of Surface Ships from Interception of Cyclostationary Signature with the Cyclic Modulation

Coherence. IEEE J. Ocean. Eng. 2012, 37, 478–493. [CrossRef]
8. Wang, Y.C.; Li, H.T.; Dai, W.G. Application of Duffing oscillator in ship propeller blade number recognition. In Proceedings of the

2016 IEEE/OES China Ocean Acoustics (COA), Harbin, China, 9–11 January 2016; pp. 1–5.
9. Pan, Y.; Zhao, A.; Li, J.; Zhang, X. Ship Radiated Noise Modulation Feature Extraction Based on CEEMD and Wavelet Threshold

Noise Reduction. In Proceedings of the 2015 International Industrial Informatics and Computer Engineering Conference (IIICEC
2015), Xi’an, China, 10–11 January 2015.

10. Mu, L.; Peng, Y.; Qiu, M.; Yang, X.; Hu, C.; Zhang, F. Study on modulation spectrum feature extraction of ship radiated noise
based on auditory model. In Proceedings of the 2016 IEEE/OES China Ocean Acoustics (COA), Harbin, China, 9–11 January
2016; pp. 1–5.

11. Wang, H.L.; Guo, L.H. Research of Modulation Feature Extraction from Ship-Radiated Noise. J. Phys. Conf. Ser. 2020, 1631, 012130.
[CrossRef]

12. Yang, R.J.; Deng, X.Q.; Han, J.H. An automatic extraction method of propeller shaft frequency based on sequence matching. J. Vib.
Shock. 2018, 37, 57–61.

13. Thomas, M.; Lionel, F.; Laurent, D.P. Explainable Deep Learning Detection of Gaussian Propeller Noise with Unknown Signal-to-
Noise Ratio. In Proceedings of the 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP),
Gold Coast, Australia, 25–28 October 2021; pp. 1–6.

14. Li, J.H.; Yang, H.H. The underwater acoustic target timbre perception and recognition based on the auditory inspired deep
convolutional neural network. Appl. Acoust. 2021, 182, 108210. [CrossRef]

15. Hu, G.; Wang, K.J.; Liu, L.L. Underwater Acoustic Target Recognition Based on Depthwise Separable Convolution Neural
Networks. Sensors 2021, 21, 1429. [CrossRef]

16. Luo, X.; Zhang, M.; Liu, T.; Huang, M.; Xu, X. An Underwater Acoustic Target Recognition Method Based on Spectrograms with
Different Resolutions. J. Mar. Sci. Eng. 2021, 9, 1246. [CrossRef]

17. Yang, H.H.; Zheng, K.F.; Li, J.H. Open set recognition of underwater acoustic targets based on GRU-CAE collaborative deep
learning network. Appl. Acoust. 2022, 193, 108774. [CrossRef]

18. Khan, M.A. VGG19 Network Assisted Joint Segmentation and Classification of Lung Nodules in CT Images. Diagnostics 2021,
11, 2208. [CrossRef]

19. Phan, T.-C.; Phan, A.-C.; Cao, H.-P.; Trieu, T.-N. Content-Based Video Big Data Retrieval with Extensive Features and Deep
Learning. Appl. Sci. 2022, 12, 6753. [CrossRef]

20. Nam, J.G.; Kang, H.R.; Lee, S.M.; Kim, H.; Rhee, C.; Goo, J.M.; Park, C.M. Deep Learning Prediction of Survival in Patients with
Chronic Obstructive Pulmonary Disease Using Chest Radiographs. Radiology 2022, 212071. [CrossRef] [PubMed]

http://doi.org/10.1007/s13344-020-0022-8
http://doi.org/10.3390/jmse9020144
http://doi.org/10.1109/48.725238
http://doi.org/10.1109/JOE.2012.2195852
http://doi.org/10.1088/1742-6596/1631/1/012130
http://doi.org/10.1016/j.apacoust.2021.108210
http://doi.org/10.3390/s21041429
http://doi.org/10.3390/jmse9111246
http://doi.org/10.1016/j.apacoust.2022.108774
http://doi.org/10.3390/diagnostics11122208
http://doi.org/10.3390/app12136753
http://doi.org/10.1148/radiol.212071
http://www.ncbi.nlm.nih.gov/pubmed/35670713


Appl. Sci. 2022, 12, 9076 16 of 16

21. Lu, J.; Bender, B.; Jin, J.Y.; Guan, Y. Deep learning prediction of patient response time course from early data via neural-
pharmacokinetic/pharmacodynamic modelling. Nat. Mach. Intell. 2021, 3, 696–704. [CrossRef]

22. Zeng, S.; Du, X.M.; Fan, W. Theoretically analysis and experimental research on non-cavitation noise modulation mechanism of
underwater counter-rotation propeller. Acta Acust. 2017, 42, 641–651.

23. Kim, Y.H.; Seol, H.S.; Lee, J.H. Localization and Source-strength Estimation of Tip Vortex Cavitation Noise Using Compressive
Sensing. Trans. Korean Soc. Noise Vib. Eng. 2020, 30, 329–339. [CrossRef]

24. El-Mowafy, M.; Gharghory, S.; Abo-Elsoud, M.; Obayya, M.; Allah, M.F. Efficient mode decision scheme based on edge detection
with Gaussian pulse for Intra-prediction in H.264/AVC. Alex. Eng. J. 2022, 61, 2709–2722. [CrossRef]

25. Naidenko, V.I. Velocity of Energy Characteristics of Electromagnetic Waves Emitted by Hertz Dipole Excited by Gaussian Pulse.
Radioelectron. Commun. Syst. 2021, 64, 351–362. [CrossRef]

26. Wang, Q.; Meng, C.; Wang, C. High-concentration time–frequency analysis for multi-component nonstationary signals based on
combined multi-window Gabor transform. Eng. Comput. 2022, 39, 1234–1273. [CrossRef]

27. Park, C.; Kim, G.D.; Yim, G.-T.; Park, Y.; Moon, I. A validation study of the model test method for propeller cavitation noise
prediction. Ocean. Eng. 2020, 213, 107655. [CrossRef]

28. Arroyo, D.; Emery, X. Simulation of intrinsic random fields of order k with a continuous spectral algorithm. Stoch. Environ. Res.
Risk Assess. 2018, 32, 3245–3255. [CrossRef]

29. Yan, X.; Xu, Y.; She, D.; Zhang, W. Reliable Fault Diagnosis of Bearings Using an Optimized Stacked Variational Denoising
Auto-Encoder. Entropy 2022, 24, 36. [CrossRef] [PubMed]

30. Lu, N.; Chen, C.; Shi, W.; Zhang, J.; Ma, J. Weakly Supervised Change Detection Based on Edge Mapping and SDAE Network in
High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 3907. [CrossRef]

31. Liu, B.; Fan, Y.; Zhang, L.; Guo, H.; Qin, M.; Wang, M. Image Matching Algorithm Based on Improved SSDA. In Proceedings of
the 2021 IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, 7–10 May 2021; pp. 1290–1294.

32. Huang, J.; Zeng, X.; Fu, J.; Han, Y.; Chen, H. Safety Risk Assessment Using a BP Neural Network of High Cutting Slope
Construction in High-Speed Railway. Buildings 2022, 12, 598. [CrossRef]

33. Blanchard, P.; Higham, D.J.; Higham, N.J. Accurately computing the log-sum-exp and softmax functions. IMA J. Numer. Anal.
2021, 41, 2311–2330. [CrossRef]

34. Bernardini, M.; Mayer, L.; Reed, D.; Feldmann, R. Predicting dark matter halo formation in N-body simulations with deep
regression networks. Mon. Not. R. Astron. Soc. 2020, 496, 5116–5125. [CrossRef]

35. Narmadha, S.; Vijayakumar, V. An Improved Stacked Denoise Autoencoder with Elu Activation Function for Traffic Data
Imputation. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 3951–3954.

http://doi.org/10.1038/s42256-021-00357-4
http://doi.org/10.5050/KSNVE.2020.30.4.329
http://doi.org/10.1016/j.aej.2021.07.044
http://doi.org/10.3103/S0735272721070025
http://doi.org/10.1108/EC-03-2021-0142
http://doi.org/10.1016/j.oceaneng.2020.107655
http://doi.org/10.1007/s00477-018-1516-2
http://doi.org/10.3390/e24010036
http://www.ncbi.nlm.nih.gov/pubmed/35052062
http://doi.org/10.3390/rs12233907
http://doi.org/10.3390/buildings12050598
http://doi.org/10.1093/imanum/draa038
http://doi.org/10.1093/mnras/staa1911

	Introduction 
	Mathematical Model of Ship Radiation Noise Modulation Spectrum 
	SSDAE-DRN Network 
	Theory of SSDAE 
	Improved Method of SSDAE 
	Establishment of Regression Model 
	Activate Function 
	Batch Normalization 


	Training and Fine-Tuning of SSDAE-DRN 
	Experiment and Result Analysis of Shaft Frequency Extraction 
	Simulated Experiment 
	Experiment on Real Data 

	Conclusions 
	References

