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Abstract: Landslide susceptibility maps (LSMs) have been used frequently by researchers for many
years in prediction of the occurrence of landslides. Since many landslides have occurred there in
the past, Izmir, which is the third largest city of Türkiye, was selected for landslide susceptibility
assessment using geographical information systems (GIS) and remote sensing (RS) techniques. The
aim of this study is to create a better landslide susceptibility map (LSM) for the Izmir metropolitan
area and its surroundings by minimizing the shortcomings of some of the commonly used methods.
For this purpose, four different LSMs were prepared using the logistic regression (LR), analytical
hierarchy process (AHP), frequency ratio (FR) and index of entropy (IOE) methods with susceptibility
classes ranging from extremely low to extremely high. These four maps were then overlaid. The
highest susceptibility class was chosen for each pixel to form a combined landslide susceptibility map
(CLSM). The final CLSM is a thematic map presenting landslide susceptibility using five different
classes. The geo-environmental factors selected for use in this analysis were slope angle, slope aspect,
lithology, slope curvature, elevation, density of discontinuity, stream power index (SPI), land use
and distance from stream. Finally, the areas under receiver-operating characteristic (ROC) curves
were employed to compare the predictive capability of the five models used. Overall, the Combined
Method (CM) (AUC = 0.887) performed very well for landslide susceptibility assessment. Out of all
the models, the IOE model (AUC = 0.841) had a slightly lower predictive capability than the CM
model, and AHP (AUC = 0.816) was better than FR (AUC = 0.738) and LR (AUC = 0.727). It was
observed that, compared to rural areas, residential areas of Izmir city are particularly susceptible to
landslides.

Keywords: landslide susceptibility; combined method; analytical hierarchy process; logistic regres-
sion; frequency ratio; index of entropy; Izmir (Türkiye)

1. Introduction

Landslide is described as downslope activity of geological material or mass. Within a
soil mass, when gravitational forces or shear stress are greater than shear strength, landslide
occurs [1]. The natural factors affecting landslide occurrence are geologic, morphologic and
geo-environmental factors. High slope angle values [2], discontinuities [2,3], earthquakes [4,5],
heavy rain [2], manmade excavations [6,7] and construction works may also cause stable
slopes to fail via zones of weakness [7].

Awareness of these factors, as well their level of influence in triggering landslides
makes it easier to foresee future landslides. The best way to assess all the aforementioned
geo-environmental factors is to prepare landslide susceptibility maps LSMs. LSMs are
viable tools for the analysis of landslides in a particular area and the factors (slope, lithology,
aspect, etc.) causing these landslides. The weighting of various the geo-environmental
factors must be determined in order to prepare LSMs. One of the main advantages of these
maps is the opportunity to work in small scales. Field work in all parts of a large study area
would be difficult, expensive and time consuming. After preparing LSMs and determining
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which parts of the site are landslide susceptible; field work studies can be concentrated on
these sites. Finally, the budget of the project will be affected positively, not only financially,
but also in terms of time taken.

Application of different models to different zones is plausible, since landslides in
different parts of the world are likely to be affected by different factors. Also, since the
behaviour and nature of landslides differ, geo-environmental factors selected in different
methods may not correctly simulate the influencing mechanisms. Therefore, it may be
necessary to examine applications in different regions, in order to question the performance
of these methods.

In the literature, there are many LSMs prepared by various researchers using different
methods. In this regard, Çevik and Topal [8] prepared a LSM to find a better location
for a natural gas pipeline in Hendek (Türkiye). Authors used the statistical index (Wi)
and weighting factor (Wf) methods while preparing LSMs with GIS. They found that Wf
was the better method. Lithology was the most important factor in the analyses. Lee [9]
used LR and FR analysis in Penang and its surroundings, in Malaysia. The resulting LSM,
created using the LR model, showed 7.5% higher accuracy than the FR model. Yalcin
et al. [10] used the FR model, AHP, the statistical index (Wi), weighting factor (Wf) and
the LR model incorporating GIS and RS techniques to assess landslide susceptibility in
Trabzon province (Türkiye). The results were verified using landslide inventory map.
According the to results, the Wf method was the best predictive method. Pourghasemi
et al. [11] used fuzzy logic and AHP in the surroundings of Alborz folded zone in Iran.
Their results showed that the FL model (89.70%) had a better prediction accuracy, at 8.60%,
than the AHP model (81.10%). Shahabi et al. [12] used the AHP, FR and LR models on the
central Zab basin, Iran. The results revealed that the landslide inventory overlapped for
highly and very highly susceptible areas in the AHP (69.41%), FR (73.93%) and LR (75.99%)
maps. According to their findings, it was concluded that the LR model gave better results.
Pham et al. [13] compared the three techniques—namely, functional trees (FT), multilayer
perceptron neural networks (MLP neural nets), and naïve Bayes (NB)—for determining
landslide susceptibility in the Uttarakhand region (India). The predictive capability of the
factors they used on landslide models was assessed by a linear support vector machine
(LSVM) algorithm. The authors concluded that the models they used worked very well for
determining landslide-susceptible zones. Abedini and Tulabi [14] used landslide nominal
risk factor (LNRF), LR and AHP at the Nojian watershed in Lorestan province, Iran.
According to the results, the AHP and LR models showed higher accuracy than the LNRF
model. Du et al. [15] used the AHP and LR models in China. The susceptibility map created
with FR provided slightly better results than that created with AHP. The researchers stated
that the LR method was the best model and could be accepted as the best model for similar
situations. Reichenbach et al. [16] reviewed landslide susceptibility studies from 1983 to
2016. The authors emphasized that most recent studies evaluated the model performance
and prediction performance, and only a few considered the issue of model uncertainty.
They provided suggestions for the generation of landslide susceptibility models with
the help of their experience in the field, literature reviews, information analysis using
literature database. Talaei [17] prepared a combined model for landslide susceptibility in
the northwest of Iran. Landslide hazard potential and resource damage potential layers
were combined. Carabella et al. [18] conducted a post-wildfire landslide hazard assessment.
The analysis was conducted using a heuristic or expert-based approach with GIS. Finally,
they mapped all collected data through an overlay process which could be useful for civil
protection warning systems. Demir [19] used the FR and IOE models in Türkiye. As
a result, according to the researchers, both methods showed successful results, but the
susceptibility map created with the FR yield slightly better results. Konovalov et al. [20]
proposed a new probabilistic technique to conduct a risk assessment for landslides triggered
by earthquakes. The authors concluded that the approach could improve slope stability
studies. Saha et al. [21] used AHP, FR, LR and their ensemble methods in India. According
to the results of the study, the AHP model showed 78.86% accuracy, FR model 80.22%,
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LR model 80.67%, AHP–FR 83.44%, AHP–LR 84.39% and FR–LR 84.73% accuracy. Sun
et al. [22] used logistic regression and the random forest model in China. Although the
authors stated that both models provided reasonable results, the random forest model had
better stability and predictive capability. Wang et al. [23] used the FR and IOE models in
northern Jiangxi Province (China). The researchers concluded that the FR method reached
92.3% accuracy and the IOE method reached 92.3% accuracy, thus both methods had
excellent accuracy. Carabella et al. [24] focused on landslides triggered by earthquakes in
Central Italy. The authors concluded that the methodology could be used in areas where
landslide data are not available. Melese et al. [25] used AHP, FR, and Shannon entropy (SE)
in Ethiopia. They found that AHP was the best method compared to the FR and SE models.

The studies above reveal that, benefiting from remote sensing and GIS techniques,
various methods can be employed depending on the specifications of the study area
and the complexity of the models. These methods can be split into three distinctive
categories: statistical methods, multi-criteria decision-making (MCDM), and machine
learning (ML). Statistical methods include frequency ratio (Chen et al. [26]; Lee [9]; Lee
and Min [27]; Suzen and Doyuran [28]; Lee et al. [29]; Yılmaz [30]; Suzen [31]), index of
entropy (Hong et al. [32]; Degirmenci [33]), fuzzy logic (Zadeh [34]), MCDM methods,
including AHP (Bathrellos et al. [35]; Rahman et al. [36]; Achour et al. [37]; Sharma et al. [38];
Ali et al. [39]; Akgun ve Turk [40]), ANP methods (Saaty and Vargas [41]), ML methods
such as support vector machines (Pradhan [42]; Shirzadi et al. [43]), random forest (Chen
et al. [44]; Paudel et al. [45]; Zhang et al. [46]; Kim et al. [47]; Taalab et al. [48]), logistic
regression (Iovine et al. [49]; Karimi Sangchini et al. [50]; Polykretis et al. [51]; Lee [9];
Atkinson and Massari [52]; Lee and Min [27]; Dai and Lee [53]; Akgun and Bulut [54];
Akgun [55]; Akgun, et al. [56]; Kıncal et al. [57]), artificial neural networks (Pradhan and
Lee [58]; Gorsevski et al. [59]) and so on. MCDM methods are based on expert opinion
and experience. Reasonable results can be gathered if the method is applied by a person or
group of people who know the study area’s conditions well [60]. The parameters related
to existing landslides and geo-environmental factors need to be examined properly by
means of a detailed field survey in these methods. Expert opinion here may move the
analysis forward or may cause some mistakes if it is conducted without experience [40].
Statistical methods are based on the relationship between existing landslide sites and
landslide-causing factors. Statistical methods are also used during the analyses. The main
advantage of these methods is that the researcher can control weighting values assigned to
parameters and final input parameters in statistical assessments [61]. However, the results
can be negatively affected if input parameters have multi-collinearity.

The main aim of the machine learning method is to create models which solve potential
problems detecting complex systems using old databases [62]. There is no error margin in
the algorithmically conducted analyses used in these models. Nevertheless, in this method,
the computer not only runs output entered by user but also takes part in decision-making,
and the decisions are given without expert opinion, which may produce poor results [63].

Each method has strengths and weaknesses when analyzed and there is no clear
winner among the statistical and ML-based techniques. In this study, the combined method
(CM) is developed, aiming to combine the strengths of these methods while minimizing
erroneous outputs. CM is a viable method to highlight the necessary measures which must
be taken for risky situations, to predict unforeseen risky conditions, and to analyze the
effects which trigger landslides and enlarge landslide sites. CM is based on combining
LSMs with the highest susceptibility prepared using other methods.

Several researchers have utilized a combination of methods in the literature (Do
et al. [64]; Fang et al. [65]; Arabameri et al. [66]; Saha et al. [21], etc.). The power of
combining methods has also been utilized in novel susceptibility studies such as those
examining wildfires (Iban and Sekertekin [67]), floods (Saleh et al. [68]) and gully erosion
(Arabameri et al. [69]). The key advantage of this study is that a better LSM was developed
helped by the combination of the LR, AHP, FR and IOE methods.
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2. Study Area

The study area was Izmir province in Türkiye, located between 38.25◦ and 38.60◦

latitude and between 26.90◦ and 27.35◦ longitude. Izmir is the third biggest city in west
Türkiye (Figure 1a), and has a population of nearly 4.4 million people [70]. The city is very
well known, and hosts international cultural activities. Topographically, the altitude reaches
1500 m in the western part of the region. Although a 70◦ slope can be seen in the working
area, the principal slope is between 0◦ and 35◦. Approximately 60% of this zone has a
slope gradient <10◦. The climate characteristics in the study area are typical Mediterranean
climate: seasons are relatively mild, rainy in winter, sunny and hot in summer. Precipitation
amounts to 700 mm (27.5 inches) per year, and rain is most abundant in winter; in summer
it rains very rarely [71].

Geologically, the rock units can be grouped into three main groups: Bornova mélange,
Neogene sediment and Yamanlar volcanic rock. Apart from these three groups, alluvium
and slope debris continue to be deposited [72]. The matrix of Bornova mélange rocks located
within the tectonic belt called the Izmir–Ankara Zone is composed of Upper Cretaceous–
Paleocene sandstone–mudstone intercalations. In the matrix consisting of sandstone–shale
intercalations, limestone, serpentinite, chert and diabase blocks of various sizes ranging in
age from the Triassic to the Cretaceous can be found [73,74] (Figure 1b).
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Bornova mélange is represented by intercalations of sandstone–shale and the Kizil-
kalesi formation that occurs in that matrix includes serpentinite blocks and limestone
olistoliths (Figure 1b). Lower Miocene–early Pliocene Neogene sedimentary rocks are
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angular discordantly overlie the Bornova mélange that forms the bedrock in the study area.
The Neogene sedimentary rock deposits are composed of limestone, conglomerate and
marl units [76]. The slope angles of the Neogene sedimentary rock layers are close to the
horizontal range, between 5–20◦. The Upper Miocene and Pliocene Andesitic Yamanlar
volcanic rock discordantly overlies the Neogene sedimentary rock [72,77]. The Yamanlar
volcanic rock consists of andesite, auto-brecciated andesite, tuff and agglomerates. In the
study, the agglomerate and tuff forming the Yamanlar volcanic rock is defined as volcano
sediment and the andesite as volcanic rock (Figure 1b).

3. Materials and Methods

This study aims to produce an LSM of the Izmir metropolitan area. First, a landslide
inventory map concerning past landslides was created to show the probability of new
landslides. Then, the factors that could impair stability (slope angle, slope aspect, lithology,
general curvature, elevation, density of discontinuity, stream power index, land use and dis-
tance from stream) were selected and those factors were standardized with fuzzy logic [34].
The grid resolution used was 25 × 25 m during the analyses. After standardization, LSMs
were produced using together with standardized factors and landslide inventory, using the
LR, AHP, FR and IOE methods. In the last stage, the final LSM was produced using the
combined method to integrate these four LSMs (Figure 2).
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3.1. Landslide Inventory

Landslide inventory is the most crucial parameter of landslide susceptibility mapping,
since it establishes the connection between landslide formation and the factors causing
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this landslide. Chung and Fabbri [78] explain this relationship, noting that “The landslide
that occurred due to considered influencing factors will shed light on the formation of new
landslides in the future due to the same factors.” LSMs can be created by mapping along
the borders of the landslide in the field, as well as by remote sensing methods with the help
of satellite and aerial photographs [58,79,80]. In this study, the inventory maps created by
Avsar [81] and the General Directorate of Mineral Research and Exploration (GDMRE) [82]
are combined and enriched with remote sensing data (Figure 3).
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3.2. Geo-Environmental Factors: Definition and Statistical Analysis

Conditions that disturb the balance when the rock mass is stable can be defined as geo-
environmental factors. Understanding the role of predetermined conditions for landslides
is critical to determining the susceptibility of landslide formation [83–85]. For this reason,
the correct selection of geo-environmental factors is of great importance in the accuracy of
the final LSM being prepared [86]. We can categorize geo-environmental factors into four
groups according to their source: geomorphological, geological, hydrological and human.
The first three factors relate to causes that are independent of any external effects and occur
in completely natural ways. Human factors, on the other hand, are non-natural activities
that can disturb stability via the application of surcharge loading on slopes that would
otherwise remain stable in nature, for example, via excavation, construction or engineering
of the structure in ways that disrupt its stability. In the preparation of the LSM for this
study, slope angle, slope aspect, elevation and curvature were taken as geomorphological
factors; lithology and density of discontinuity factors as geological factors; stream power
index and distance from stream as hydrological factors; and land use as a human factor
were used (Table 1). Geo-environmental factors and associated percentages of landslides
are given in Figures 4 and 5.
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Table 1. Geo-environmental factors used in LSM mapping.

Group Data Source Scale/Resolution Factor Data Type

G
eo

-e
nv

ir
on

m
en

ta
lf

ac
to

rs

Geomorphological
factors

ASTER GDEM [87] 30*30 m

Slope angle Numerical

Slope aspect Categorical

Elevation Numerical

Slope curvature Categorical

Hydrological
factors

Topographical map 1/25,000/25*25 m
SPI Categorical

Distance from stream Numerical

Geological factors Geological map 1/25,000/25*25 m
Lithology Categorical

Density of ciscontinuity Categorical

Human factor Satellite images 30*30 m Land use CategoricalAppl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 28 
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A 1/25,000 scale geological map of GDMRE, a 1/25,000 scale topographical map,
ASTER GDEM data [87], aerial photographs and Google Earth satellite images [88] were
used in this study. Lithology and density-of-discontinuity maps were produced from a
geological map and ASTER GDEM data [87]. Elevation, slope angle, slope aspect, elevation
and slope curvature maps were prepared using ASTER GDEM data (Table 1). SPI and
distance-from-stream maps were produced using a topographical map. A land use map
was prepared using satellite images. Landslide data from Avşar [81] and GDMRE [82] was
used to prepare the landslide inventory map, updated with aerial photographs and Google
Earth satellite images [88]. All geo-environmental factor maps were exported to the raster
data at 25 × 25 m resolution and the LSMs were produced using this data (Table 1).

Slope angle: This can be defined as the angle made by morphological structures. The
slope angle is relevant because the potential for landslide formation increases as the angle
increases. This is because as the inclination angle increases, the weight of the rock mass in
the direction of the slope increases and eventually the shear stress overcomes the forces
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that resist shear and, as a result, mass movement occurs along the surface in the direction
of the slope [89].

Slope aspect: The importance of slope direction on landslide formation is still under
debate. While some researchers suggest that the slope aspect is an important factor for
landslide incidence [90–92], some other researchers think that the slope direction is not that
important [52].

Many other parameters such as the groundwater level, the water content of the
rock mass and the vegetation growing on the land are causative factors affecting stability.
Average precipitation also has a significant effect on these parameters. As it is known
that the direction and amount of precipitation in each region may differ according to
meteorological conditions, slope aspect in this study is considered an important factor that
can affect susceptibility to landslides.

Lithology: This is considered one of the most important factors in LSMs due to its
impact on the geo-mechanical properties of a land [93]. Rock type and structural differences
usually lead to differences in the strength and permeability of formations [94]. As a result
of these differences, the physio-mechanical properties of the rock change. This change will
directly affect the shear strength of the rock. On the other hand, the chemical properties and
mineralogy of rock affect the rock’s resistance to weathering. Rock that loses its physical
properties by decomposition will create a higher potential for landslide formation. For this
reason, lithology was chosen as the most important geo-environmental factor in preparing
the LSMs. The geological map prepared from GDMRE [82] was used for the study area
and this map was digitized with ArcMap [95] and converted from “vector” format to raster
format to be used in the LSM.

Slope curvature: This is usually obtained by taking the second derivative of a line
that occurs at the intersection of the land surface and a plane. A negative value (A)
demonstrates that the surface is upwardly convex. A positive profile (B) shows that the
surface is upwardly concave. A value of zero means that the surface is linear (C). According
to Ohlmacher [96], curvature strongly affects the shear and resistance stresses of landslides,
in addition to the water convergence or divergence (drainage) of material in the direction
of the landslide’s movement. However, researchers do not fully agree on the effect of
the curvature parameter on the landslide in the same slope aspect map. Curvature maps
are divided into three types: plan curvature maps, profile curvature maps and general
curvature maps, a combination of the previous two [89].

Elevation: This is expressed as the height of the slope relative to the sea level; it is
one of the parameters commonly used to determine sensitivity to landslides. Altitude
may affect vegetation type and precipitation levels [97], therefore elevation directly affects
landslide susceptibility. The general trend in landslide susceptibility mapping studies is
that areas at higher levels are more sensitive to landslides and as the elevation decreases,
the landslide sensitivity decreases.

Density of discontinuity: A discontinuity can be defined as a plane of weakness in
rock masses due to bedding with low shear stress, faults, schistosity, etc. When the past
landslides are examined, it can be seen that the movement generally follows these planes of
weakness, whether at the landslide boundaries or in the slip plane. For this reason, regions
where discontinuity planes are concentrated have high potential to create landslides.

Stream power index (SPI): Erosion force is calculated in stream flows using SPI. A
stream with a high flow power will erode the surrounding slopes much more along the
direction of flow. As a result of the abrasion of the toe, the stability of the slope will
deteriorate and the slopes will become more sensitive to landslides. Therefore, landslide
susceptibility is much higher in slopes in regions with high stream power index compared
to other areas [98]. In this context, the stream power index should be considered an
important factor for LSMs.

Land use: This is a geo-environmental factor, categorized based on the evaluation of
previous landslides. While factors such as settlement areas, agricultural areas, forest areas,
and areas where vegetation is dense or sparse do not cause the formation of landslides
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on their own, they are among the factors frequently used in LSMs because resistance to
landslide formation will differ under different effects [60].

Distance from stream: As distance to a stream decreases, the increase in groundwater
and erosion caused by the bearing power of the stream heightens the probability of landslide
formation [99]. Therefore, distance from a stream is a frequently used factor in LSMs.

The slope map was created using ArcMap software’s [95] Spatial Analysis Tools and
divided into five classes: <10◦, 10–20◦, 20–30◦, 30–40◦ and >40◦. The slope aspect map
was created with ArcMap software’s Spatial Analysis Tools and divided into nine classes:
flat, north, northwest, west, southwest, south, southeast, east and northeast [95]. When
preparing the LSM, use of a general curvature map was preferred, since this contains both
plan and profile curvature. With the help of ArcMap’s [95] Spatial Analysis Tools, a general
curvature map was created and divided into three classes: convex, flat and concave. The
elevation map was prepared using ArcMap software [95] with the help of a digital elevation
model (DEM), and divided into nine classes: >50 m, 50–100 m, 100–150 m, 150–200 m,
200–250 m, 250–300 m, 300–350 m, 350–400 m and >400 m. The discontinuity map was
prepared using remote sensing methods, utilizing using aerial photographs of the geology
and GDMRE active fault line maps [75]. The density-of-discontinuities map was prepared
with the help of ArcMap software [95] and divided into four classes: low, medium, high
and very high density. The SPI map was created with ArcMap software’s [95] Hydro Tools
and divided into four classes: low, moderate, high and extremely high. The land use map
produced for this study divided the study area is divided into four classes: forest, arid
land, alluvial plain and settlement areas. To prepare the distance from stream map, first
a drainage map was prepared and then areas that were 0–100 m, 100–200 m, 200–300 m,
300–400 m and more than 400 m were reclassified according to the distance to these streams.

3.3. Statistical Analysis
3.3.1. Logistic Regression (LR)

Landslide researchers have used various techniques in the production of LSMs due
to data and model deficiencies [100]. Multivariate statistical analysis is one of these. LR is
one of the most used multivariate statistical analysis techniques. LR allows evaluation of
the multivariate regression relationship in landslide susceptibility studies. The advantage
of LR is that the variables can be continuous, discrete or any combination of the two [9].
The purpose of LR in this context is to find the most appropriate relationship between
the existence of landslides and a set of independent parameters such as slope angle and
lithology [101]. For LR studies, the dependent variable should be entered as 0 or 1 so that
the model applies correctly to landslide probability analysis. Fuzzy logic can be used to
normalize these data between 0 and 1 [40]. The LR algorithm applies maximum probability
estimation after converting the dependent variable into a logic variable representing the
natural logarithm of the dependent or non-dependent probabilities [92,102]. LR is based
on the logistic function given by Equations (1) and (2) [103],

P =
1

1 + e−Z (1)

In this equation, P is assumed to be the estimated value of landslide occurrence varying
between 0 and 1, while Z is assumed to be a linear combination of the factors causing the
landslide and the factors

Xi (i: 1,2,3, . . . , n).Z = B0 + B1 × 1 + B2 × 2 + . . . . . . + BnXn (2)

where B0 is the prediction for the intersection and B1; B2; . . . .; Bn are estimates for coeffi-
cients associated with independent variables. The value Z is found by using the second
equation; the value is found after it is replaced in Equation (1) and the landslide probability
value (P) is found. In the analysis, Idrisi software [104] geospatial monitoring and modeling
system was used to establish the relationship between the area in which landslides occurred



Appl. Sci. 2022, 12, 9029 11 of 28

(landslide inventory) and the factors that caused the landslides (slope, slope orientation,
lithology, etc.).

The equation for landslide occurrence estimation with LR is given below (Equation (3)).

Z = −12.8124 + 5.379812*asp + 0.220848*curve + 0.751963*dod − 0.197740*elv − 0.720106*land + 3.754381*lith + 0.956580*slope + 0.738011*spi − 0.197984*dfs (3)

In this equation, “asp” is slope aspect, “curve” is curvature, “dod” is density of
discontinuity, “elv” is elevation, “land” is land use, “lith” is lithology, “slope” is slope
angle, “spi” is stream power index and “dfs” is distance from stream.

A summary of the basic statistics of the LR model obtained using Idrisi software [97]
Logistic reg tools is given in Table 2. Of the values included in these statistics, a pseudo-
R2 equal to 1 indicates perfect fit, while 0 indicates no relevance. The pseudo-R2 value
shows how well the logit model fits the dataset. A pseudo-R2 greater than 0.2 shows
a relatively good fit [105]. In this study, the pseudo-R2 value was calculated as 0.1607
(Table 2). In addition, a value of 0.8499 was obtained for the relative operating characteristic
(ROC), which can be considered a sign of good correlation between the independent and
dependent variables.

Table 2. Summary of statistics of the logistic regression model.

Statistics Value

Total number of pixels 2,908,836
−2logL0 27,433.052
−2log(likelihood) 23,025.032
Pseudo-R2 0.1607
Goodness of fit 207,434.51
Area under the ROC curve 0.727

3.3.2. Analytical Hierarchy Process (AHP)

The AHP, a multi-criteria decision-making method, involves matrix-based binary
comparison of the contribution of various factors, providing a flexible and understandable
way to analyze complex problems [106]. AHP is beneficial as it has the ability to handle both
qualitative and quantitative criteria [107]. Regardless of data type, use of AHP functions is
feasible because the basic input is given by the user. Answers to questions such as “How
important is parameter A compared to parameter B?” represent expert decisions. The
relative importance of the parameters was converted into a nine-point continuous rating
scale. It was then entered into the binary comparison matrix (Table 3).

Table 3. Scales for pairwise comparisons [108].

Importance Definition Explanation

1 Equal importance Contribution to objective is equal
3 Moderate importance Attribute is slightly favored over another
5 Strong importance Attribute is strongly favored over another
7 Very strong importance Attribute is very strongly favored over another

9 Extreme importance Evidence favoring one attribute is of the
highest possible order of affirmation

2, 4, 6, 8 Intermediate values When compromise is needed
Reciprocals Opposites Used for inverse comparison

At the beginning of the analysis, using the importance values in the Table 3, a binary
comparison matrix was created between the parameters that cause landslides. However,
pairwise comparison is subjective and the quality of results is highly dependent on expert
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judgment. The consistency rate is used to control this expert decision. Equation (4) shows
how to calculate the consistency ratio [109].

CR = CI/RI (4)

“RI” is the average of the consistency index that arises depending on the order of the
matrix given by Saaty [109]. “CI” in Equation (5) is the consistency index.

CI = (λmax − n)/(n − 1) (5)

Here, “λmax” is the largest or fundamental eigenvalue of the matrix and can be easily
calculated from the matrix and “n” is the order of the matrix.

3.3.3. Frequency Ratio (FR)

FR is a method frequently used by researchers because the method is based on ex-
tremely simple and uncomplicated calculations. The main logic of the method is to associate
the parameters that caused a landslide with the landslide inventory and, with the help of
these connection, determine other sites susceptible to landslides. To establish this connec-
tion, first the percentage of pixels with landslide-occurred terrain (a) and the percentage
of pixels landslide-free terrain (b) must be calculated. Then, the FR is calculated for each
parameter with the equation “a/b” [110].

3.3.4. Index of Entropy (IOE)

Entropy in thermodynamics represents the thermal energy of a system that cannot be
converted to mechanical work. It is often defined as the randomness and disorder (chaos) in
a system. Entropy shows the extent of instability, disorder and uncertainty in a system [111].
The entropy level of a system has a one-to-one relevancy with the degree of disorder. This
relevancy, called the Boltzmann principle, is used to describe the thermodynamic state
of a system [111]. An entropy model for information theory was established using the
Boltzmann principle by [112]. The IOE method is widely used to determine the weight
index of natural hazards [113–115].

As noted by Ren [116], a “landslide is a complex system for material and energy exchange
with the environment and therefore a landslide can be measured and defined using the
information entropy method”. The entropy of a landslide refers to the degree to which
different factors affect the progress of a landslide [117]. Some important factors, such as slope,
lithology and curvature, produce additional entropy to the index system. Finally, the level of
entropy can be used to determine the objective weights of the index system [117–119]. The
following steps are used to compute the weight values of geo-environmental factors and to
produce the LSM using these weighted values.

The following equations (Equations (6) and (7)) are used to calculate the information
coefficient “Wj”, corresponding to the weight value of the parameter as a whole [119–121]:

Pij =
a
b

(6)

(Pij) =
Pij

∑
Sj
j=1 Pij

(7)

where “a” and “b” are percentages of landslide-free area and landslide-occurred area,
respectively. “Sj” is the number of classes and (Pij) is the probability density. “Hj” and
“Hjmax”, indicated by Equations (8) and (9) below, represent the entropy values.

Hj = ∑
Sj
i=1

(
Pij

)
log2

(
Pij

)
, J = 1, 2, . . . ., n (8)

Hjmax = log2 Sj (9)
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“Ij” is the information coefficient calculated by Equation (10) and “Wj”, calculated by
Equation (11), represents the weight of the parameter as a whole.

Ij =
Hjmax − Hj

Hjmax
I = (0, 1), J = 1, 2, . . . , n (10)

Wj = Ij × Pıj (11)

3.3.5. Combined Method (CM)

Various methods have been developed in many landslide susceptibility studies, and
countless studies have been conducted using these methods. Investigating these studies, it
is clear that each method has advantages and disadvantages. The combined method was
developed to minimize the errors that these disadvantages might cause. The logic behind
the method is that superimposing LSMs created using various methods will result in a
susceptibility map with the highest reliability. The combined method procedure involves
assigning each pixel the highest landslide susceptibility score among all the data obtained
for that pixel from the LSMs prepared using different methods for a specific geographical
point (Figure 6). The aim here is to conduct more reliable studies and minimize the risk
of errors by choosing the higher susceptibility value as the landslide susceptibility of a
certain pixel where method “A” indicates low susceptibility and method “B” indicates high
susceptibility. In order to prepare an LSM with the combined method, it is necessary to
prepare LSMs based on between two and four methods and overlay these maps. The results
obtained indicate that the combined method yields the greatest reliability when the highest
number of susceptibility maps prepared with different methods are overlaid. However,
using more than four methods is considered not to lead to higher reliability, therefore a
maximum of four methods for preparing LSMs should be used and the combined method
should be applied with these maps.
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LR, AHP, FR and IOE are the most frequent four methods selected in recent landslide
susceptibility mapping studies. Four different LSMs were prepared using these methods
and overlaid using ArcGIS Spatial Analyst Tools. Then, all pixels were reclassified in the
study area after choosing the pixel value with the highest landslide susceptibility among
to the four methods (Figure 6). As a result of this combined method classification process,
the final LSM was classified according to five groups, from lowest susceptibility to highest
(Figure 6).
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4. Results and Discussion

Four LSMs were produced using the LR, AHP, FR and IOE methods for Izmir city
and its surroundings. Maps prepared for the geo-environmental factors slope angle, slope
aspect, lithology, slope curvature, elevation, density of discontinuities, stream power index,
land use and distance from stream used during analyses are given in Figure 5 and their
landslide susceptibility properties are given in Figure 4. The natural breaks method was
used to generate zoning criteria in the preparation of all four landslide susceptibility maps.

4.1. Comparison of LSM Results

For analysis with LR, in order to determine the probability of landslide occurrence in
a certain area, probability was calculated using Equation (1) and the file was converted to
raster format to obtain an LSM. The probability of landslide occurrence is given as a value
between zero (0) and one (1), and the LR map has a pixel size of 25 × 25 m. The LR-based
map classified the data into five groups, from extremely low to extremely high (Figure 7).
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With the AHP method, if the consistency ratio values are less than 0.1 the binary
comparison matrix is acceptable, but if the values are greater than 0.1 then the comparisons
must be reassessed [121]. In this study, the consistency rate was 0.03, indicating a reasonable
level of consistency in pairwise comparison (Table 4). Paired comparison according to
the consistency ratio is good enough to recognize the factor weights in the landslide
susceptibility model. The LSM prepared using AHP method is given in Figure 8. The
weighting of the parameters in the LSM via matrix was calculated using Idrisi’s [104]
weighting module and was divided into five classes, from extremely low to extremely high.
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Table 4. Pair-wise comparison matrix, factor weights and consistency ratio of the data layers.

Parameter 1 2 3 4 5 6 7 8 9 Weight

(1) Slope aspect 1 0.1617
(2) Density of discontinuity 1/2 1 0.1113
(3) Lithology 1 2 1 0.1617
(4) Slope 2 3 2 1 0.2716
(5) SPI 1/4 1/3 1/4 1/6 1 0.0458
(6) Slope curvature 1/5 1/4 1/5 1/7 1/2 1 0.0307
(7) Elevation 1/6 1/5 1/6 1/8 1/3 1/2 1 0.0221
(8) Land use 1 1 1 1/2 4 5 6 1 0.1495
(9) Distance from stream 1/4 1/3 1/4 1/6 1 2 3 1/4 1 0.0458
Consistency ratio: 0.03
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In cases where these calculated FR values are less than 1, the effect of this parameter
on landslides may be low. In cases where it is greater than 1, the effect of this parameter on
landslides can be considered high. FR values for causative factors are given in Table 5. In
this study, the LSM based on the FR method was classified using the natural breaks method
and divided into five classes, from extremely low to extremely high (Figure 9).



Appl. Sci. 2022, 12, 9029 16 of 28

Table 5. FR values for causative factors.

Factor Class No. of Pixels
in Domain

Percentage
of Domain

No. of
Landslide

Percentageof
Landslide FR Normalized

Frequency Ratio

Slope (Deg)

0–10 1,527,794 60.43 14,109 32.72 0.54 0.31
10–20 678,851 26.85 19,454 45.12 1.68 0.95
20–30 266,839 10.55 7966 18.47 1.75 0.99
30–40 49,548 1.96 1491 3.46 1.76 1.00
>40 5163 0.20 100 0.23 1.14 0.65

Aspect

Flat 29,326 1.16 0 0.00 0.00 0.00
N 312,627 12.37 3910 9.07 0.73 0.42
NE 259,456 10.26 2174 5.04 0.49 0.28
E 247,899 9.81 5175 12.00 1.22 0.70
SE 299,619 11.85 7315 16.96 1.43 0.82
S 338,804 13.40 10,140 23.52 1.75 1.00
SW 330,225 13.06 5856 13.58 1.04 0.59
W 343,688 13.59 4858 11.27 0.83 0.47
NW 366,551 14.50 3692 8.56 0.59 0.34

SPI

Low 434,163 17.17 4457 10.34 0.60 0.37
Moderate 667,197 26.39 3997 9.27 0.35 0.21
High 1,145,730 45.32 26,856 62.28 1.37 0.84
Ex. high 281,105 11.12 7810 18.11 1.63 1.00

Distance
from stream
(m)

0–100 628,808 24.87 8536 19.80 0.80 0.62
100–200 536,113 21.21 8353 19.37 0.91 0.70
200–300 450,044 17.80 7591 17.60 0.99 0.77
300–400 377,276 14.92 6863 15.92 1.07 0.83
>400 535,954 21.20 11,777 27.31 1.29 1.00

Density of
discontinuity

Low 803,727 31.79 2925 6.78 0.21 0.11
Moderate 766,508 30.32 14„173 32.87 1.08 0.56
High 720,240 28.49 18236 42.29 1.48 0.77
Ex. high 237,720 9.40 7786 18.06 1.92 1.00

Curvature
Convex 367,398 14.53 9300 21.57 1.48 1.00
Plain 1,773,818 70.16 25,822 59.88 0.85 0.57
Concave 386,979 15.31 7998 18.55 1.21 0.82

Lithology

Qalv 750,212 29.71 213 0.49 0.02 0.00
Vlr 362,782 14.37 15,952 36.99 2.57 1.00
Lms 201,654 7.99 4715 10.93 1.37 0.53
Qsv 7848 0.31 0 0.00 0.00 0.00
SnSh 688,762 27.28 11,822 27.42 1.00 0.39
Vsd 9260 0.37 0 0.00 0.00 0.00
Plc 30,337 1.20 0 0.00 0.00 0.00
Dcr 429,522 17.01 10,267 23.81 1.40 0.55
Srp 21,359 0.85 120 0.28 0.33 0.13
Kfm 22,983 0.91 0 0.00 0.00 0.00

Elevation (m)

0–50 607,148 24.02 458 1.06 0.04 0.03
50–100 161,965 6.41 4105 9.52 1.49 0.94
100–150 219,961 8.70 5473 12.69 1.46 0.92
150–200 175,781 6.95 4764 11.05 1.59 1.00
200–250 209,613 8.29 3342 7.75 0.93 0.58
250–300 170,361 6.74 4115 9.54 1.42 0.89
300–350 154,400 6.11 3352 7.77 1.27 0.80
350–400 125,978 4.98 2701 6.26 1.26 0.79
>400 702,988 27.81 14,810 34.35 1.24 0.78

Land use

Settlement 362,269 14.33 4607 10.68 0.75 0.51
Field 731,306 28.93 12,645 29.33 1.01 0.69
Dry land 690,159 27.30 17,266 40.04 1.47 1.00
Forest 742,845 29.38 8602 19.95 0.68 0.46
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Figure 9. Landslide susceptibility map prepared with the FR method.

The LSM produced by the IOE method was classified using the natural breaks method
and divided into five classes, from extremely low to extremely high. IOE values for
causative factors are given in Table 6. The LSM prepared with IOE method is given in
Figure 10.

In order to finalize the mapping, the abovementioned analysis results were overlaid
on a pixel basis, and the LSMs produced by the LR, AHP, FR and IOE methods were
combined with the help of ArcMap software’s [95] Spatial Analyst Tools. The susceptibility
map produced by the combined method was reclassified into five classes, from extremely
low to extremely high, using the natural breaks method (Figure 11). A graph showing
the percentages of susceptibility classes in the landslide inventory map and susceptibility
classes in the study area is given in Figure 12.

It was determined that in the LSM prepared using LR method, the existing landslide
areas’ susceptibility classes were: 2.07%—extremely low, 8.84%—low, 28.82%—moderate,
25.57%—high and 34.7%—extremely high. The AHP-based LSM showed landslide suscep-
tibilities classes of 0.19%—extremely low, 6.27—ow, 12.01%—moderate, 36.7%—high and
44.84%—extremely high. For the FR method, the values were found to be 0.18%—extremely
low, 2.72%—low, 10.93%—moderate, 31.88%—high and 54.29%—extremely high. Analysis
of the LSM prepared using IOE method revealed that existing landslide areas fell into
classes of of 0.17%—extremely low, 1.32%—low, 8.71%—moderate, 24.69%—high and
65.11%—extremely high. In the LSM prepared using the combined method, landslide
areas were found to be composed of 0%—extremely low, 0.65%—low, 4.42%—moderate,
18.09%—high and 76.84%—extremely high (Table 7).



Appl. Sci. 2022, 12, 9029 18 of 28

Table 6. IOE values for causative factors.

Factor Class No. of Pixels
in Domain

Percentage
of Domain

No. of
Landslide

Percentage
of Landslide Pij (Pij) Hj Hj max Ij Wj

SLOPE
(Deg)

0–10 1,527,794 60.43 14,109 32.72 0.54 0.08 2.23 2.32 0.04 0.05
10–20 678,851 26.85 19,454 45.12 1.68 0.24
20–30 266,839 10.55 7966 18.47 1.75 0.25
30–40 49,548 1.96 1491 3.46 1.76 0.26
>40 5163 0.20 100 0.23 1.14 0.17

Aspect

Flat 29,326 1.16 0 0.00 0.00 0.00 2.87 3.17 0.09 0.09
N 312,627 12.37 3910 9.07 0.73 0.09
NE 259,456 10.26 2174 5.04 0.49 0.06
E 247,899 9.81 5175 12.00 1.22 0.15
SE 299,619 11.85 7315 16.96 1.43 0.18
S 338,804 13.40 10,140 23.52 1.75 0.22
SW 330,225 13.06 5856 13.58 1.04 0.13
W 343,688 13.59 4858 11.27 0.83 0.10
NW 366,551 14.50 3692 8.56 0.59 0.07

SPI

Low 434,163 17.17 4457 10.34 0.60 0.15 1.78 2.00 0.11 0.11
Moderate 667,197 26.39 3997 9.27 0.35 0.09
High 1,145,730 45.32 26,856 62.28 1.37 0.35
Ex. high 281,105 11.12 7810 18.11 1.63 0.41

Distance
from
stream
(m)

0–100 628,808 24.87 8536 19.80 0.80 0.16 2.31 2.32 0.00 0.00
100–200 536,113 21.21 8353 19.37 0.91 0.18
200–300 450,044 17.80 7591 17.60 0.99 0.20
300–400 377,276 14.92 6863 15.92 1.07 0.21
>400 535,954 21.20 11,777 27.31 1.29 0.26

Density
of
disconti-
nuity

Low 803,727 31.79 2925 6.78 0.21 0.05 1.75 2.00 0.13 0.15
Moderate 766,508 30.32 14,173 32.87 1.08 0.23
High 720,240 28.49 18,236 42.29 1.48 0.32
Ex. high 237,720 9.40 7786 18.06 1.92 0.41

Curvature
Convex 367,398 14.53 9300 21.57 1.48 0.42 1.55 1.59 0.03 0.03
Plain 1,773,818 70.16 25,822 59.88 0.85 0.24
Concave 386,979 15.31 7998 18.55 1.21 0.34

Lithology

Qalv 750,212 29.71 213 0.49 0.02 0.00 2.19 3.32 0.34 0.23
Vlr 362,782 14.37 15,952 36.99 2.57 0.38
Lms 201,654 7.99 4715 10.93 1.37 0.20
Qsv 7848 0.31 0 0.00 0.00 0.00
SnSh 688,762 27.28 11,822 27.42 1.00 0.15
Vsd 9260 0.37 0 0.00 0.00 0.00
Plc 30,337 1.20 0 0.00 0.00 0.00
Dcr 429,522 17.01 10,267 23.81 1.40 0.21
Srp 21,359 0.85 120 0.28 0.33 0.05
Kfm 22,983 0.91 0 0.00 0.00 0.00

Elevation
(m)

0–50 607,148 24.02 458 1.06 0.04 0.00 3.10 3.17 0.02 0.03
50–100 161,965 6.41 4105 9.52 1.49 0.14
100–150 219,961 8.70 5473 12.69 1.46 0.14
150–200 175,781 6.95 4764 11.05 1.59 0.15
200–250 209,613 8.29 3342 7.75 0.93 0.09
250–300 170,361 6.74 4115 9.54 1.42 0.13
300–350 154,400 6.11 3352 7.77 1.27 0.12
350–400 125,978 4.98 2701 6.26 1.26 0.12
>400 702,988 27.81 14,810 34.35 1.24 0.12

Land use

Settlement 362,269 14.33 4607 10.68 0.75 0.19 1.93 2.00 0.04 0.03
Field 731,306 28.93 12,645 29.33 1.01 0.26
Dry land 690,159 27.30 17,266 40.04 1.47 0.38
Forest 742,845 29.38 8602 19.95 0.68 0.17
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Table 7. Percentages of susceptibility classes according to the method used.

Extremely Low Low Moderate High Extremely High

LR 2.07% 8.84% 28.82% 25.57% 34.7%
AHP 0.19% 6.27% 12.01% 36.7% 44.84%
FR 0.18% 2.72% 10.93% 31.88% 54.29%

IOE 0.17% 1.32% 8.71% 24.69% 65.11%
CM 0% 0.65% 4.42% 18.09% 76.84%

4.2. Evaluation of Model Performance

As can be seen from the table of the Pearson’s correlation of coefficient matrix given
below, all the correlation coefficients between different independent variables were less
than abs (0.80). In essence, the parameters used in the construction of the models were
carefully selected for susceptibility analysis, and these parameters can be considered not to
be physically related with each other. The Pearson’s correlation coefficient matrix proves
that the independent variables did not have a multi-collinearity problem (Table 8).

Table 8. Pearson’s correlation of coefficient matrix.

Parameter 1 2 3 4 5 6 7 8 9

(1) Slope aspect 1
(2) Density of discontinuity −0.16 1
(3) Lithology −0.40 0.65 1
(4) Slope −0.55 0.66 0.47 1
(5) SPI 0.46 0.59 −0.03 −0.03 1
(6) Slope curvature 0.68 0.05 −0.24 0.04 −0.04 1
(7) Elevation −0.48 0.45 0.15 0.65 −0.27 −0.61 1
(8) Land use −0.31 −0.10 0.38 0.48 −0.68 0.47 0.30 1
(9) Distance from stream −0.43 −0.48 0.41 −0.41 −0.67 −0.69 0.23 0.18 1

The basic statistics of the outputs obtained by use of five methods are given in Table 9.
It can be seen that the mean of CM and IOE are close to each other. The variances of
remaining three methods are close to each other. Negative kurtosis coefficients indicate
that the distribution has a lighter tail than a normal distribution. The negative skewness
coefficients prove that similar behavior is observed for all model outputs, skewed to the left.
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Table 9. Basic statistics of outputs covering whole study area.

CM LR AHP FR IOE

Mean 3.2573 2.3028 3.0243 3.0641 3.2090
Standard Error 0.0174 0.0164 0.0164 0.0165 0.0182
Median 4 2 3 3 3
Mode 4 1 4 4 5
Standard Deviation 1.3845 1.3037 1.3021 1.3149 1.4452
Sample Variance 1.9168 1.6998 1.6956 1.7290 2.0886
Kurtosis −1.23344 −0.864065733 −1.207652717 −1.106893346 −1.25068
Skewness −0.26904 0.559431068 −0.093076809 −0.161480185 −0.28333
Range 4 4 4 4 4
Minimum 1 1 1 1 1
Maximum 5 5 5 5 5
Sum 20.476 14.476 19.011 19.261 20.172
Count 6286 6286 6286 6286 6286

5,4,3,2. and 1 in LSM correspond to susceptibilities of extremely high, high, mod-
erate, low and extremely low.

In order to question if the means of five models are significantly different from each
other, t-tests were performed. A null hypothesis was identified: the means of two outputs
were the same. The results obtained from the CM were compared with the outputs of
the four remaining models. The t-test values were 39.79, 9.72, 8.02 and 1.91 for the four
pairs, CM/LR, CM/AHP, CM/FR and CM/IOE, respectively. The corresponding critical
t-values were in the vicinity of 1.64. The null hypothesis was rejected in these four analyses.
Moreover, Friedman tests were employed to determine whether there was a statistically
significant difference between the means of the outputs. For our extremely large database,
the p-values were extremely low, and the results were not sufficiently meaningful to
present here.

The AUC (Area Under the ROC curve) is an important parameter (Chen et al. [122];
Lv et al. [123]) which gives valuable information about the accuracy of any model. For
a perfect application, this parameter should be equal to 1.0. The threshold for random
chance is 1.5. Following the ROC curves obtained by the various methods reveals that CM
outperformed the other four methods (Figure 13).
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5. Conclusions

A landslide inventory map was compiled using previously mapped literature from
GDMRE [84] and Avsar [83]. With the help of landsat images and aerial photos, this map
was then updated and a final landslide inventory map was prepared. When the final
landslide inventory map was analyzed, it was determined that 0.86% of the total area is
covered by existing landslide areas.
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The geo-environmental factors of slope angle, slope aspect, lithology, slope curvature,
elevation, density of discontinuity, stream power index (SPI), land use and distance to
stream were used to determine landslide susceptibility. The data obtained was standardized
in values of 0–1 using a fuzzy logic algorithm.

In the landslide susceptibility analysis studies conducted so far, generally one or a
few LSMs are produced and the results of these maps are compared. It is evident that
maps composed using different methods will produce different results. This study aims
to minimise the negative effects of the errors that might arise from the shortcomings of
each method for creating LSMs by making use of these differences and integrating maps
prepared using different methods. In this study, LSMs were first prepared using the LR,
AHP, FR and IOE methods, as the methods most commonly used recently, and then the
final LSM was prepared using the combined method.

For determining success rates of the different methods used in this study, conformities
between LSMs and the landslide inventory map were compared. Total areas of high and
extremely high landslide susceptibility were compared with existing landslide localities.
Success rates were calculated using these results. Success rates of 60.27%, 81.53%, 86.17%
and 89.80% corresponded to the LR, AHP, FR and IOE LSMs, respectively. The best method—
the combined method, which is combination of the LR, AHP, FR and IOE methods—had a
success rate of 94.93%.

This study offers a preliminary guide for local authorities, engineers working in
practice and academics working in this field. The results are promising, and were verified
based on real-life phenomena. The results can constitute the basis of risk-based maps in
the region.

The approach certainly has several limitations. Cartographic scale datasets were used
for modelling; this causes unreliability in spatial analysis, which necessitates detailed field
investigation. For instance, the geological data were obtained from the lithological map
with a spatial resolution of approximately 25 × 25 m, but the GDEM used has a spatial
resolution of 30 m. In should be noted that this is a preliminary approach for landslide
susceptibility assessment.
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ratio methods: A case study at İzmir, Turkey. Landslides 2012, 9, 93–106. [CrossRef]

56. Akgun, A.; Kıncal, C.; Pradhan, B. Application of remote sensing data and GIS for landslide risk assessment as an environmental
threat to Izmir city (west Turkey). Environ. Monit. Assess. 2012, 184, 5453–5470. [CrossRef] [PubMed]

57. Kıncal, C.; Akgun, A.; Koca, M.Y. Landslide susceptibility assessment in the Izmir (West Anatolia, Turkey) city center and its near
vicinity by the logistic regression method. Environ. Earth Sci. 2009, 59, 745–756. [CrossRef]

58. Pradhan, B.; Lee, S.; Buchroithner, M.F. Use of geospatial data for the development of fuzzy algebraic operators to landslide
hazard mapping: A case study in Malaysia. Appl. Geomat. 2009, 1, 3–15. [CrossRef]

59. Gorsevski, P.V.; Brown, M.K.; Panter, K.; Onasch, C.M. Landslide detection and susceptibility mapping using LiDAR and an
artificial neural network approach: A case study in the Cuyahoga Valley National Park, Ohio. Landslides 2016, 13, 467–484.
[CrossRef]

http://doi.org/10.1016/j.geomorph.2016.02.012
http://doi.org/10.1016/j.scitotenv.2016.10.025
http://www.ncbi.nlm.nih.gov/pubmed/27736696
http://doi.org/10.1007/s11629-016-4220-z
http://doi.org/10.1007/s12517-017-2980-6
http://doi.org/10.1186/s40677-018-0097-1
http://doi.org/10.5194/nhess-19-999-2019
http://doi.org/10.1007/s12665-009-0373-1
http://doi.org/10.1007/0-387-33987-6_1
http://doi.org/10.1016/j.cageo.2012.08.023
http://doi.org/10.1007/s12665-016-6374-y
http://doi.org/10.1016/j.rse.2014.07.004
http://doi.org/10.4236/ijg.2016.75056
http://doi.org/10.1007/s12665-017-6731-5
http://doi.org/10.1080/10106049.2017.1323964
http://doi.org/10.1080/20964471.2018.1472392
http://doi.org/10.1007/s11069-014-1129-0
http://doi.org/10.3390/geosciences8070261
http://doi.org/10.1016/S0098-3004(97)00117-9
http://doi.org/10.1016/S0169-555X(01)00087-3
http://doi.org/10.1007/s00254-006-0435-6
http://doi.org/10.1007/s10346-011-0283-7
http://doi.org/10.1007/s10661-011-2352-8
http://www.ncbi.nlm.nih.gov/pubmed/21915598
http://doi.org/10.1007/s12665-009-0070-0
http://doi.org/10.1007/s12518-009-0001-5
http://doi.org/10.1007/s10346-015-0587-0


Appl. Sci. 2022, 12, 9029 26 of 28

60. Crozier, M.J.; Glade, T. Landslide Hazard and Risk: Issues, Concepts and Approach; Glade, T., Anderson, M.G., Crozier, M.J., Eds.;
Landslide Risk Assessment; John Wiley: New York, NY, USA, 2005; pp. 1–40. [CrossRef]

61. Yüksel, N. Usage of Statistical Methods and Artificial Neural Networks in Geographical Information Systems Based Landslide
Susceptibility Mapping: Kumluca-Ulus (Bartın-Türkiye) Region. Ph.D. Thesis, Hacettepe University, Institute of Natural and
Applied Sciences, Ankara, Turkey, 2007. (In Turkish)
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