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Abstract: This paper proposes a Deep Learning (DL) based Wiener filter estimator for speech en-
hancement in the framework of the classical spectral-domain speech estimator algorithm. According
to the characteristics of the intermediate steps of the speech enhancement algorithm, i.e., the SNR
estimation and the gain function, there is determined the best usage of the network at learning a
robust instance of the Wiener filter estimator. Experiments show that the use of data-driven learning
of the SNR estimator provides robustness to the statistical-based speech estimator algorithm and
achieves performance on the state-of-the-art. Several objective quality metrics show the performance
of the speech enhancement and beyond them, there are examples of noisy vs. enhanced speech
available for listening to demonstrate in practice the skills of the method in simulated and real audio.
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1. Introduction

The development of communication devices has increased the number of available
channels for audio acquisition. However, some applications may not take advantage of this
fact. For instance, the audio from telephone communications is in a mono-channel format.
So, the post-processing of the telephone speech has to deal with the challenging task of
single-channel speech enhancement.

Speech enhancement (SE) algorithms attenuate the noise pattern in the observed
speech signal—the noisy speech—to increase the speech perceived quality. An established
approach for single-channel SE is the family of spectral-domain speech estimator algo-
rithms, which are based on the gain-based approach [1,2]. In this framework, the noisy
speech is transformed into the time–frequency (t-f) domain. Then an estimated gain is
applied to the t-f speech representation in order to obtain an enhanced version. Finally, a
synthesis stage applies an inverse transformation to the enhanced t-f speech to obtain the
signal back into the time domain. The best-known methods among this framework are
the Wiener filter [3], spectral subtraction (SS) [4], short-time spectral amplitude (STSA) [5],
and the log-spectral amplitude estimator (LSA) [6]. In general, these approaches rely on
estimations of the a priorisignal-to-noise ratio (SNR), which are used to compute the gain
function to determine the attenuation of noise-dominated t-f regions. Although many SE
algorithms follow the gain-based approach, they mainly differ in the way the a priori SNR
is estimated and in which gain function they use. The design of the gain function and the
accuracy of the a priori SNR estimation can become the main weakness of the SE method.
In realistic scenarios, the dynamic fast changes of non-stationary impulsive noise and the
mixture of noise types, including speech-correlated noises, propose significant challenges
for statistical SNR estimators [7].

The high capability of deep learning approaches for finding underlying relations in
the data and providing substantial representations from them has attracted the attention of
SE algorithms. There is a previous work studying different deep neural networks (DNN)
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based estimations of the SNR and the gain function. The work of Xia et al. [8,9] firstly
approach the DNN-based SE by supporting the Wiener filtering with a weighted denoising
autoencoder. This estimates the clean speech by subband and then uses it for estimating the
short-term a priori SNR and the filter gain function. Similarly, from the mono-aural speech
separation, the t-f masking approach with ideal binary/ratio masking (IBM/IRM) [10] is
used for performing feature enhancement in automatic speech recognition (ASR) [3,11].
In [12,13], the authors proposed a supervised learning algorithm for IRM estimation to
perform noise-robust ASR. Then, Refs. [14–17] extensively used the DL-based estimation
of IBM and IRM for hearing-aids purposes also applied to ASR. For cochlear implant
applications, Refs. [18–20] extended the SE using DNN based on IRM to novel speakers
and proposed an approach suitable for practical applications with low latency. Recently,
DeepMMSE [21] attempted to estimate the power spectral density (PSD) of non-stationary
noise using deep learning and they obtained very promising results. Related to this work,
in [22], the authors estimated the a priori SNR with a residual long short-term memory
(ResLSTM) network, achieving improvement in the performance of traditional minimum
mean square error (MMSE) estimators. More recently, the same authors extended the study
by including more architectures, such as residual networks and multi-head attention [23]
and also using multiple objective quality and intelligibility measures to achieve improved
enhancements of the noisy speech.

This paper proposes a deep learning (DL) based approach to estimate the Wiener filter
function and perform SE supported on the classical LSA speech estimator. We tested the
performance by using directly the LSA speech estimator and also its optimally modified
version (OMLSA) [24], which considers the speech presence probability (SPP). During the
study, we explored the key points of the SE algorithm and accordingly the best use of deep
learning. In [21–23], the deep learning approach targets the estimation of the a priori SNR,
which is complemented with a compression function for making possible the training of
the network. Then, the authors employed the a priori SNR estimation for computing the
Wiener filter and proceed with the SE traditional algorithm. By analyzing this strategy, we
realized that the high dynamic range of the SNR (−∞, ∞) is a hard objective to accurately
be estimated by a deep structured network. This is the reason why a compression function
was employed in [23] to avoid convergence problems during the training. Furthermore,
SNR is an intermediate step to finally obtaining the Wiener filter function to feed the SE
algorithm. So, it is more practical that the network was able to provide a more robust
estimation of directly learning the Wiener filter.

The main contribution of this paper relies on the use of the deep learning approach for
directly estimating the Wiener filter instead of the a priori/posteriori SNR, which could
bring accuracy and convergence troubles at the training step. Further contributions of this
paper are as follows:

• A data-driven Wiener filter estimator that can be generalized to different approaches
of the classical spectral-domain speech estimator algorithm, tested with LSA and
OMLSA speech estimators.

• In the line of previous works, this paper demonstrates the usefulness of deep learning
for expanding the application scope of established speech enhancement schemes in
realistic scenarios with challenging environmental noisy patterns.

Examples of enhanced signals are available (http://dayanaribas.vivolab.es/DEMOe
nhancement/index.html (accessed on 1 September 2022)).

In the following, Section 2 introduces the speech enhancement task through the
spectral-domain speech estimator algorithm. Then, Section 3 describes the proposal fol-
lowed by the deep structured network architecture in Section 4. The experimental setup is
in Section 5. Finally, Section 6 presents the results and discussion, and Section 7 concludes
the paper.

http://dayanaribas.vivolab.es/DEMOenhancement/index.html
http://dayanaribas.vivolab.es/DEMOenhancement/index.html
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2. Speech Enhancement

Let y(n) denote the observed noisy speech signal given by y(n) = x(n) + d(n) with
x(n) the clean speech, d(n) the additive noise, and n the discrete-time index. The pre-
processing stage for performing speech enhancement in the spectral domain starts with
a short-term speech analysis of the segmented y(n) into overlapping frames through the
application of a window function. Then, a short-term Fourier transform (STFT) is used to
obtain the spectral representation:

Y(k, l) =
N−1

∑
n=0

y(n + lM)h(n)e−j(2π/N)nk, (1)

where l is the time frame index, k is the frequency bin index, h(n) is the analysis window
of size N, and M is the number of samples between two frames.

Figure 1 depicts the spectral-domain speech estimator algorithm. The power spectrum
|Y(k, l)|2 is used as input of the noise reduction block, while the spectral phase is kept apart
for the last block of post-processing for speech reconstruction. The output of the system,
x̂(n), is an enhanced version of the noisy signal as similar as possible to clean speech.

Figure 1. Spectral-domain speech estimator algorithm.
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The core of the enhancement method is depicted in the central block. This approach
is the paradigm followed by the family of spectral-domain speech estimator algorithms.
However, notice that this is the case where it is separately considered the hypothesis of
speech presence and absence [24,25]. The spectral-domain speech estimator algorithm
uses |Y(k, l)|2 for computing the gain of the MMSE estimator (GMMSE), which is used
for obtaining the filter gain function that modifies the |Y(k, l)|2 according to the speech
presence probability (see Section II in [5]).

2.1. Speech Estimation Algorithms

Many speech enhancement algorithms follow the aforementioned scheme. For in-
stance, the well-known approaches, Wiener filter, SS [4], STSA [5], and minimum mean-
square error log-spectral amplitude estimator (LSA) and its modified versions [6,24,26].

The main difference among these speech estimators lies in the filter gain function
definition. For example, the Wiener filter is an MMSE estimator that minimizes the ex-
pected value of the squared error between the clean speech and the enhanced speech
E{|x(n)− x̂(n)|2}. Therefore, in the following, we express the gain function of the Wiener
filter directly as [5]

GMMSE(k, l) =
ξk,l

1 + ξk,l
, (2)

where ξk,l is the a priori SNR computed for each k bin frequency and each time segment l.
From this statement, we can define other speech estimation algorithms in terms of the

GMMSE. For instance, in the SS algorithm the gain function is defined as the square root of
the maximum likelihood estimator of each spectral component variance [25]. In terms of
GMMSE, this can be defined as

GSS(k, l) =
β√

GMMSE (3)

with β = 2. However, several modifications of this algorithm have been studied in terms of
changing the value of β [1].

For the LSA family, the gain function also depends on the GMMSE [6]

GLSA(k, l) = GMMSE exp(
1
2

∫ ∞

υ(k,l)

e−t

t
dt) (4)

where

υ(k, l) =
|Y(k, l)|2
λd(k, l)

GMMSE (5)

with λd(k, l) = E[|D(k, l)2|] the variance of the kth spectral component of the noise for
frame l. Thus, different modifications of the LSA estimator also express the gain function
in terms of the GMMSE. For instance, the gain function of the optimally modified version of
LSA is defined as

GOMLSA(k, l) = Gp(k,l)
LSA G1−p(k,l)

min (6)

where Gmin is a gain lowest boundary threshold, and p(k, l) is the speech presence prob-
ability. This optimally modified gain function outperforms previous alternatives of the
spectral-domain speech estimator [24].

As we can see, GMMSE is a common element of main importance in the definition of
the gain function of classical speech estimator algorithms. However, its dependence on the
a priori SNR (ξk) makes it sensitive to errors, because it is not directly accessible from the
observed spectral power |Y(k, l)|2 and has to be estimated for each segment l.
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2.2. SNR Estimation

Classical speech enhancement algorithms are commonly described in terms of the a
priori and a posteriori SNR [1,5,6,24]. The a priori SNR is defined in terms of the PSD of
the clean speech and the noise signal:

ξk,l =
Px(k, l)
Pd(k, l)

(7)

where Px(k, l) = E[|X(k, l)|2] is the clean speech PSD, Pd(k, l) = E[|D(k, l)|2] is the noise
signal PSD, both in frequency bin k. The a posteriori SNR depends on the noise signal PSD
and the noisy spectral power Py(k, l) = |Y(k, l)|2:

γk,l =
Py(k, l)
Pd(k, l)

(8)

As we can see, with an estimate of the PSD of the noise, the a posteriori SNR can
directly be obtained using the noisy spectral power |Y(k, l)|2. Many statistical algorithms
have been proposed to estimate the noise spectrum. For instance, there are histogram-
based approaches [27], minimum statistics [28], minima controlled recursive averaging
(MCRA) [24], etc. However, in general, they lose accuracy when handling realistic non-
stationary noises. Additionally, they could distort the speech signal or generate annoying
artifacts. The a priori SNR also needs an estimate of the PSD of the clean signal, which is
another challenging point of these approaches.

3. Proposal

This paper takes advantage of the data-driven paradigm behind deep learning for
modeling the relationship between noise and clean data. We propose to obtain an estimate
of the full term GMMSE(k, l) = ξ

1+ξ , i.e., the Wiener filter directly from the noisy signal by
means of a deep structured network. This term is subsequently used in the expression of the
gain function of the optimally modified version of LSA according to Equations (4) and (6).

When the observed signal is barely noise affected, i.e., it is mostly clean, the dynamic
range of the SNR can rise to ∞. In this case, the regression would be more sensitive to errors
because there will be a huge amount of possible values to provide as result. However, as the
GMMSE depends on the SNR (Equation (9)), high SNR conditions provoke high gain values
GMMSE → 1, while low SNR conditions dump GMMSE → 0. This way, the dynamic range
for the regression to obtain GMMSE would be bounded [0, 1], which is a more accurately
achievable task for a deep structured network.

GMMSE =
1

1 + 1
SNR

(9)

Furthermore, the use of a deep structured network in this task was also motivated by
the fact that we can implement a causal enhancement system. This means that as this is not
necessarily dependent on future time frames, it can be employed in online applications. In
addition, the network performs non-recursive estimations, which avoid the re-insertion of
estimation errors from previous frames. The mentioned previous statistical SNR-estimators
are usually based on recursive and causal schemes [9,13].

Figure 2 depicts the DL-based noise reduction method proposed. The deep structured
network is trained in supervised mode with clean speech data and noise patterns through
a standard data augmentation process. The goal of the network is to obtain an accurate
estimate of the MMSE gain from the noisy signal. During training, in order to obtain this
estimate, according to Equations (2) and (7), the network needs to know the PSD of the
clean speech Px(k, l) and the PSD of the noise Pd(k, l). We estimate those PSDs by means of
the Welch method [29].
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Figure 2. Noise reduction block based on Depp Learning.

During inference, the input to the network is only the noisy signal y(n). The GMMSE(k, l)
delivered by the network is directly applied along with the speech presence probability
term p(k, l) to compute the final speech enhancement filter gain function G(k, l) according
to Equations (4) and (6). There are many ways of estimating the speech presence probability.
Since the Wiener filter provides a value between 0 (when noise energy is much higher than
the speech energy) and 1 (when the noise energy is much lower than the speech energy)
we have directly used this term as an accurate estimate of the speech presence probability
for each time instant and for each frequency bin. This way of estimating the presence of
speech in the noisy signal is also appropriate in the sense that it does not require the use of
estimates of the clean signal or the noise signal, avoiding the appearance of feedback loops
that involve the speech enhancement gain function estimated by the method.

4. Architecture

For estimating the GMMSE we used a modified Wide-ResNet (WRN) architecture with
multiple inputs based on 1-dimensional convolutions. The architecture was built on Pytorch
toolkit. As the front end, we used a configuration of speech representations computed on a
25 ms Hamming window frame (overlap = 10 ms). For each frame segment, three types of
acoustic feature vectors are computed and stacked to create a single input feature vector
for the network: 512-dimensional FFT, 32 Mel filterbank, and 32 cepstral features. Finally,
input data are normalized using the mean and variance of the training dataset.

During training, input features are generated on the fly. This way, in a single forward
pass, the system computes the mask predictions for every t-f region and obtains the average
loss to calculate the gradients. For this process, each audio in the training set is divided
into segments of 2 seconds (200 frames). Then, the system creates a batch with 32 of these
segments for training the network. During the evaluation, the inference of the mask is
computed for the whole utterance in the evaluation set.

The architecture is composed of five blocks of WRN with an increasing number of
channels. All the blocks are connected to the input features. Each block has four WRN,
and only the first has kernel context in the convolutions as indicated in Table 1. The
network employs causal convolutions such that only information from the past intervenes
in the present result. For saving computations, we used groups in the convolutions. The
AdamW algorithm was used to train the network [30,31] and PReLUs [32] as a parametric
non-linearity. The cost function for a segment of contiguous frames is based on the mean
square error (MSE).
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Table 1. Description of the network dimensions of the architecture used for estimating GMMSE. The
dimension corresponds to the number of channels in the sequence of the processed frames.

Layer Kernel Size Dilation Input Dim. Output Dim.

Block 1 (×4 WRN) 7 3 512 256

Block 2 (×4 WRN) 5 3 512 + 256 512

Block 3 (×4 WRN) 3 2 512 + 512 1024

Block 4 (×4 WRN) 3 2 512 + 1024 2048

Block 5 (×4 WRN) 3 2 512 + 2048 2048

Output (Linear Layer) - - 512 + 2048 512

5. Experimental Setup

To test the performance of the speech enhancement method proposed, the computation
of speech quality measures on simulated speech samples was carried out.

5.1. Datasets

Data for DL training: We used 16 kHz sampled data from Timit (https://catalog.
ldc.upenn.edu/LDC93S1 (accessed on 1 September 2022)) and Librispeech (http://ww
w.openslr.org/12/ (accessed on 1 September 2022)) datasets in English, as well as some
data in Spanish from Albayzin, Speechdatcar, Domolab, Tcstar, Mavir, and some hours of
Spanish TV emissions for a total of approximately 120 h of clean speech. These data were
augmented by adding randomly stationary and non-stationary noises from the Musan
dataset [33], SNR = 0–30 dB, including music and speech, and scaling the time axis at the
feature level.

Data for speech enhancement: We created a simulated noisy dataset with 11,976 speech
utterances using clean read phrases in Spanish, phonetically balanced, from the laboratory
sessions of the AV@CAR dataset [34]. The dataset is sampled at 16 kHz and includes 20 male
and female speakers. The clean data were corrupted with different types of stationary and
non-stationary additive noise:

• Babble: Noisy pattern from the talking of many people. It is a special case of non-
stationary noise, very difficult to handle because it is highly correlated with the target
voice since it is also voice.

• Traffic: Noise from the traffic at a random street, including cars, klaxon, street
noise, etc.

• Cafe: Mixture of environmental noises in a cafe, including people talking, noise from
cutlery, etc.

• Tram: Environmental noise in a tram station, including some stationary segments
when the tram arrives.

In order to have a representation of several noise levels according to different scenarios
of application, each noisy subset was evaluated at SNR = 0, 5, 10, 15, 20 dB.

5.2. Speech Quality Measures

To evaluate the speech enhancement performance, the objective quality metric PESQ
(perceptual evaluation of speech quality) [35] (from 0.5 to 4.5) is employed. STOI, short-
time objective intelligibility [36], is used for objective intelligibility evaluation, where the
intelligibility score is presented as a percentage. There are also results for quality metrics
related to the MOS index. CBAK and COVL [37] are composite objective quality measures
that provide a MOS from 1–5, where the first targets the background-noise intrusiveness,
and the second target the overall signal quality. In all mentioned quality metrics, larger
values indicate better speech quality.

Additionally, for evaluating the speech estimator, the level of noise reduction was
analyzed by means of the SNR output level using the WADA algorithm [38]. The distortion

https://catalog.ldc.upenn.edu/LDC93S1
https://catalog.ldc.upenn.edu/LDC93S1
http://www.openslr.org/12/
http://www.openslr.org/12/
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of the enhanced signal was assessed by means of the log-likelihood ratio (also known
as Itakura distance) (LLR) [39]. LLR represents the degree of discrepancy between the
smoothed spectra of the target and reference signals, computed over the active speech
segments of the linear prediction coefficients. For LLR, the closer the target feature to
the reference, the lowest the spectral distortion; therefore, smaller values indicate better
speech quality.

6. Results and Discussion
6.1. Evaluation of the Speech Estimator

This section consists of assessing the system performance using two speech estimators:
LSA and OMLSA. The objective of this experiment is evaluating the impact of the SPP in the
enhancement performance. OMLSA speech estimator applies the Wiener filter according to
the spectral distribution of speech and silence. This is defined by a map of the probability
of speech for the t-f regions, called speech presence probability (SPP) [24]. In this paper,
the SPP feed from the same GMMSE obtained with the deep structured network. Then it is
applied according to the Gmin (Equation (6)), which is a boundary for the minimum gain
that translates into a regulatory term for the strongest of the enhancement. The following
experiment tests different values of Gmin to evaluate its impact in the performance. On the
other side, the LSA speech estimator does not use the SPP, and instead it directly employs
the Wiener filter estimation as described in Equation (4).

Figure 3 shows the results of quality metrics for the speech estimation based on LSA
and OMLSA with different Gmin values. The variation among Gmin values allows seeing
the best trade-off between enhancement and distortion throughout the objective quality
metrics. The highest SNR was obtained by the system using OMLSA with the lowest Gmin
(0.00562). However, in this case, the corresponding signal distortion is also highest among
all. Conversely, the system based on LSA achieved the lowest signal distortion in terms
of LLR, while the noise reduction is moderated since the SNR was in the middle of cases.
The lowest SNR improvement was for Gmin = 0.562 as expected, where the enhancement
is slightly considering the noise dominant bins (see Equation (6)), so the signal remains
very noisy. The desirable result is a reasonable trade-off between distortion and SNR level,
where the SNR improvement indicates the noise reduction but at the same time, the signal
distortion does not increase too much.

On the other side, the best performance for objective quality by PESQ was achieved
by the system based on OMLSA with Gmin = 0.0562. STOI results indicated that the
intelligibility was not so variable among all conditions. The best performance was for
moderated values of Gmin and also for the system based on LSA. Note that these results
are consistent with the system with lowest signal distortion. This is reasonable since we
could expect better understanding when the speech is clearer and without robotic sounds.
Finally, the best results for MOS-related metrics were again for the system based on OMLSA
Gmin = 0.0562. These results, together with a good improvement of SNR with moderated
distortion, confirm that the best trade-off among all quality metrics evaluated belongs to
the system based on OMLSA with Gmin = 0.0562.
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Figure 3. SNR, distortion, PESQ, STOI, CBAK and COVL for LSA and OMLSA speech estimators
averaging throughout all noises.

6.2. Preview of the Performance

In this section, there is a preview sketch of the system enhancement using spectro-
grams. Two audio examples from the dataset were used mixed with different noise types:
baby crying and noise from call centers. There are more audio examples of the system
enhancement, either on simulated or real noisy speech (http://dayanaribas.vivolab.es/D
EMOenhancement/index.html (accessed on 1 September 2022)).

According to the previous section results, the system used was the one based on
OMLSA with Gmin = 0.0562. For comparison purposes, we used Deepxi [22,23], a recent
enhancement method from the state of the art with very competitive results (see the bench-
marking table in the following link (https://github.com/anicolson/DeepXi (accessed
on 1 September 2022)). Moreover, this method has common points with the proposal;
for instance, it is also based on the combination of deep learning with classical speech
estimators, and the version DeepXi− ResNet(1.1c) uses Resnet with causal convolutions.

Figure 4a shows the spectrogram of an utterance corrupted with noise from a call
center, while Figure 4b shows other speech sample mixed with the sound of a baby crying.
In both examples, SNR = 5 dB and the speech is immersed into the noise, so it is difficult to
distinguish the spectral structures of speech. Below the noisy speech are the spectrogram
corresponding to the method proposed in this paper and the method for comparison
purposes deepxi. At a glance, we appreciate that the spectrograms of both enhancement
methods are very similar. In order to highlight some difference, we see that the structure
of harmonics and the speech formants in example (a) are more defined with the method
proposed than with deepxi, which spectrogram is softer. There are also some artifacts
from the noisy speech (indicated with red arrows in the figure) that remain in the deepxi
spectrogram, while the method proposed was able to remove them. For example (b), the
harmonic structure introduced by the crying is more pronounced in the spectrogram of

http://dayanaribas.vivolab.es/DEMOenhancement/index.html
http://dayanaribas.vivolab.es/DEMOenhancement/index.html
https://github.com/anicolson/DeepXi


Appl. Sci. 2022, 12, 9000 10 of 14

deepxi. So when listening to this example, the baby crying is still a bit stronger in the
background of the deepxi sample than the proposal.

Figure 4. Spectrograms of two audio examples. (a) Speech with noise from a call center (SNR = 5 dB),
(b) speech with noise of baby crying (SNR = 5 dB).

6.3. Objective Quality Metrics

This section presents the results of the objective quality metrics: PESQ, STOI, COVL,
and CBAK. The black line is the reference that corresponds to the noisy speech, the blue
line represents the statistical-based omlsa method, and the red line is related to the proposal.
For comparison purposes, we used three state-of-the-art DL-based SE methods segan [40]
and two deepxi versions: resnet 1.1c [22] and mhanet 1.1c [23].

Figure 5 shows the results for objective quality metrics. Similar to the behavior
shown by the spectrograms below, either the proposal, as all methods for comparison,
achieved improvement of the objective quality concerning the noisy speech and also the
statistical-based omlsa. Segan obtained the most moderate results, except for intelligibility
(STOI), where the performance is very similar for all methods evaluated. The method
proposed and deepxi achieved the best quality, with very similar values indeed. deepxi-
mhanet-1.1c achieved better values for PESQ and COVL. These metrics target the overall
signal quality, so it is expected that both agree on the behavior. Note that the architecture
behind this method employs multi-head attention (MHA), which is the most powerful
architecture among all methods, so this result is expected to some extent. From the point of
view of CBAK, deepxi methods and the proposal have almost the same background-noise
intrusiveness, with a slight improvement of the proposal for SNR > 10 dB. Note that in
general, the difference between deepxi and proposal is slight. So, when listening to the
signals enhanced, that difference among objective quality metrics is very hard to perceive
in the practice.

In conclusion, the performance of the proposal is very similar to the method deepxi-
resnet-1.1c. However, the formulation of the proposal is better suited for a deep learning
solution because when targeting the estimation of the Wiener filter directly, it avoids
practical issues, such as slow convergence. Additionally, as the estimated values are
between 0 and 1, the same Wiener filter can be used as the spectral probability of the speech
presence (SPP). This allows for employing the OMLSA-based speech estimator, instead of
the LSA-based speech estimator used in both deepxi methods evaluated. Previous results
of Section 6.1 indicated that a suitable selection of Gmin compensates for the distortion loss
of the OMLSA-based speech estimator and outperforms the LSA-based speech estimator.
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Figure 5. Quality metrics (PESQ, STOI, CBAK and COVL) for enhanced noisy speech averaging
throughout all noises.

7. Conclusions

This paper proposed a deep learning method for estimating the Wiener filter for speech
enhancement. Following the classical speech enhancement processing framework, this
paper evaluated two spectral domain speech estimator algorithms: LSA and OMLSA. The
obtained results indicated that despite LSA introducing very low distortion, the best trade-
off among the speech enhancement, the signal distortion, and the objective quality metrics
(PESQ, STOI, CBAK, COVL) was for the system based on OMLSA with Gmin = 0.0562.
Further studies on the combination of the DL-based Wiener filter estimation and other
speech estimator algorithms would be analyzed in the next steps.

The method was evaluated for speech enhancement on a simulated noisy speech
database and compared with state-of-the-art methods. Results showed that the proposal
improves the statistical-based OMLSA, providing it with a robust version that accurately
performs in simulated and real speech data. Regarding the state of the art, the proposal
achieved better or similar performance. However, it proposes a better-suited formulation
for a deep learning solution. This consists of directly targeting the estimation of the Wiener
filter without the use of compensations for avoiding practical issues with the training
convergence or the accuracy of the estimation. On the other side, the comparison with the
state of the art shows that more sophisticated deep learning networks could produce more
accurate estimation results, such as multi-head attention mechanisms and transformers.
Audio examples of the enhancement performed in simulated and real noisy speech are
available (http://dayanaribas.vivolab.es/DEMOenhancement/index.html (accessed on
1 September 2022)) .
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Abbreviations
The following abbreviations are used in this manuscript:

ADAM Adaptive Moment Estimator
ASR Automatic Speech Recognition
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
DSE Deep Speech Enhancement
GMMSE Gain of the Minimum Mean Square Error Estimator
IBM Ideal Binary Mask
IRM Ideal Ratio Mask
LSA Log-Spectral Amplitude
MMSE Minimum Mean Square Error
MSE Mean Square Error
OMLSA Optimal Modified Log-Spectral Amplitude
PReLU Parametric Rectified Linear Unit
PSD Power Spectral Density
SNR Signal-to-Noise Ratio
SS Spectral Subtraction
STD Standard Deviation
STFT Short-Term Fourier Transform
STSA Short-Time Spectral Amplitude

References
1. Loizou, P.C. Speech Enhancement: Theory and Practice; CRC Press: New York, NY, USA, 2013.
2. Hendriks, R.C.; Gerkmann, T.; Jensen, J. DFT-Domain Based Single-Microphone Noise Reduction for Speech Enhancement: A Survey of

the State of the Art. Synthesis Lectures on Speech and Audio Processing; Morgan & Claypool: New York, NY, USA, 2013.
3. Lim, J.S.; Oppenheim, A.V. Enhancement and bandwidth compression of noisy speech. Proc. IEEE 1979, 67, 1586–1604. [CrossRef]
4. Boll, S. Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust. Speech Signal Process. 1979, 27, 113–120.

[CrossRef]
5. Ephraim, Y.; Malah, D. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE

Trans. Acoust. Speech Signal Process. 1984, 32, 1109–1121. [CrossRef]
6. Ephraim, Y.; Malah, D. Speech enhancement using minimum-mean square log spectral amplitude estimator. IEEE Trans. Acoust.

Speech Signal Process. 1985, 33, 443–445. [CrossRef]
7. Breithaupt, C.; Martin, R. Analysis of the Decision-Directed SNR Estimator for Speech Enhancement with Respect to Low-SNR

and Transient Conditions. IEEE Trans. Speech Audio Process. 2010, 19, 277–289. [CrossRef]
8. Xia, B.Y.; Bao, C.C. Speech enhancement with weighted denoising Auto-Encoder. In Proceedings of the 14th Annual Conference

of the International Speech Communication Association (Interspeech), Lyon, France, 25–29 August 2013; pp. 3444–3448.
9. Xia, B.Y.; Bao, C.C. Wiener filtering based speech enhancement with Weighted Denoising Auto-encoder and noise classification.

Speech Commun. 2014, 60, 13–29. [CrossRef]
10. Wang, D.; Chen, J. Binary and ratio time-frequency masks for robust speech recognition. Speech Commun. 2006, 48, 1486–1501.
11. Wang, D.; Chen, J. Supervised speech separation based on deep learning: An overview. IEEE/ACM Trans. Audio Speech Lang.

Process. 2018, 26, 1702–1726. [CrossRef]

http://dayanaribas.vivolab.es/DEMOenhancement/index.html
http://dayanaribas.vivolab.es/DEMOenhancement/index.html
http://openslr.org
https://catalog.ldc.upenn.edu/LDC93S1W
http://doi.org/10.1109/PROC.1979.11540
http://dx.doi.org/10.1109/TASSP.1979.1163209
http://dx.doi.org/10.1109/TASSP.1984.1164453
http://dx.doi.org/10.1109/TASSP.1985.1164550
http://dx.doi.org/10.1109/TASL.2010.2047681
http://dx.doi.org/10.1016/j.specom.2014.02.001
http://dx.doi.org/10.1109/TASLP.2018.2842159


Appl. Sci. 2022, 12, 9000 13 of 14

12. Narayanan, A.; Wang, D.L. Ideal ratio mask estimation using deep neural networks for robust speech recognition. In Proceedings
of the IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 26–31 May
2013; pp. 7092–7096.

13. Narayanan, A.; Wang, D.L. Investigation of speech separation as a front-end for noise robust speech recognition. IEEE Trans.
Audio, Speech Lang. Process. 2014, 22, 826–835. [CrossRef]

14. Healy, E.W.; Yoho, S.E.; Wang, Y.; Wang, D. An algorithm to improve speech recognition in noise for hearing-impaired listeners. J.
Acoust. Soc. Am. 2013, 134, 3029–3038. [CrossRef]

15. Healy, E.W.; Yoho, S.E.; Wang, Y.; Apoux, F.; Wang, D. Speech-cue transmission by an algorithm to increase consonant recognition
in noise for hearing-impaired listeners. J. Acoust. Soc. Am. 2014, 136, 3325–3336. [CrossRef] [PubMed]

16. Healy, E.W.; Yoho, S.E.; Chen, J.; Wang, Y.; Wang, D. An algorithm to increase speech intelligibility for hearing-impaired listeners
in novel segments of the same noise type. J. Acoust. Soc. Am. 2015, 138, 1660–1669. [CrossRef] [PubMed]

17. Healy, E.W.; Delfarah, M.; Johnson, E.; Wang, D. A deep learning algorithm to increase intelligibility for hearing-impaired
listeners in the presence of a competing talker and reverberation. J. Acoust. Soc. Am. 2019, 145, 1378–1388. [CrossRef]

18. Bolner, F.; Goehring, T.; Monaghan, J.; van Dijk, B.; Wouters, J.; Bleeck, S. Speech enhancement based on neural networks applied
to cochlear implant coding strategies. In Proceedings of the ICASSP, Shanghai, China, 20–25 March 2016; pp. 6520–6524.

19. Goehring, T.; Bolner, F.; Monaghan, J.; van Dijk, B.; Zarowski, A.; Bleeck, S. Speech enhancement based on neural networks
improves speech intelligibility in noise for cochlear implant users. J. Hear. Res. 2017, 344, 183–194. [CrossRef] [PubMed]

20. Goehring, T.; Keshavarzi, M.; Carlyon, R.P.; Moore, B.C.J. Using recurrent neural networks to improve the perception of speech in
non-stationary noise by people with cochlear implants. J. Acoust. Soc. Am. 2019, 146, 705–708. [CrossRef]

21. Zhang, Q.; Nicolson, A.; Wang, M.; Paliwal, K.K.; Wang, C. DeepMMSE: A Deep Learning Approach to MMSE-Based Noise
Power Spectral Density Estimation. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 1404–1415. [CrossRef]

22. Nicolson, A.; Paliwal, K.K. Deep learning for minimum mean-square error approaches to speech enhancement. Speech Commun.
2019, 111, 44–45. [CrossRef]

23. Nicolson, A.; Paliwal, K.K. On training targets for deep learning approaches to clean speech magnitude spectrum estimation. J.
Acoust. Soc. Am. 2021, 149, 3273–3293. [CrossRef]

24. Cohen, I.; Berdugo, B. Speech enhancement for non-stationary noise environments. Signal Process. 2001, 81, 2403–2418. [CrossRef]
25. McAulay, R.J.; Malpass, M.L. Speech Enhancement using a Soft-Decision Noise Supression Filter. IEEE Trans. Acoust. Speech

Signal Process. 1980, 28, 137–145. [CrossRef]
26. Malah, D.; Cox, R.; Accardi, A. Tracking speech-presence uncertainty to improve speech enhancement in non-stationary noise

environments. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Phoenix,
AZ, USA, 15–19 March 1999.

27. Hirsch, H.; Ehrlicher, C. Noise estimation techniques for robust speech recognition. In Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Detroit, MI, USA, 9–12 May 1995; pp. 153–156.

28. Martin, R. Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE Trans. Speech
Audio Process. 2001, 9, 504–512. [CrossRef]

29. Welch, P.D. The use of fast Fourier transforms for the estimation of power spectra: A method based on time averaging over short
modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [CrossRef]

30. Kingma, D.P.; Ba, J.L. Adam: Amethod for stochastic optimization. In Proceedings of the 3rd International Conference on
Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

31. Loshchilov, I.; Hutter, F. Fixing weight decay regularization in adam. arXiv 2017, arXiv:1711.05101.
32. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.
33. Snyder, D.; Chen, G.; Povey, D. MUSAN: A Music, Speech, and Noise Corpus. arXiv 2015, arXiv:1510.08484v1.
34. Ortega, A.; Sukno, F.; Lleida, E.; Frangi, A.; Miguel, A.; Buera, L.; Zacur, E. AV@CAR: A Spanish multichannel multimodal corpus

for in-vehicle automatic audio-visual speech recognition. In Proceedings of the Language Resources and Evaluation (LREC),
Reykjavik, Iceland, 26–31 May 2004; pp. 763–766.

35. ITU-T Recommendation PESQ-862, “Perceptual Evaluation of Speech Quality (PESQ): An Objective Method for End-to-End
Speech Quality Assessment of Narrow-Band Telephone Networks and Speech Codecs. International Telecommunication Union
(ITU): Geneva, Switzerland, 2001.

36. Taal, C.H.; Hendriks, R.C.; Heusdens, R.; Jensen, J. A short-time objective intelligibility measure for time-frequency weighted
noisy speech. In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX,
USA, 14–19 March 2010; pp. 4214–4217. [CrossRef]

37. Hu, Y.; Loizou, P.C. Evaluation of objective quality measures for speech enhancement. IEEE Trans. Audio Speech Lang. Process.
2007, 16, 229–238. [CrossRef]

38. Chanwoo Kim, R.M.S. Robust Signal-to-Noise Ratio Estimation Based on Waveform Amplitude Distribution Analysis. In
Proceedings of the 9th Annual Conference of the International Speech Communication Association (Interspeech), Brisbane,
Australia, 22–26 September 2008; pp. 2598–2601.

http://dx.doi.org/10.1109/TASLP.2014.2305833
http://dx.doi.org/10.1121/1.4820893
http://dx.doi.org/10.1121/1.4901712
http://www.ncbi.nlm.nih.gov/pubmed/25480077
http://dx.doi.org/10.1121/1.4929493
http://www.ncbi.nlm.nih.gov/pubmed/26428803
http://dx.doi.org/10.1121/1.5093547
http://dx.doi.org/10.1016/j.heares.2016.11.012
http://www.ncbi.nlm.nih.gov/pubmed/27913315
http://dx.doi.org/10.1121/1.5119226
http://dx.doi.org/10.1109/TASLP.2020.2987441
http://dx.doi.org/10.1016/j.specom.2019.06.002
http://dx.doi.org/10.1121/10.0004823
http://dx.doi.org/10.1016/S0165-1684(01)00128-1
http://dx.doi.org/10.1109/TASSP.1980.1163394
http://dx.doi.org/10.1109/89.928915
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1109/ICASSP.2010.5495701
http://dx.doi.org/10.1109/TASL.2007.911054


Appl. Sci. 2022, 12, 9000 14 of 14

39. Loizou, P.C. Speech Quality Asssessment. In Multimedia Analysis, Processing and Communications; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 623–654.

40. Pascual, S.; Bonafonte, A.; Serr, J. Segan: Speech enhancement generative adversarial network. In Proceedings of the 18th
Annual Conference of the International Speech Communication Association (Interspeech), Stockholm, Sweden, 20–24 August
2017; pp. 3642–3646.


	Introduction
	Speech Enhancement
	Speech Estimation Algorithms
	SNR Estimation

	Proposal
	Architecture
	Experimental Setup
	Datasets
	Speech Quality Measures

	Results and Discussion
	Evaluation of the Speech Estimator
	Preview of the Performance
	Objective Quality Metrics

	Conclusions
	References

