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Abstract: Obstacle detection is the basis for the Advanced Driving Assistance System (ADAS) to
take obstacle avoidance measures. However, it is a very essential and challenging task to detect
unexpected obstacles on the road. To this end, an unexpected obstacle detection method based
on computer vision is proposed. We first present two independent methods for the detection of
unexpected obstacles: a semantic segmentation method that can highlight the contextual information
of unexpected obstacles on the road and an open-set recognition algorithm that can distinguish
known and unknown classes according to the uncertainty degree. Then, the detection results of the
two methods are input into the Bayesian framework in the form of probabilities for the final decision.
Since there is a big difference between semantic and uncertainty information, the fusion results
reflect the respective advantages of the two methods. The proposed method is tested on the Lost
and Found dataset and evaluated by comparing it with the various obstacle detection methods and
fusion strategies. The results show that our method improves the detection rate while maintaining a
relatively low false-positive rate. Especially when detecting unexpected long-distance obstacles, the
fusion method outperforms the independent methods and keeps a high detection rate.

Keywords: unexpected obstacle detection; computer vision; semantic segmentation; open-set recog-
nition algorithm; uncertainty degree; Bayesian fusion

1. Introduction

Road traffic safety hazards are currently a common social safety issue all over the
world. In terms of vehicle type, car-related accidents account for more than two-thirds of
all and are the most harmful. To improve traffic safety, the automotive industry developed
airbags, anti-lock braking systems, and electronic stability systems were used in the early
days. In recent years, research in the field of automotive safety has moved toward a
more intelligent Advanced Driving Assistance System (ADAS). ADAS can perceive the
surrounding environment and alert the driver or control the vehicle automatically when
danger is present, thus reducing or avoiding the hazards of traffic accidents. It is a new
generation of active safety systems [1]. Since most accidents originate from collisions
between vehicles and obstacles, obstacle avoidance is the primary task of ADAS, and
accurate detection of obstacles is the basis for ADAS to take obstacle avoidance measures.

Unexpected hazards on the road (e.g., lost goods, loose stones, etc.) are an easily
overlooked problem for traffic safety, and they can easily cause traffic accidents, which
have a great impact on people’s property and even their lives. US traffic reports show that
approximately 150 people die each year in the US due to lost goods on the road [2]. As such,
obstacles usually have small sizes and complex shapes, and achieving accurate and effective
detection is a hard task for both drivers and general detection systems. Therefore, it is
greatly significant to include the detection of unexpected obstacles in vehicle environment
perception systems and develop an effective detection method.
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There are currently two solutions in the field of automotive environment perception,
namely computer vision solution and radar solution. At the current research stage, both
solutions have certain advantages and disadvantages, but the computer vision solution is
closer to the human driving form and has great potential for development. Vision is the
most important way for humans to obtain information, and studies have shown that about
90% of the information obtained by drivers comes from vision [3]. Computer vision takes
a camera as a sensor, and the images acquired by the camera are most similar to the real
world perceived by the human eyes, which contains a wealth of information that can be
used for a variety of tasks in the field of environment perception. In addition, computer
vision solutions are low-cost and more easily marketable.

Stereo vision and deep learning are the two main detection methods used in vision
solutions. Stereo vision methods [4,5] mainly rely on the stereo information contained in
stereo image pairs captured by binocular cameras and use the differences in the geometric
structure of objects to recognize the image content. However, stereo vision techniques
are strongly influenced by distance and are not effective in detecting obstacles at long
distances. Deep learning methods can handle complex feature information thanks to the
powerful feature extraction capabilities of convolutional neural networks. In addition,
they have certain advantages over stereo vision methods in terms of detection distance
and accuracy, and semantic information can be obtained. Consequently, this paper studies
an unexpected obstacle detection method based on deep learning, and it mainly has the
following three contributions:

1. A semantic segmentation method suitable for detecting unexpected obstacles on
the road is proposed. Traditional supervised machine learning systems can only
identify the classes of obstacles present in the training set but are powerless for
unexpected obstacles. A powerful advantage of DeepLabV3+ is its ability to use the
learned contextual features of the images to generalize information far beyond their
training data. This paper highlights the contextual features of unexpected obstacles
on the road by reasonably defining the pixel classes of the training dataset and
uses DeepLabV3+ to perform semantic segmentation of images to achieve effective
detection of unexpected obstacles.

2. An open-set recognition algorithm for unexpected road obstacles is designed. De-
pending on the difference in uncertainty between the known and unknown classes,
it segments the unexpected obstacles by adaptive threshold. The algorithm is very
different from semantic segmentation methods in terms of the principle and the image
information used, so it can complement semantic segmentation methods very well.

3. A probabilistic fusion detection method based on the Bayesian model is proposed.
The Bayesian model is a classical probabilistic prediction model, which makes the
prediction results more consistent with the human brain’s judgment and decision-
making process by using multivariate data for joint inference. We incorporate the
detection results of the two aforementioned methods into the Bayesian model in a
probabilistic form to improve the system’s ability to detect unexpected obstacles.

The rest of the paper is organized as follows. Related work is introduced in Section 2.
Section 3 presents the core algorithms, including unexpected obstacle detection based on
semantic segmentation, unexpected obstacle detection based on uncertainty, and proba-
bilistic fusion. Section 4 is the experiment and result analysis. The conclusions are made
in Section 5.

2. Related Work

The early machine learning methods divided the obstacle detection task into two steps:
feature extraction and feature classification. The artificially designed features were input
into some shallow classifiers for detection and recognition, and the detection accuracy
and classification ability are limited. In recent years, deep learning techniques using deep
neural networks as tools have greatly advanced the development of artificial intelligence.
Among them, deep convolutional neural networks (CNNs) [6–8] have a powerful feature



Appl. Sci. 2022, 12, 8937 3 of 15

extraction capability, which can learn the features of the object better and achieve higher
accuracy detection. Therefore, CNNs are widely used in obstacle detection tasks [9–11].
For example, Qi et al. [9] first targeted obstacle regions by the maximum difference and
morphological Region Of Interest (ROI) extraction method and then input the resulting ROI
into CNN for obstacle recognition, thus improving the accuracy of obstacle detection and
recognition. Jia et al. [10] added the global information of a single image to the classifier
while using CNN combined with Deep Belief Network (DBN) to build an obstacle detection
model, which experimentally proved to have good detection capability. Levi et al. [11]
proposed an obstacle detection and road segmentation method called StixelNet, which
simplified the detection task to a stixel regression problem and introduced a loss function
based on a semi-discrete representation of the obstacle position probability to train the
network, and achieved good results on the KITTI dataset [12]. However, these traditional
CNN-based obstacle detection methods are less flexible and cannot provide dense and
accurate obstacle locations.

An effective way to use CNNs for obstacle detection is semantic segmentation. Se-
mantic segmentation is the classification of each pixel in an image to achieve region seg-
mentation, which is suitable for application in pixel-level scene representation and obstacle
detection. In 2015, Long et al. proposed the Fully Convolutional Network (FCN) [13],
replacing fully connected layers in the traditional CNN with convolutional layers. FCN is
widely used in semantic segmentation because the convolutional layer can retain a higher
image resolution, which is beneficial for pixel-level task such as semantic segmentation.
The evaluation results of the PASCAL VOC dataset [14] showed that FCN-based semantic
segmentation methods [15,16] take the lead. Badrinarayanan et al. proposed SegNet [17]
based on FCN, whose encoder part used the first 13 layers of the convolutional network
of VGG-16 [18], and each encoder layer corresponded to a decoder layer. The final out-
put of the decoder was fed to a softmax classifier to generate a class probability for each
pixel independently. To address the problem of a single scale of FCN feature extraction,
the Unet [19] proposed by Ronneberger et al. adopted the feature channel concatenation
method, thus retaining more image information. In addition, its unique U-shaped network
structure enabled it to have better access to the semantic information of small objects. The
DeeplabV3+ model [20] proposed by Chen et al. in 2018 incorporated an Encoder-Decoder
structure and combined it with Atrous Spatial Pyramid Pooling (ASPP), which enlarged
the perceptual field of the model by introducing atrous convolution and further improved
the segmentation capability of the model for objects of different sizes. In recent years, some
researchers have applied semantic segmentation models to the field of obstacle detection
and achieved good results. For example, Shin et al. [21] proposed a deep residual network
EAR-Net for road scene segmentation on the basis of ASPP, which improved the accuracy
of segmentation by utilizing depthwise separable convolution and interpolation for feature
extraction and recovery. Valdez-Rodríguez et al. [22] combined depth estimation with
a semantic segmentation model and proposed a hybrid CNN network. This model can
separate the foreground and background in images and achieve good segmentation results
on the SYNTHIA-AL dataset [23].

The above-mentioned semantic segmentation methods are only used to detect the
types of obstacles that already exist in the training set, while unexpected obstacles (which
do not exist in the training set) are not detected. Creusot et al. [24] first explored this
particular problem, and the paper used a restricted Boltzmann machine neural network to
detect anomalous regions on the road. There are currently some methods for the detection
of unexpected classes, such as open-set recognition, out-of-distribution detection, anomaly
detection, and novelty detection, etc. However, the difference between the latter three
methods and open-set recognition is that they cannot distinguish known classes in the
training set [25]. The methods to solve the open-set recognition problem are referred to as
open-set recognition algorithms [26]. Scheirer et al. [27] conducted pioneering research on
the open-set recognition problem and defined it as a constrained minimization problem.
The article proposes a novel method to deal with the task of open-set recognition, which
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sculpts a decision space from the marginal distances of a 1-class or binary SVM with a
linear kernel. Bendale et al. [28] investigated the use of deep neural networks for open-set
recognition to provide deep-learning-based recognition systems with the ability to reject
unexpected class. However, the above two approaches have not carried out targeted
research in the area of unexpected obstacle detection.

As a matter of fact, using a single method for obstacle detection in practical problems
is very limited. If different detection methods can be integrated, the purpose of comple-
menting each other’s advantages can be achieved, thereby improving the detection quality.
In recent years, many researchers have adopted this idea. For example, Schneider et al. [29]
defined the model as an energy minimization problem and used semantics and geometry
as unary data terms in it. This model can jointly infer semantic and geometric clues to
achieve better detection results. Zhang et al. [30] proposed an obstacle detection method
using fusion of radar and visual data, and its data fusion methods are divided into two
categories: spatial fusion and time fusion. The former can realize the unification between
coordinate systems through a series of coordinate transformations, and the latter can ensure
the synchronization of data fusion in time. It can be seen that the fusion method can
consider a variety of data information, which effectively improves the detection quality. For
fusion strategies, Bayesian is a probability-based fusion framework, which is very classic
and widely used. Therefore, this paper adopts Bayesian as the fusion framework.

In fact, semantic segmentation models have inherently powerful generalization ca-
pabilities and are capable of acquiring much more information than the types of data
provided in the training dataset. For example, semantic segmentation models can learn the
contextual information of an image from a large amount of training data [17,19]. Pixels in
an image are usually not isolated, and contextual information reflects some connections
between a pixel and its neighboring pixels. The information generalization capability of
semantic segmentation models provides powerful technical support for the detection of
unexpected obstacles. In this paper, a semantic segmentation method that can highlight the
contextual information of unexpected obstacles is designed for such a complex problem
of unexpected obstacle detection. In addition, as the semantic method only utilizes the
semantic information of the image, the detection accuracy is limited, so this paper also de-
signs an open-set recognition algorithm based on the uncertainty. Unexpected obstacles are
detected by incorporating the two methods into the Bayesian framework for joint inference.

3. Proposed Methods

Figure 1 shows the flow chart of our method. First, the input image is fed into Unex-
pected Obstacles Detection Based on Semantic Segmentation (UOD-SS) and general seman-
tic segmentation. The Unexpected Obstacles Detection Based on Uncertainty (UOD-Un)
based on uncertainty degree uses the results of the above two methods. Then, the detection
probabilities provided by the above two methods are fused through a Bayesian framework
(Probabilistic Fusion Based on UOD-SS and UOD-Un, PF-SSUn). Finally, the output image
is the superposition of general semantic segmentation and probabilistic fusion results.
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3.1. Unexpected Obstacle Detection Based on Semantic Segmentation (UOD-SS)

In this paper, by reasonably defining the classes of the training dataset, the contextual
features of unexpected obstacles on the road are highlighted. The powerful information
generalization ability of the semantic segmentation model is used to realize the detection
of unexpected obstacles; at the same time, the free space where the vehicle can travel is
output. To highlight the contextual features of unexpected obstacles, traffic scenes are
divided into three classes: free space, unexpected obstacles, and background, where the
background class is defined as any image region except free space and unexpected obstacles
on the road. Figure 2 shows this classification method. There are two dropped cargoes
in Figure 2a, shown in the image as unexpected obstacles on the road. Figure 2b is the
scene image after segmentation according to the above classification method. The purple
part represents free space, the red part represents unexpected obstacles, and the uncolored
part represents the background. It can be seen from Figure 2b that these two unexpected
obstacles are particularly prominent in the free space. Due to the small number of scene
classes, the network ignores the shape and other features of the obstacles and focuses on
the common contextual properties of unexpected obstacles on the road. Therefore, this
kind of semantic information can be learned by virtue of the semantic segmentation model
to segment unexpected obstacles at different distances and appearances.
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Figure 2. Classification of road scenes: (a) original image; (b) scene classification.

The advanced DeepLabV3+ is used as the semantic segmentation model, and ResNet-50
is adopted as the backbone feature extraction network. The model combines the encoder-
decoder structure and ASPP, which can well restore the edge information of the image
and learn multi-scale features. The architecture of DeepLabV3+ for the UOD-SS method is
shown in Figure 3. To solve the problem of semantic segmentation of road scenes, the model
introduces atrous convolution. Compared with standard convolution, atrous convolution
can increase the receptive field of the model and retain more spatial information about small
objects. For unexpected obstacles of small size, atrous convolution can effectively reduce
the interference of large background regions on feature extraction. At the same time, it can
make the feature map in the model retain the boundary information of the object as much
as possible without adding too many calculation parameters. For a two-dimensional signal
such as an image, the mapping formula for the input and output of the atrous convolution
is as follows:

y[i] = ∑
k

x[i + d · k]ω[k]. (1)

Among them, i is the index value of a single element of the feature map; d is the
dilation rate of the atrous convolution; ω[k] is the convolution kernel of size k.

Aiming at unexpected obstacles on the road, the original atrous convolution with the
dilation rate of 6, 12, and 18 in DeepLabV3+ is changed to 4, 8, and 12, respectively. As the
resolution of the feature maps continues to decrease, the smaller dilation rate can efficiently
extract low-resolution feature maps. At the same time, the ASPP structure adopted by
the model integrates multi-scale feature information and uses a convolution kernel with
a larger dilation rate to segment large objects and smaller one to segment small objects,
thereby enhancing the model’s ability to segment objects of different sizes.



Appl. Sci. 2022, 12, 8937 6 of 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 16 
 

Among them, i  is the index value of a single element of the feature map; d  is the dilation 
rate of the atrous convolution; [ ]kω  is the convolution kernel of size k .  

ResNet

Image 
Pooling

Rate=4

1×1 
Conv

Upsample

Concat Upsample1×1
Conv

3×3
Conv

1×1
Conv

3×3
Conv

3×3
Conv

3×3
Conv

Rate=8

Rate=12

Input Image

Prediction

 
Figure 3. The architecture of DeepLabV3+ for UOD-SS method. 

Aiming at unexpected obstacles on the road, the original atrous convolution with the 
dilation rate of 6, 12, and 18 in DeepLabV3+ is changed to 4, 8, and 12, respectively. As the 
resolution of the feature maps continues to decrease, the smaller dilation rate can effi-
ciently extract low-resolution feature maps. At the same time, the ASPP structure adopted 
by the model integrates multi-scale feature information and uses a convolution kernel 
with a larger dilation rate to segment large objects and smaller one to segment small ob-
jects, thereby enhancing the model’s ability to segment objects of different sizes.  

Finally, this semantic segmentation network is trained using the Lost and Found da-
taset [5], which contains road scenes with high complexity and various unexpected obsta-
cles. 

3.2. Unexpected Obstacle Detection Based on Uncertainty (UOD-Un)  
In order to further improve the detection effect of unexpected obstacles, an open-set 

recognition algorithm UOD-Un based on uncertainty is designed in this paper. We com-
pute the uncertainty degree from the known class probabilities obtained from general se-
mantic segmentation. The general semantic segmentation is different from the three-class 
semantic segmentation in the UOD-SS method in Section 3.1; its training set contains com-
mon objects in the traffic scene. In general, semantic segmentation, the predicted proba-
bilities of unexpected obstacle (unknown class) are usually more dispersed among known 
classes, with higher uncertainty relative to known classes. Figure 4 shows the uncertainty 
degree distribution of general semantic segmentation. Figure 4a shows the result of gen-
eral semantic segmentation for the scene in Figure 2a. Figure 4b shows the uncertainty 
degree distribution map of Figure 4a, and the ROI in Figure 4b is the free space class and 
unexpected obstacle class region in Figure 2b. From Figure 4b, it can be seen that the area 
of the unexpected obstacle class is red, indicating that this area has a higher uncertainty 
degree. Therefore, the uncertainty degree can be used to distinguish known and unknown 
classes so that unexpected obstacles can be detected. 

Figure 3. The architecture of DeepLabV3+ for UOD-SS method.

Finally, this semantic segmentation network is trained using the Lost and Found dataset [5],
which contains road scenes with high complexity and various unexpected obstacles.

3.2. Unexpected Obstacle Detection Based on Uncertainty (UOD-Un)

In order to further improve the detection effect of unexpected obstacles, an open-
set recognition algorithm UOD-Un based on uncertainty is designed in this paper. We
compute the uncertainty degree from the known class probabilities obtained from general
semantic segmentation. The general semantic segmentation is different from the three-class
semantic segmentation in the UOD-SS method in Section 3.1; its training set contains
common objects in the traffic scene. In general, semantic segmentation, the predicted
probabilities of unexpected obstacle (unknown class) are usually more dispersed among
known classes, with higher uncertainty relative to known classes. Figure 4 shows the
uncertainty degree distribution of general semantic segmentation. Figure 4a shows the
result of general semantic segmentation for the scene in Figure 2a. Figure 4b shows the
uncertainty degree distribution map of Figure 4a, and the ROI in Figure 4b is the free space
class and unexpected obstacle class region in Figure 2b. From Figure 4b, it can be seen
that the area of the unexpected obstacle class is red, indicating that this area has a higher
uncertainty degree. Therefore, the uncertainty degree can be used to distinguish known
and unknown classes so that unexpected obstacles can be detected.
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The flow of UOD-Un is shown in Figure 5. Firstly, the general semantic segmentation is
performed on the original image, and then the ROI is determined according to the detection
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result of UOD-SS. Finally, the uncertainty degree of the pixels in this region is calculated,
and the threshold of the uncertainty degree is used to segment unexpected obstacles. When
performing general semantic segmentation, we also choose the DeepLabV3+ model and
use the Cityscapes dataset [31] as the training set, which can complement the Lost and
Found dataset to a certain extent.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 16 
 

  
(a) (b) 

Figure 4. Uncertainty degree distribution of general semantic segmentation: (a) general semantic 
segmentation; (b) uncertainty degree distribution. 

The flow of UOD-Un is shown in Figure 5. Firstly, the general semantic segmentation 
is performed on the original image, and then the ROI is determined according to the de-
tection result of UOD-SS. Finally, the uncertainty degree of the pixels in this region is cal-
culated, and the threshold of the uncertainty degree is used to segment unexpected obsta-
cles. When performing general semantic segmentation, we also choose the DeepLabV3+ 
model and use the Cityscapes dataset [31] as the training set, which can complement the 
Lost and Found dataset to a certain extent. 

Input Image

UOD-SS

General Semantic 
Segmentation

ROI Selection

Threshold Selection

Output Image

 
Figure 5. The flow chart of UOD-Un. 

Entropy can describe the uncertainty of each possible event of the information source, 
so it is used as the measurement criterion of pixel uncertainty in this paper. The uncer-
tainty degree of the pixel i  in the input image is defined as follows: 

, ,
1

log
N

i i c i c
c

u p p
=

= − . (2) 

Among them, N  is the total number of classes; c is the class index; ,i cp  represents the 
prediction probability of the class c of the pixel i  in the image, which can be obtained 
by the Softmax layer of the semantic segmentation model. 

There is also a high uncertainty at the class boundary of the image, and this method 
may mark these pixels as an unknown class, resulting in a high false-positive rate of the 
segmentation results. Therefore, it is necessary to filter out these points that interfere with 
the detection results as much as possible. Given that unexpected obstacles are generally 
scattered in free space, the free space class and unexpected obstacle class regions detected 
by UOD-SS are first selected, and then the region is expanded by 3 pixels in each of the 
length and width dimensions of the image. The expanded region is used as the ROI of 
UOD-Un, so that the selected ROI can avoid the interference of the background, thereby 
minimizing the occurrence of false positives. 

According to the previous analysis, unexpected obstacles can be segmented by the 
uncertainty degree threshold, so it is very important to choose this threshold reasonably. 
An adaptive threshold selection method is proposed in this paper. Figure 6 shows the 
uncertainty degree distribution histogram of an image. The horizontal axis is the uncer-
tainty degree (u) represented by entropy, and the vertical axis is the frequency (f) of pixels 

Figure 5. The flow chart of UOD-Un.

Entropy can describe the uncertainty of each possible event of the information source,
so it is used as the measurement criterion of pixel uncertainty in this paper. The uncertainty
degree of the pixel i in the input image is defined as follows:

ui = −
N

∑
c=1

pi,c logpi,c. (2)

Among them, N is the total number of classes; c is the class index; pi,c represents the
prediction probability of the class c of the pixel i in the image, which can be obtained by
the Softmax layer of the semantic segmentation model.

There is also a high uncertainty at the class boundary of the image, and this method
may mark these pixels as an unknown class, resulting in a high false-positive rate of the
segmentation results. Therefore, it is necessary to filter out these points that interfere with
the detection results as much as possible. Given that unexpected obstacles are generally
scattered in free space, the free space class and unexpected obstacle class regions detected
by UOD-SS are first selected, and then the region is expanded by 3 pixels in each of the
length and width dimensions of the image. The expanded region is used as the ROI of
UOD-Un, so that the selected ROI can avoid the interference of the background, thereby
minimizing the occurrence of false positives.

According to the previous analysis, unexpected obstacles can be segmented by the
uncertainty degree threshold, so it is very important to choose this threshold reasonably.
An adaptive threshold selection method is proposed in this paper. Figure 6 shows the un-
certainty degree distribution histogram of an image. The horizontal axis is the uncertainty
degree (u) represented by entropy, and the vertical axis is the frequency (f) of pixels with
a certain uncertainty degree. The figure reflects the general distribution of uncertainty
degree. Considering that the number of pixels belonging to the known classes is large and
mainly distributed on the left, while the number of pixels belonging to the unknown class
is small and mainly distributed on the right, if the known classes and the unknown class
are regarded as two different sets, then the point with the loosest coupling between the two
sets should be selected as the threshold point for segmentation. According to this threshold
selection principle, first find the leftmost and rightmost frequency peak intervals in the
uncertainty degree distribution histogram (to avoid chance, the count of pixels in the peak
interval is required to be greater than 100), and then take the midpoint of the minimum
interval between these two peaks as the threshold, as shown by the red dotted line in the
figure. Finally, all the pixels whose uncertainty degree is higher than the threshold are
marked as an unknown class. The selection of the threshold is shown in Algorithm 1.
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Algorithm 1. The selection of the threshold algorithm.

Input: Un f : Uncertainty frequency distribution; N: Intervals quantity of uncertainty frequency
distribution; M(·): The function to find local maximum of frequency; C(·): The count of pixels in
the interval; min(·): The function to find the left endpoint of minimum interval
Output: Pl : Leftmost peak; Pr: Rightmost peak; T: Selected threshold
i = 1, j = N, l, r
1. Find the leftmost peak
while i ≤ N do

if Un f [i] = M(Un f ) and C
(

Un f [i]
)
> 100

Pl = Un f [i]
l = i
end if

i = i + 1
end while
2. Find the rightmost peak
while j > 0 do

if Un f [j] = M(Un f ) and C
(

Un f [j]
)
> 100

Pr = Un f [j]
r = j
end if

j = j − 1
end while
3. Determine the threshold
T = min(Un f [l : r]) + 0.05

3.3. Probabilistic Fusion (PF-SSUn)

Psychological research shows that human judgment and decision making is a com-
bination of a variety of information and gives results in a probabilistic way. For intelli-
gent vehicles, obstacle detection is also a judgment and decision-making process. The
UOD-SS and UOD-Un methods proposed in this paper detect unexpected obstacles from
the perspectives of semantic information and uncertainty information, respectively. The
two methods are independent of each other, so the fusion of the obtained results can bring
many new advantages. The Bayesian framework is suitable for decision inference based on
multi-factor probabilistic methods, which is more in line with the human brain’s judgment
and decision-making process than the methods of obstacle detection using single informa-
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tion. In this paper, it is used to fuse the results obtained by the above two independent
methods, and the probability that a pixel is an unexpected obstacle can be expressed as:

p(o) =
ppr · pSS · pUn(

ppr · pSS · pUn
)
+

(
1 − ppr

)
(1 − pSS)(1 − pUn)

. (3)

Among them, ppr represents the prior probability; pSS and pUn represent the probabil-
ity that the pixel is judged as an unexpected obstacle by UOD-SS and UOD-Un, respectively.
Finally, the judgment of whether the pixel is an unexpected obstacle depends on the
threshold of p(o).

pSS can be obtained directly from the Softmax layer of the network, and the Softmax
function can be expressed as:

So f tmax
(
zj
)
=

ezj

∑N
c=1 ezc

. (4)

Among them, zj represents the output of the previous stage unit of the class j; c is the
class index; N is the total number of classes. Therefore, pSS can be expressed as:

pSS =
ez3

ez1 + ez2 + ez3
, (5)

where z1, z2, and z3 represent the output of the previous stage unit of background class,
free space class and unexpected obstacles class, respectively.

pUn can be obtained according to the degree of deviation between the uncertainty
degree of each pixel and the threshold. Assuming that the probability at the threshold
is 50%, it can be expressed as:

pUn =
1

1 + exp(ut − ui)
. (6)

Among them, ut represents the value of the uncertainty degree at the threshold; ui
represents the uncertainty degree of pixel i.

4. Experiment and Result Analysis
4.1. Experimental Environment and Parameter Settings

The experiment is based on the deep learning framework Pytorch, and the program-
ming language is Python 3.6. In terms of experimental hardware, the CPU is Intel(R)
Core(TM) i7-10750H CPU @ 2.60 GHz, the memory is 16 GB, the GPU is Nvidia Geforce
RTX 2060, the video memory is 6 GB, and the CUDA version is 10.2. The prior proba-
bility ppr was set to 0.5, and the final decision threshold of p(o) was set to 0.3. During
training, the batch size was 8, the initial learning rate of the network was set to 0.0001,
and the total iteration was 50. Adam and the cross entropy were used as the network
optimization method and the loss function, respectively. The network was trained using a
pretrained model.

4.2. Datasets and Preprocessing

The semantic segmentation parts of UOD-SS and UOD-Un were trained using the
Lost and Found and the Cityscapes datasets, respectively, and the test set in the Lost and
Found dataset was used as the test images. The Lost and Found dataset contains about
2100 images taken from various street scenes with pixel-level semantic annotations. The
Cityscapes dataset has 5000 images of urban driving scenes, including many classes, and
provides corresponding semantic annotations. Examples of the two datasets are shown in
Figure 7. Before the algorithm was implemented, the image was resized from 2048 × 1024
to 1024 × 512, and pre-processing operations such as random cropping, color dithering,
and random horizontal flipping were performed on the image.
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4.3. Evaluation Criteria

For the detection task, the detection rate and the false-positive rate are two important
indicators of the detection effect, which reflect the detection method’s ability to cover and
judge the objects, respectively. In this paper, pixel-level criteria were used to evaluate the
detection performance of the algorithm for unexpected obstacles. Pixel-wise Detection Rate
(PDR) can be expressed as:

PDR =
CDPuo

APuo
. (7)

Among them, CDPuo is the number of pixels that are correctly detected as unexpected
obstacles; APuo is the number of pixels of real unexpected obstacles. Pixel-wise False-
Positive Rate (PFPR) can be expressed as:

PFPR =
IDPuo

APnuo
. (8)

Among them, IDPuo represents the number of pixels that are incorrectly detected as
unexpected obstacles; APnuo is the number of pixels of real non-unexpected obstacles.

4.4. Analysis of Results

To evaluate the detection effect of our fusion method (PF-SSUn) for unexpected obsta-
cles, PF-SSUn was compared with the following three methods: (1) Stixels [4]: It is a classic
obstacle detection method based on stereo vision, which can describe the objects with
multi-layer stixels; (2) UOD-SS (Unet): The semantic segmentation model DeepLabV3+ of
UOD-SS was replaced by Unet to compare the ability of these two semantic segmentation
models to detect unexpected obstacles; (3) UOD-SS.

Table 1 lists the performance indicators of PF-SSUn and the above three methods. As
can be seen from the table, the Stixels method has the lowest detection rate and the highest
false-positive rate, and the detection effect is far worse than the other three methods. This
shows that the Stixels method based on stereo vision has obvious disadvantages in the
detection of unexpected obstacles compared to the semantic segmentation method. This is
mainly due to the fact that stereo vision methods are much more affected by the sizes and
shapes of obstacles than semantic segmentation methods. UOD-SS (Unet) is worse than
UOD-SS in both detection rate and false-positive rate indicators, and it is difficult to meet
traffic safety requirements. UOD-SS has better performance indicators, which is mainly
due to the ASPP structure of DeepLabV3+ and the introduction of atrous convolution to
improve its detection ability. Compared with UOD-SS, PF-SSUn significantly improves the
detection rate of unexpected obstacles. Although the false-positive rate also increased to a
certain extent, considering the improvement in detection rate, the cost is acceptable.
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Table 1. Comparison of performance indicators of the four detection methods.

Method PDR (%) PFPR (%)

Stixels 52.41 4.11
UOD-SS(Unet) 63.23 0.45

UOD-SS 83.58 0.30
PF-SSUn 92.33 0.37

From a safety point of view, to a certain extent, we pay more attention to the improve-
ment of the detection rate. Therefore, two scenes in the Lost and Found dataset are selected
to test the frame-by-frame detection rate of the above methods, and the results are shown
in Figure 8 (the distance of obstacles is from far to near). Since the Stixels method has signif-
icantly the lowest detection performance, only three other semantically relevant methods
are shown here. It can be seen that the detection rates of the three methods are relatively
high at close range, and the performance is stable. However, the detection capability of
PF-SSUn has been significantly improved at long distances. Especially in scene 2, which
is more difficult to detect, UOD-SS (Unet) can hardly detect long-distances unexpected
obstacles, and the detection rate of UOD-SS is also significantly lower, but PF-SSUn has
always maintained a stable and relatively high detection rate. This is mainly because it is
very difficult to detect unexpected obstacles at a long distance. PF-SSUn makes up for the
detection omission of UOD-SS and improves the detection rate by probability fusion of
UOD-SS and UOD-Un.
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Figure 8. Comparison of frame-by-frame detection rate of the three semantically relevant methods:
(a) Scene 1; (b) Scene 2.

Figure 9 shows the PDR over PFPR scatter plots for the three methods in the two
scenes. A high detection rate and low false-positive rate (upper left corner of the figure)
can reflect the best detection performance. As shown in the figure, the marked points of
PF-SSUn are closer to the upper part of the figure than the other two methods, and only a
few points are located on the right side of the figure due to the increase in the false-positive
rate, but their values are always very small (less than 1%). Due to the low detection rate
of UOD-SS (Unet), many points appear at the bottom of the figure. The marked points of
UOD-SS are closer to the upper part of the figure than UOD-SS (Unet), but there are still
many points scattered in the middle of the figure.

To evaluate the detection effect of different fusion strategies, PF-SSUn was compared
with the following four methods: (1) UOD-SS; (2) UOD-Un; (3) Fusion-And: Both methods
detect a pixel as an unexpected obstacle, then it is determined that the pixel is an unexpected
obstacle; (4) Fusion-Or: At least one method detects the pixel as an unexpected obstacle,
and the pixel is determined to be an unexpected obstacle.
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Table 2 lists the performance indicators of PF-SSUn and the above four methods. It can
be seen from the table that the detection rate of both independent methods is lower than
that of PF-SSUn. When used as an independent method to detect unexpected obstacles,
UOD-Un performs unsatisfactorily in detection rate and false-positive rate. However,
because UOD-Un uses a completely different detection method from UOD-SS, and the
uncertainty information it uses is quite different from semantic information, it plays a
good supplementary role to the latter. In terms of fusion strategy, Fusion-And focuses
on reducing the false-positive rate, so it achieves the lowest false-positive rate, but the
detection rate indicator is very poor. Fusion-Or achieves the highest detection rate, but
it also has the highest false-positive rate. The detection rate of PF-SSUn also achieves
very good results (only slightly lower than Fusion-Or), but the false-positive rate is only
one-ninth of Fusion-Or. This shows that our fusion strategy maintains a relatively low
false-positive rate while focusing on improving the detection rate. Figure 10 shows the
scatter plots of PDR over PFPR for different fusion strategies in two scenes. As can be seen
from the figure, the points of PF-SSUn are concentrated in the upper left area, while the
points of Fusion-And and Fusion-Or produce downward and right deviations, respectively.

Table 2. Comparison of performance indicators between independent method before fusion and
different fusion strategies.

Method PDR (%) PFPR (%)

UOD-SS 83.58 0.30
UOD-Un 62.43 3.17

Fusion-And 52.69 0.08
Fusion-Or 93.32 3.39
PF-SSUn 92.33 0.37
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Figure 11 shows the comparison between the detection results of the three methods
proposed in this paper with the ground truth on three images in the test set. These three
images are selected because they have great differences in scene, lighting, and appearance
of unexpected obstacles, and the distance is very long. The detection results of the last row
are obtained by the general semantic segmentation in Section 3.2 and the superposition
of PF-SSUn results. The unexpected obstacle in the image on the left column is a toy car.
It can be seen from the enlarged image that UOD-SS has detected a part of the toy car,
while UOD-Un performs better. The fusion method (PF-SSUn) embodies the advantages of
UOD-Un in this unexpected obstacle detection. The middle column image contains three
unexpected obstacles. UOD-SS misses many areas due to the long distance of obstacles.
Although there are more false-positive pixels in the detection results of UOD-Un, it detects
most of the unexpected obstacle areas. The detection results after fusion cover most areas
of unexpected obstacles, and the false-positive pixels are significantly reduced compared
to UOD-Un. Although there are still many false-positive pixels in the image, considering
that the unexpected obstacles in this column of images are far away and small in size, and
the detection task is very difficult, it can still be said that PF-SSUn achieves the desired
detection effect. The image in the right column contains two unexpected obstacles. Both
UOD-SS and UOD-Un have many missed pixels, and PF-SSUn fills these missed areas
through Bayesian probability fusion.
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itive pixels in the detection results of UOD-Un. Although the fusion method can remove 
some of them, the remaining pixels still have a certain effect on the final false-positive rate. 
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more powerful semantic segmentation network can be designed, it may improve the de-
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5. Conclusions

In order to improve the environment perception ability of ADAS, this paper proposes
an unexpected obstacle detection method based on Bayesian probabilistic fusion. Firstly,
an unexpected obstacle detection method based on semantic segmentation (UOD-SS) is
proposed. This method highlights the contextual information of unexpected obstacles
by reasonably dividing the scene classes so that the semantic segmentation model can
more easily identify unexpected obstacles. Furthermore, we propose an uncertainty-based
unexpected obstacle detection method (UOD-Un), which uses an adaptive threshold to
segment known and unknown classes. Finally, the detection probabilities provided by the
above two methods are fused through the Bayesian framework, and the obtained result
reflects the joint decision making based on various information. Experiments implemented
on the public dataset Lost and Found show that the pixel-level detection rate and false-
positive rate of our method are 92.33 and 0.37%, respectively. Even in the detection of
long-distance and small-size unexpected obstacles, our method has achieved good detection
results. It can be seen from the experimental results that there are many false-positive pixels
in the detection results of UOD-Un. Although the fusion method can remove some of them,
the remaining pixels still have a certain effect on the final false-positive rate. Therefore, our
future work is to study how to reduce the false-positive rate of UOD-Un. In addition, since
the core of this paper is two unexpected obstacle detection methods and their fusion, the
existing DeepLabV3+ network is selected for semantic segmentation. If a more powerful
semantic segmentation network can be designed, it may improve the detection effect. This
is also our future work.
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