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Abstract: Open platform communications (OPC) unified architecture (UA) is a communication
standard increasingly used in industrial automation systems to enable the exchanging of control and
management data between distributed entities. This paper proposes the design of an OPC-UA agent
to enable UA information service and client functionalities in legacy programmable logic controllers
(PLCs). The agent runs on a separate machine connected to the PLC using a dedicated link and
maintains shared memory for certain variables in the PLC. Based on the periodically synchronized
variables, the agent services the OPC-UA information model and executes client function blocks on
behalf of the PLC. One important design feature is the remote procedure call of IEC 61131-3-based
function blocks using synchronized variables. This allows the standard OPC-UA client functions to
be used in existing PLCs which only support numeric types and do not support strings or complex
structures. To validate the proposed design, we implement an agent prototype and demonstrate the
successful monitoring and control of an industrial robot controller via OPC-UA. Through experiments,
we evaluate the performance of UA functions in terms of the latency of read services for an increasing
number of items. The evaluation results are believed to provide useful insights into agent-based
approaches for integrating legacy PLCs into the OPC-UA framework.

Keywords: open platform communications; unified architecture; programmable logic controller;
remote procedure call; agent

1. Introduction

With the advances of industrial Internet-of-Things (IoT) in recent years, open platform
communications (OPC) unified architecture (UA) is attracting attention as a communication
technology for automatic monitoring and control between machines. OPC-UA is a commu-
nication standard for the exchanging of control and management data between distributed
entities in industrial automation systems [1]. It is standardized by IEC 62541 [2] and speci-
fies reliable, secure, and interoperable communication between various automation devices
such as programmable logic controllers (PLCs), human–machine interfaces (HMIs), and
supervisory control and data acquisition (SCADA) systems. OPC-UA offers numerous
advantages [3,4]. Its functionality is platform-independent and scalable. It supports com-
prehensive information modeling and allows for the design of service architecture with
complex hierarchical data structures [5]. Moreover, OPC-UA provides enhanced security
for session encryption and authentication.

To use OPC-UA in specific applications, each application domain has an associated
companion specification [6]. The OPC-UA for IEC 61131-3 specification presents an infor-
mation model for PLCs and defines function blocks for using OPC-UA services in PLC
programs [7,8]. The information model describes the configuration, resources, tasks, and
programs of an IEC 61131-3-based software in terms of OPC-UA objects, variables, and
methods, and enables the PLC to be monitored and used by OPC-UA clients. PLCs may
also need the OPC-UA client functionality to perform data exchanges horizontally with
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other PLCs and/or vertically with higher-level machines such as SCADA and HMIs. The
specification of an OPC-UA client for IEC 61131-3 defines function blocks as those used for
connecting to an external OPC-UA server, accessing data either synchronously using read
services or asynchronously using a subscription, and calling methods on remote servers.

Despite the advantages of OPC-UA, there are legacy PLCs with a significant instal-
lation base that cannot benefit from the technology [3,9–12]. This is because they do not
support TCP/IP or lack the built-in computational functions required by IEC 61131-3 due
to limited hardware or software capabilities. Typically, programs in legacy controllers
are written in instruction lists (ILs) or ladder diagrams (LDs) that only support numeric
types and do not support string or complex structure types. Even if the PLC has the
necessary computing resources, including the OPC-UA, functionality in the PLC can have
catastrophic computational side effects. Since PLCs perform real-time control functions,
interference by the additional functions must be thoroughly investigated to ensure that the
timing constraints of the control functions are satisfied [13,14]. Therefore, the approach
of having a dedicated agent running OPC-UA on a separate machine could be a viable
solution for these legacy systems.

This paper proposes the design of an OPC-UA agent to enable information service
and client functionalities in legacy PLCs. The agent runs on a separate machine connected
to the PLC using a dedicated link, and maintains shared memory for certain variables in
the PLC. Based on the periodically synchronized variables, the agent services the OPC-
UA information model and executes client function blocks on behalf of the PLC. One
important design feature is that, using synchronized variables, the agent implements
simplified remote procedure calls (RPC) of IEC 61131-3-based function blocks. This allows
the standard OPC-UA client API to be used in existing PLCs that do not support strings
or complex user-defined structures. To validate the proposed design, we implement an
agent prototype and demonstrate the successful monitoring and control of an industrial
robot controller via OPC-UA. Through experiments, we evaluate the performance of UA
functions in terms of the latency of the read service as the number of items increases.

The remainder of the paper is organized as follows. In Section 2, we describe the
OPC-UA specification and the IEC 61131-3 companion profile. In Section 3, we explain the
design of an OPC-UA agent for legacy PLCs, and in Section 4, we present the evaluation
results. Section 5 provides the conclusions of the paper.

2. Background
2.1. OPC Unified Architecture

OPC-UA defines an information model and a set of abstract services and describes
the mapping to implementation technologies, such as binary coding over TCP/IP or XML
over HTTP [15,16]. It is therefore platform-independent and supports different stack
implementations to interoperate with each other in different programming and runtime
environments. The client-side OPC-UA stack provides a programming interface, and the
client application requests service by using the interface. The stack then generates and
transmits a request message based on the service definition [17]. When the server-side
OPC-UA stack receives the message, it replies with a response message containing data
provided by the server application.

An information model is defined by nodes and references [3,16,18]. Each node has a set
of attributes. A node class describes the node type and specifies the node attributes. Several
base node classes are defined in the standard: objects are used to represent real-world
entities, and variables and methods typically belong to objects and represent values and
services, respectively. A reference describes the relationship between nodes. In OPC-UA,
the node hierarchy is called the address space and is application-specific.

The OPC-UA service defines several functions for exchanging data between dis-
tributed devices, including service discovery, session establishment, node management,
synchronous data access, and asynchronous data update [16]. In OPC-UA, variables are
usually modeled as attributes, and read services are primarily used to access the attributes of
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nodes synchronously. This service allows the client to specify a list of nodes and attributes
and perform bulk reads with a request. It is generally the preferred service for reading
variables. Another sophisticated method of data collection is to use a subscription service
to receive the asynchronous updates of variables. A client creates a subscription with the
desired publishing interval and then creates monitored items within the subscription by
specifying node and attribute IDs, sampling intervals, and filters. The sampling interval
defines how often the server checks for changes to variables and the filter specifies the
conditions in which to put the sampled value into the data queue. The values in the queue
create notifications in the next publishing cycle. When the server receives a publish request
from the client, the notification then generates a response that delivers the updates.

2.2. OPC-UA for IEC 61131-3

A PLC is a computing system for industrial control and automation and has been
standardized by IEC 61131 [5]. A PLC replaces the hardware such as relays, timers, and
counters in conventional control panels with software. It receives input from sensors,
processes control logic, and transmits outputs to external devices such as motor drives.
IEC 61131-3 defines the model of PLC software, and describes the software in terms of
configurations, resources, tasks, and program organization units (POUs) [19–21]. A configuration
describes the hardware such as processors and memory and includes one or more resources.
A resource can be considered to be a processing facility capable of executing PLC programs.
A resource may contain one or more tasks, where a task controls the execution of a program
and/or a set of function and function blocks. A task can be executed periodically or when a
specified trigger, such as a variable change, occurs. A POU is the basic building block that
contains data structures and algorithms. It can be a program, a function, or a function block.
Generally, a program consists of functions and function blocks that pass data arguments.

The specification of OPC-UA for IEC 61131-3 defines server and client technologies
for enabling OPC-UA communication in PLC software [7,8]. It explains the information
model to describe the IEC 61131-3 software architecture and defines important object
types that represent tasks, configurations, resources, and POUs. The OPC-UA client spec-
ification defines IEC 61131-3-compliant function blocks that allow PLC software to act
as an OPC-UA client and communicate with external OPC-UA servers. These technolo-
gies enable the platform-independent, scalable, and secure communication of PLCs in
industrial automation.

Figure 1 shows the OPC-UA information model for PLCs and depicts the main object
types and their relationships. The IEC 61131-3 object types derive from OPC-UA core and
device integration (DI)-level object types and include CtrlTaskType, CtrlConfigurationType,
CtrlResourceType, and CtrlProgramOrganizationUnitType. The CtrlTaskType object type
defines a PLC task with an execution cycle (Interval), scheduler priority (Priority), and
trigger event (Single). When a trigger event is set, the task runs on the rising edge of the
event regardless of its period. CtrlConfigurationType represents the PLC configuration
and includes global variables (GlobalVars) and resources (Resources). CtrlResourceType
expresses PLC resource information. It includes global variables, task information (Tasks),
and programs (Programs). CtrlProgramOrganizationUnitType defines a POU and repre-
sents a program (CtrlProgramType) or function block (CtrlFunctionBlockType). Each object
can have an input variable (InputVar), an output variable (OutputVar), or an input and out-
put variable (InOutVar). Relationships between objects are defined by the reference types
HasSubType or HasComponent, which represent derivation and containment relationships,
respectively. The application-level objects are defined based on the object types.

The client function blocks support essential OPC-UA services, including service dis-
covery, attributes, methods, monitored items, and subscription services. The function
blocks for IEC 61131-3 are summarized in Table 1. The function blocks differ from the
original OPC-UA API in that they use handles when nodes need to be specified for read
and write operations. Taking UA_ReadList as an example, Figure 2 shows a diagram
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representation of a function block with types and names of input (left), output (right), and
in–out (both) arguments.
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Table 1. OPC-UA client function blocks for IEC 61131-3.

Function Block Name Description

UA_Connect Create a connection of OPC-UA session.
UA_Disconnect Close a connection of OPC-UA session.
UA_NamespaceGetIndexList Acquire a list of indexes for the given namespaces.
UA_ServerGetUriByIndex Acquire the server-URI with a given index.
UA_ServerGetIndexByUriList Acquire a list of indexes for the server-URIs.
UA_TranslatePathList Acquire a list of node IDs for the node paths.
UA_NodeGetHandleList Acquire node handles for the given node IDs.
UA_NodeReleaseHandleList Release a set of node handles.
UA_NodeGetInformation Acquire the node information.
UA_SubscriptionCreate Create a subscription.
UA_SubscriptionDelete Delete a subscription.
UA_SubscriptionModify Modify publish parameters of a subscription.
UA_SubscriptionProcessed Check if monitored items have been published.
UA_MonitoredItemAddList Add nodes for monitored items.
UA_MonitoredItemRemoveList Remove monitored items from a subscription.
UA_MonitoredItemModifyList Modify monitored items.
UA_MonitoredItemOperateList Update the values of monitored items.
UA_ReadList Read values of a list of nodes.
UA_WriteList Write values of a list of nodes.
UA_MethodGetHandleList Acquire handles for method calls.
UA_MethodReleaseHandleList Release method handles.
UA_MethodCall Call a method routine.
UA_Browse Navigate through OPC-UA address space.
UA_EventItemAdd Create events in a subscription.
UA_EventItemOperateList Acquire a list of event information.
UA_EventItemRemoveList Remove events from a subscription.
UA_HistoryUpdate Insert or update data in the historical database.
UA_ConnectGetStatus Acquire the connection status.

The use case of function blocks when using UA_ReadList or UA_WriteList to ac-
cess data on a remote server is shown in Figure 2 [8]. The PLC software first calls
UA_Connect to connect to the server and open an OPC-UA session. If it needs the infor-
mation model, it uses UA_NamespaceGetIndexList to read the namespace, and it calls
UA_NodeGetHandleList with the node ID as an argument to acquire the handle of the
node to read or write. The UA_ReadList or UA_WriteList function block is then used
to perform a read or write operation using the node handle. When the data transfer is
complete, UA_NodeReleaseHandleList deallocates the node handle and UA_Disconnect
closes the session and terminates the connection.

2.3. Related Works

Thanks to its advantages over its predecessor, OPC Classic, OPC-UA has been used in
a variety of industrial applications [4,22–24]. It has been used for the autoconfiguration of
real-time Ethernet (RTE) systems [22]. A universal device discovery mechanism was intro-
duced, and it was demonstrated that the parameters of an RTE system can be configured
automatically. An OPC-UA-based information system was also proposed for condition
monitoring [4]. Based on OPC-UA, an extensible architecture has been developed to provide
device status information from heterogeneous field devices and sensors to enterprise-level
services. A proof-of-concept implementation was presented with a case for the monitoring
of devices in a mining environment. Device information collection using OPC-UA was
also utilized for the purpose of the optimization of manufacturing processes [23]. OPC-UA
was used to model device-level information, and a set of services were constructed to
solve a constraint satisfaction problem for production plan computation. Recently, it has
been shown that the comprehensive information-modeling capability of OPC-UA can be
used to realize the plug and play of cyber–physical system (CPS) components [24]. The
hardware implementation of OPC-UA has been proposed to enable OPC-UA support in
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embedded field devices such as sensors and actuators [25,26]. The extensions of OPC-UA to
support representational state transfer (REST), a popular architecture style for distributed
applications, have also been studied [27].

In recent years, with increasing interest in time-sensitive networking (TSN), methods
of utilizing OPC-UA for real-time communication have been actively studied [28]. A
practical implementation of the OPC-UA TSN communication architecture was presented
for a manufacturing system [29] and a static timing analysis of OPC-UA pub–sub has been
carried out [14]. A simulation study has been conducted for using OPC-UA pub–sub and
TSN for field-level hard real-time communication [30], and TSN traffic shaping has been
proposed for OPC-UA field devices [31].

Efforts have been made to utilize OPC-UA in legacy devices and various environ-
ments [6,9–11,16,32,33]. Wrappers and proxies are an approach for migration from OPC
Classic to modern OPC-UA systems [10]. An OPC-UA wrapper is a UA server with a Clas-
sic client interface which allows UA clients to access a Classic server, whereas an OPC-UA
proxy is a UA client with a Classic server interface that allows a Classic client to access
a UA server. Some studies have proposed a standalone OPC-UA wrapper to minimize
the impact on existing servers and have analyzed the effect of parameters such as number
of items, publish interval, and sampling interval on performance [5]. For the integration
of legacy devices, an approach using the OPC-UA companion model for ISA95 has been
proposed [9]. A new layer based on OPC-UA was designed to map field device data to an
ISA95-based information model and ensure the interoperability of an industrial CPS. The
implementation of an OPC-UA interface for legacy PLC-based automation systems using a
cloud computing service has also been studied [11]. In practice, for application in a specific
field, the creation of an OPC-UA companion specification requires a cross-domain collabo-
rative modeling process, which often results in the creation of an inconsistent set of nodes.
Studies have shown that model-based development using the Eclipse modeling framework
is effective in resolving inconsistencies [33]. In an industrial CPS, model interoperability is
crucial to manufacturing intelligence. A recent study proposed an OPC-UA compatible in-
terface to ensure the interoperability of data analytics across heterogeneous devices [6]. The
interface is designed to enable the exchange of predictive model markup language (PMML),
a domain-independent standard for representing XML-based data analytics models via
OPC-UA.

Some works carried out performance evaluation of OPC-UA. The impact of OPC-UA
parameters was analyzed for read and subscription services [15], and the assessment of dif-
ferent OPC-UA implementations has been performed in industrial IoT-based measurement
applications [32]. Recently, the performance of OPC-UA has been evaluated and compared
with MQTT (Message Queuing Telemetry Transport) and CoAP (Constrained Application
Protocol) in a study on the performance analysis of IoT protocols [34].

There have been studies to enable OPC-UA in PLCs [11,35]. However, there have been
little work done to support OPC-UA in legacy PLCs that lack the functional support or
computational resources required for OPC-UA. This study is the first, in our knowledge,
to propose an agent architecture that enables the use of OPC-UA client API based on
the IEC 61131-3 standard in PLCs that do not support strings or complex user-defined
structures [36]. In our work, we present the details of agent design and the results of
experimental evaluation using prototype implementations. We believe that this work
provides useful insights into agent-based approaches for integrating legacy PLCs into the
OPC-UA framework.

3. OPC-UA Agent for Legacy Programmable Logic Controllers

Our agent design consists of three components running concurrently that share mem-
ory with each other: the legacy gateway, UA server, and UA client. Figure 3 shows the
organization of an OPC-UA agent. The legacy gateway maintains images of certain PLC
variables in the shared memory area. It communicates with the PLC and synchronizes the
variable values. The UA server manages the IEC 61131-3 information model of the legacy
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controller and handles service requests from external UA clients. The UA client contains
the OPC-UA client stack and is responsible for the remote execution of function blocks [16].
When it receives an RPC request from the PLC, it identifies the requested function block,
constructs arguments from the shared variables, and starts executing the corresponding
API function in the UA client stack. When the UA client completes the function, it stores
the output parameters and return values in the shared memory and prepares the RPC
response. The response is later transferred by the gateway to the legacy controller. The
client functions in the agent support both the synchronous and asynchronous collection of
data from external OPC-UA servers using read and subscription services, respectively.
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3.1. OPC-UA Server

For the UA server to access the user variables defined in the PLC program, the agent
maps all application variables to the shared memory. While the PLC program is running,
the legacy controller periodically sends variable values to the UA agent, and the shared
memory is updated accordingly. So, when an external UA client requests synchronous data
access such as read or write to the agent, the UA server can immediately access the shared
memory to service the request. Similarly, when an external client requests a subscription-
based asynchronous update service, the UA server can create monitored items, sample
variable values, and generate publish responses, based on the shared memory.

The UA server provides access to the information model and handles various services
for external clients. An external client may request runtime information about a PLC
program and some variables such as, for example, actual motor positions and I/O data. To
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create an information model for the PLC, users provide an XML file of the PLC software
structure that describes the configuration, resource, task, and POUs. Figure 4 shows an
XML example for the PLC software structure and the OPC-UA information model built
from it. For instance, the Proj_OPC object instance of CtrlConfigurationType node class
in the figure has Resource1 object of CtrlResourceType class, and Resource1 has Task1
(CtrlTaskType) and Main_prog (CtrlProgramType) object instances. The Main_Prog object
contains the local variables defined in the PLC program and the Task1 object has the Interval
and Priority instances of the controller task. During initialization, the UA server parses the
XML file and builds a corresponding IEC 61131-3 information model.
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3.2. Legacy Gateway and Shared Memory

The gateway is responsible for maintaining images of certain PLC variables in a shared
memory area. In general, PLCs provide a way for external hosts to access PLC variables
for monitoring or programming purposes. The legacy gateway uses a dedicated link to
communicate with the PLC and synchronizes the shared memory to keep variable values
up to date. Shared memory is basically used to read and write node values in the IEC
61131-3 information model and is periodically synchronized with the PLC memory. In
addition, the shared memory in our design stores the input and output parameters of UA
function blocks, and is used collaboratively by the agent and PLC during the RPC process.

For external access, some PLCs support standard protocols such as EtherNet/IP,
Profinet, or Modbus TCP/ UDP [24,37], while others have proprietary communication
links and manufacturer-specific protocols. To address the diversity issue, we define a
gateway messaging protocol that is used to communicate with the agent in a platform-
independent manner.

Figure 5 shows the structure of a gateway message. The byte at offset 0 is the message
type, and the values of 0 and 1 mean “write to” and “read from” the PLC, respectively. The
byte at offset 1 determines the memory type: type 0 means the integer memory, while type
1 means the memory for floating-point numbers. The data address of the message indicates
the address from which to start reading or writing in the shared memory. The data size
at offset 6 is the number of data items, which is followed by data to be read or written in
the message. Depending on the target PLC, the gateway protocol is implemented using a
specific networking mechanism. It is noteworthy that the agent is designed to service more
than one PLC if it has sufficient memory.
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3.3. OPC-UA Client and RPC

In IEC 61131-3-based systems, users can write OPC-UA client codes using either textual
programming languages such as structured text (ST) and instruction list (IL), or graphic
languages such as the ladder diagram (LD), function block diagram (FBD), and structured
flow chart (SFC) [5]. Legacy PLCs usually accept a single program file for execution and
require a translator to convert the IEC 61131-3 code files into a PLC-executable program.
Figure 6 shows the procedure. Many legacy controllers support only numeric variable
types, i.e., bool, integer, and real types, and do not support derived or complex types such
as array or structure. To support the parameters of types other than numeric types, the
translator in our design generates VAR_INPUT.json during the conversion process and
stores input values for such non-numeric parameters of OPC-UA client functions. For
example, the ServerEndPointUrl input in UA_Connect (see Figure 2) specifies the URL or
IP address of the OPC-UA server the program will connect to, and the VAR_INPUT.json
file stores the address value for ServerEndPointUrl.

The example in Figure 7 shows (a) an OPC-UA client application written in IEC 61131-3
ST and (b) the corresponding program converted into a PLC-executable script. The program
receives the target position from an external OPC-UA server and operates a single-axis
motor drive connected to the legacy controller. Lines 1-11 in Figure 7a define the variables
that will be used in the rest of the PLC procedure. Next, line 14 shows the program calling
UA_Connect to create an OPC-UA session with an external server. During the conversion
process, the address value for the server URL parameter is inserted into a table for the URL
parameters in VAR_INPUT.json. The index of the table entry is stored in the converted
program and later used by the UA agent to look up the argument value when UA_Connect
is called. When the connection is established, UA_NodeGetHandleList is called and a new
handle (_nHdls0) is created for the node that stores the target position (line 17). The legacy
controller then reads the target position from the server by calling UA_ReadList and stores
it in the _tarPos variable (line 20). The while loop in lines 19–24 repeats until the target
position received is greater than 200. Then the UA_ReadList function is no longer called,
and the connection with the server is closed using UA_Disconnect.
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For the RPC of OPC-UA client functions, a handshaking between the PLC and agent
has been defined using shared variables. Each client function λ is associated with two state
variables, cmd[λ] and stat[λ] (see Figure 6). The cmd[λ] variable is used by the PLC to
command the start and end of λ. The stat[λ] shows the status of λ and can be modified by
the agent. If cmd[λ] = 0 and stat[λ] = 0, it means that λ is idle and not being used by the
PLC. When PLC wants to call λ, it sets cmd[λ] = 1. The agent then acknowledges the call by
setting stat[λ] = 1 and starts executing λ. When λ completes, the agent sets stat[λ] to 2 or
3, to indicate that λ succeeded or failed, respectively. Then, the PLC resets cmd[λ] = 0 to
end, calling λ, and the agent confirms this and resets stat[λ] = 0. Figure 7b shows the PLC
program and explains RPC handshaking. For λ1 = UA_Connect, the shared variables I100
and I128 represent cmd[λ1] and stat[λ1], respectively (lines 9–10). For λ2 = UA_ReadList,
I117 and I145 refer to cmd[λ2] and stat[λ2], respectively. If cmd[λ2] = 0 and stat[λ2] = 0, the
input parameters are stored in I277~I279 (lines 16–23). Now, when X2, the variable mapped
to an external input device, is set to 1, the agent executes λ2. When λ2 finishes successfully
(cmd[λ2] = 1 and stat[λ2] = 2), the target position value (I208) is copied to _tarPos (lines
24–32).



Appl. Sci. 2022, 12, 8859 11 of 20Appl. Sci. 2022, 12, 8859 11 of 20 
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4. Performance Evaluation

This section evaluates the performance of OPC-UA functions by the agent. We investi-
gate the impact of the number of data items requested by external clients on the UA server.
We also measure the response time of the UA client function blocks called from legacy PLC
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programs. Response time is generally defined as the elapsed time from when a client sends
a request to when it receives a response from the server. It is mainly used as a measure to
evaluate the performance of OPC-UA servers with client–server architecture [5,15]. We
conduct the performance evaluation by focusing on the trend of response time according to
the number of items included in a request.

For performance evaluation, an experimental setup was configured using a legacy
controller, an OPC-UA agent, and a user host to be used as an external OPC-UA server
or client as shown in Figure 8. The OPC-UA agent and the user host were set up using
open62541, a widely used open-source OPC-UA stack [17,38]. It was chosen because it
supports almost all OPC-UA features and can be easily ported to any hardware or software
platform [39,40].
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4.1. Experimental Setup

When building the OPC-UA system, the user host was configured to have only core
namespace nodes, and the agent host was set up to support the information model for IEC
61131-3 and the UA client function blocks shown in Table 1. The legacy controller is an
embedded system that runs PLC programs without an operation system. It controls servo
motors and handles 20-channel digital I/O. Table 2 summarizes the specifications of the
hardware and software used in the experiment. The OPC-UA agent connects to the legacy
controller and the external UA server or client over the TCP/Ethernet network.

Table 2. Specifications of experimental system.

System Item Description

External OPC-UA system

CPU Intel(R) Core(TM) i5-9300H CPU @2.40 GHz
Main memory 8.00 GB DDR4 DRAM

Operating system Windows 11 Pro
OPC-UA software open62541 v1.1 by open62541 community project

Network Realtek Gaming GbE Family Controller

OPC-UA agent

CPU Intel(R) Core(TM) i5-8500 CPU @3.00 GHz
Main memory 8.00 GB DDR4 DRAM

Operating system Windows 10 Home

OPC-UA software Network
open62541 v1.1 by open62541 community project

Intel(R) Ethernet Connection(7) I219-V

Legacy controller
CPU Arm Cortex-R4F-based TI RM46L852 MCU

Main memory 16 MB flash memory and 32 KB NVRAM
Network WIZnet W5300 Ethernet controller



Appl. Sci. 2022, 12, 8859 13 of 20

Based on the OPC-UA agent design, we have defined performance metrics for the
OPC-UA server and client as shown in Figure 9. The UA server agent can handle various
services for accessing variables in the legacy PLC. One of those services, UA read service,
can be used synchronously to access data items by an external UA client. To evaluate the
read performance, we define the latency for read service (Lread) and the response time of
the UA server agent (Rserver). Lread means the time from when the external client sends a
read request to when the server agent sends a read response. Rserver is defined as the total
time required by the OPC-UA server to process the read service. So, the terms Lread and
Rserver can be calculated as:

Lread = t4 − t1, (1)

Rserver = t3 − t2. (2)
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The time t1 is when the external client sends a UA read request to the agent, and t2
and t3 represent the time when the agent receives the UA read request, and when it sends
the response to the external client, respectively. The t4 represents the time the external
client receives the response data sent by the UA server in the agent.

In the legacy controller, OPC-UA client function blocks can be executed along with
other PLC codes. For the evaluation of client function blocks, we define performance
measures considering the execution of RPC-based client functions. The response time of a
client function in the legacy controller, R f unc, is defined as the total time elapsed from when
the client function is called in the PLC task until when the RPC response from the OPC-UA
agent is delivered back to the PLC task. The time required to execute the client function in
the agent, Rclient, means the total time it takes to recognize the call request, process it, and
update the result in the shared memory. Similarly, Lclient, the latency for a client function,
is defined as the time it takes the UA client agent to receive its response after requesting a
service from the external server. So, R f unc, Rclient and Lclient are calculated as

R f unc = t′6 − t′1, (3)

Rclient = t′5 − t′2, (4)

Lclient = t′4 − t′3. (5)

The time t′1 is when the cmd[λ]-shared variable for the UA client function requested
by the PLC task is set to 1 and t′2 is the time when the OPC-UA client confirms the change
of cmd[λ]. The t′3 and t′4 represent the time when the OPC-UA client requests the necessary
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service to the external server and receives the response from the server, respectively. The
time t′5 is when the stat[λ]-shared variable is changed to indicate that the requested function
has completed execution, and t′6 is the time when the legacy controller acknowledges the
change of the stat[λ]-shared variable by the OPC-UA agent.

4.2. Read Service of OPC-UA Server

To evaluate the design of the OPC-UA server supporting the IEC 61131-3 information
model, we first verified the service of the OPC-UA agent using UaExpert from Unified
Automation GmbH [41]. It is a full-featured OPC-UA client software that offers a free
trial version. Figure 10 shows the information model for a PLC program developed for
verification when viewed using the UaExpert client. It can be seen that the information
model for the PLC program has been successfully created in compliance with the IEC
61131-3 specification. The information related to the PLC task has been created as the
Task1 object instance, and the variables defined in the PLC program are displayed in the
Main_prog object instance.
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Next, we investigate the latencies for read service and by the OPC-UA server. Let
Nread denote the number of requested data items when the read service is called by the
external client. Figure 11 shows the measurement results for Lread and Rserver according to
Nread. As Nread increases, Rserver increases almost linearly overall, while the Lread increase
is relatively small. In addition, we found that the per-item latency, Lread/Nread, decreases
rapidly as Nread grows to 2000. Therefore, given the trend of Lread/Nread, it turns out that
3000–4000 data items are best suited when an external client requests a read service from
the OPC-UA agent.
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4.3. OPC-UA Client Function Blocks for IEC 61131-3

To evaluate the OPC-UA client function block, the response time of the client function
called from the PLC program was measured. Among the 28 client APIs in Table 1, the
function blocks using the number of node items as an input argument were set to have
a value of 1000. The legacy controller was programmed to run a single PLC task with
a period of 1 ms. To handle the subscription service, the external server must set both
the publishing interval and sampling interval. The sampling interval is the rate at which
the external server checks the values of monitored items in the subscription. If a publish
request is sent from the OPC-UA client agent to the external server after the variable value
is changed, the response is delivered to the client in the next publishing cycle. In the
experiment, the external server set the publish interval to 500 ms and the sampling interval
to 250 ms, respectively.

Table 3 summarizes the measurement results of R f unc and Rclient for each client func-
tion block. The averages of R f unc for all function blocks were found to be very simi-
lar. However, the averages of Rclient were measured to be significantly different depend-
ing on the client function. This is because shared memory is updated periodically and
R f unc is strongly affected by the update cycle of shared memory. Therefore, it can be
seen that R f unc can be improved significantly by reducing the update cycle of shared
memory. It was also found that the Rclient of UA_Connect, which is used to establish
a new connection of an OPC-UA session, is large compared to other function blocks.
The response times for UA_MethodGetHandleList, UA_MethodReleaseHandleList, and
UA_EventItemOperateList are very small because the functions are executed without
communication with the external server.
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Table 3. Average response time of OPC-UA client functions.

Function Block
Function Response Time (ms)

(Average, Std. Dev.)
Rfunc Rclient

Function block without the
number of nodes argument

UA_Connect 79.09, 1.23 26.93, 8.09
UA_Disconnect 79.30, 0.47 3.90, 0.63

UA_TranslatePathList 78.25, 2.72 8.10, 1.75
UA_NodeGetInformation 77.13, 5.44 14.57, 5.94
UA_SubscriptionCreate 75.50, 7.97 1.70, 0.56
UA_SubscriptionDelete 75.05, 8.74 14.15, 1.08
UA_SubscriptionModify 77.28, 6.49 2.57, 0.46

UA_SubscriptionProcessed 74.68, 9.14 8.69, 3.59
UA_Browse 77.82, 6.69 5.85, 0.47

UA_ConnectGetStatus 77.41, 6.76 3.67, 1.77
UA_NamespaceGetIndexList 77.06, 6.41 4.20, 2.06

UA_ServerGetUriByIndex 77.00, 6.16 2.65, 0.09
UA_ServerGetIndexByUriList 75.70, 6.02 4.54, 0.40

Function block having the
number of nodes argument

UA_NodeGetHandleList 77.05, 6.19 3.76, 0.28
UA_NodeReleaseHandleList 76.20, 7.15 2.59, 0.26
UA_MonitoredItemAddList 77.29, 6.09 19.95, 0.89

UA_MonitoredItemRemoveList 77.47, 6.35 17.26, 6.35
UA_MonitoredItemModifyList 77.50, 6.56 27.00, 2.31
UA_MonitoredItemOperateList 76.80, 6.10 7.35, 0.33

UA_ReadList 76.00, 7.33 10.51, 1.87
UA_WriteList 78.05, 4.70 12.31, 0.48

UA_MethodGetHandleList 77.95, 4.53 0.97, 0.26
UA_MethodReleaseHandleList 78.61, 4.67 0.05, 0.02

UA_MethodCall 77.31, 5.52 8.08, 2.25
UA_EventItemAdd 77.67, 5.89 1.59. 0.35

UA_EventItemOperateList 76.24, 7.92 0.06, 0.01
UA_EventItemRemoveList 76.00, 7.14 1.81, 0.16

UA_HistoryUpdate 76.00, 7.33 11.38, 2.58

Among frequently used function blocks, the response time of UA_ReadList, UA_WriteList,
and UA_MonitoredItemAddList may vary depending on Nread, the number of node items.
In particular, it is interesting to analyze the trend of response times, Rclient and Lclient accord-
ing to the number of items, and discuss the time required for function execution and data
exchange with an external server. Figure 12 shows the experiment results. It can be seen
that R f unc is highly affected by the shared memory update cycle because Rclient and Lclient
are very small until Nread increases to 3000. As Nread increases gradually, it takes time to
dynamically create the requested nodes and update the response variables before and after
executing the client function, so it was observed that Rclient increases as rapidly as Nread
increases. The latency Lclient of UA_MonitoredItemAddList is always larger than the other
two function blocks. This is because more processing is required for data exchange such as
for the variables, status, and timestamps, as well as the node list in the subscription service.
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5. Conclusions

In this paper, we proposed the design of an OPC-UA agent. By running the OPC-UA
server and client functions on a separate machine, the agent allows legacy PLCs to support
an OPC-UA-based information service in a seamless and secure manner and to remotely
access external OPC-UA servers. The agent is connected to the PLC using a dedicated link
and maintains shared memory for specific variables in the PLC. Based on the periodically
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synchronized variables, the agent serves the IEC 61131-3 information model and executes
client function blocks on behalf of the PLC.

Our agent design consists of three components running concurrently that share mem-
ory with each other: the legacy gateway, UA server, and UA client. The legacy gateway
communicates with the PLC and maintains an image of certain PLC variables in a shared
memory area. The UA server manages the IEC 61131-3 information model of legacy con-
trollers and handles service requests from external UA clients. The UA client contains the
OPC-UA client stack and is responsible for the RPC of function blocks. The shared memory
is periodically synchronized with the PLC memory and is primarily used to read and write
node values in the IEC 61131-3 information model. In our design, the shared memory also
stores the state of the UA function blocks and their input and output parameters. For the
RPC of OPC-UA client functions, each client function is associated with two state variables,
and the agent and PLC collaboratively use the variables during RPC handshaking. It is
notable that the agent allows standard OPC-UA client functions to be used in PLCs that
do not support strings or complex structures. The translator in our design generates a
mapping table during the conversion process and stores input values for such non-numeric
parameters of OPC-UA client functions in the table. The index of the table entry is stored in
the converted program and later used by the UA agent to look up argument values when
the client function is called.

Through experiments, we have validated the OPC-UA agent design and evaluated
the performance of the OPC-UA server and client of the agent. We evaluated the read
service of the OPC-UA server according to the number of nodes and found that the most
appropriate number of nodes is about 3000 to 4000 in a single request. In the OPC-UA
client, we measured the response time for 28 client APIs and observed the response times
and latency depending on the number of nodes for the UA client functions frequently used
for data exchange.

In our future research, we will study how to further improve the response time and
latency in consideration of legacy controllers with different hardware and software. One of
the key findings is that the update cycle of shared memory has a large impact on response
time when the number of data items in a read or write is small. We will study a scheme
to maximize performance by automatically tuning the configurable parameters of the
OPC-UA agent, including the update cycle.
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