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Abstract: In object-oriented remote sensing image classification experiments, the dimension of the
feature space is often high, leading to the “dimension disaster”. If a reasonable feature selection
method is adopted, the classification efficiency and accuracy of the classifier can be improved. In this
study, we took GF-2 remote sensing imagery as the research object and proposed a feature dimension
reduction algorithm combining the Fisher Score and the minimum redundancy maximum relevance
(mRMR) feature selection method. First, the Fisher Score was used to construct a feature index
importance ranking, following which the mRMR algorithm was used to select the features with the
maximum correlation and minimum redundancy between categories. The feature set was optimized
using this method, and remote sensing images were automatically classified based on the optimized
feature subset. Experimental analysis demonstrates that, compared with the traditional mRMR,
Fisher Score, and ReliefF methods, the proposed Fisher Score–mRMR (Fm) method provides higher
accuracy in remote sensing image classification. In terms of classification accuracy, the accuracy of
the Fm feature selection method with RT and KNN classifiers is improved compared with that of
single feature selection method, reaching 95.18% and 96.14%, respectively, and the kappa coefficient
reaches 0.939 and 0.951, respectively.

Keywords: object-oriented; feature selection; Fisher Score; mRMR

1. Introduction

The spectra, textures, and geometry of high-resolution remote sensing images are very
rich, and different features describe ground objects from different angles [1,2]. To give full
play to the advantages of the spectral, texture, and geometric features of high-resolution
remote sensing images, object-oriented classification usually allows more features to
participate in classification. If all features participate in classification, the processing
speed is greatly reduced, while the classification accuracy is reduced in the case of limited
training samples [3,4]. Therefore, how to select the optimal features from the feature
space to participate in classification is the primary problem to be solved in the field of
high-resolution image object-oriented classification [5,6]. Feature selection is an important
task in data mining and machine learning and can effectively reduce the dimension of
data and improve the performance of algorithms [7,8]. With the increase in data, feature
selection has become an indispensable part of data processing [9]. The purpose of feature
selection is to remove irrelevant or redundant features, retain useful features, and obtain
appropriate feature subsets [10]. Feature selection methods can be divided into three
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series: filter, wrapper, and embedded [11]. Among them, filter methods directly evaluate
the statistical performance of all the training data, as this is independent of the subsequent
learning algorithm. Although it has the advantage of fast speed, it has a large performance
deviation from the subsequent learning algorithm and is not effective when considering
big data features [12]. Wrapper methods evaluate a subset of features with respect to the
training accuracy of the subsequent learning algorithm and have the advantage of small
deviation, but this type of method is large in size and involves significant computational
burden [13]. Embedded methods combine the advantages of the above methods to some
extent, but the difficulty with this type of method is the need to construct a suitable
function optimization model [14].

From the above analysis, it is clear that the various types of methods have limitations in
feature selection. In order to address these limitations, we selected the Fisher Score [15,16]
and mRMR [17] as filter methods for comparison with decision tree [18,19] and random
forest methods, respectively. The RF [20,21], k-nearest neighbors (kNN) and support
vector machine (SVM) approaches were combined for image classification. Filter methods
can be divided into unsupervised, semi-supervised, and supervised feature selection
methods [22,23]. At present, supervised feature selection methods include Relief-F [24],
mRMR, and Fisher Score. The Relief-F algorithm is a typical filtered feature optimization
algorithm, which calculates the weights of feature variables, ranks them, and then extracts
the optimal set of features. The Relief-F algorithm is highly efficient and suitable for
most data. The mRMR algorithm is a feature optimization method based on mutual
information theory, which is used to maximize the correlation between a selected feature
subset and the category, while ensuring that the redundancy between the selected features
is as small as possible [25,26]. The Fisher Score is an effective criterion for judging the
sample features, derived from Fisher’s linear discriminant, which finds feature subsets
in the feature set space that maximize the distance between different categories of data
points while minimizing the distance between those in the same category. Based on the
above, we chose to combine the Fisher Score and mRMR algorithm to downscale the feature
space of remote sensing images, where the Fisher Score is used to calculate the ratio of the
variance within each feature class and the variance between each feature class, while the
mRMR algorithm is used to filter out those features with the greatest relevance to the target
category and the least redundancy between them. Finally, the filtered features are used
as feature subsets. In this study, the feature dimension of the remote sensing image was
reduced by combining two feature selection methods, and the optimal feature subset was
obtained through feature dimension reduction, which can reduce the classification time of
classifier and improve the classification accuracy of the image. We also selected different
types of feature selection methods to verify the ability of the Fm feature dimensionality
reduction. In addition, we utilized a variety of classifiers and selected the one suitable for
Fm by comparing their overall classification accuracy.

2. The Study Area and the Data Source
2.1. Study Area

The study area is located in Guang’an area, Sichuan Province, China, between 106◦38′–
106◦41′ E and 30◦27′–30◦29′ N. According to a ground cover map of the study area, the
ground objects in this area can be classified as water, vegetation, bare ground, buildings,
and roads. The location of the study area is shown in Figure 1.
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Figure 1. Location and imaging of the study area: (a) administrative boundary map of Sichuan Prov-

ince; (b) pre-processed image. 
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used to generate multi-spectral remote sensing data with 1 m resolution. 

3. Research Methods 

Object-oriented classification methods based on feature selection mainly include the 

steps of image pre-processing, multi-scale segmentation, construction of initial feature 

space, and image classification. The technical process is depicted in Figure 2. Firstly, the 

image data were preprocessed based on ENVI5.3. The detailed preprocessing process is 

shown in Section 2.2. Secondly, eCognition9.0 was used to segment the image, and then 

some objects were selected as training samples to calculate the eigenvalues of spectral, 
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accuracy of the classified remote sensing images was evaluated using validation samples. 

Figure 1. Location and imaging of the study area: (a) administrative boundary map of Sichuan
Province; (b) pre-processed image.

2.2. Data Source and Preprocessing

The data came from the China Centre for Resources Satellite Data and Application
(https://data.cresda.cn/#/home, accessed on 10 January 2022). The data used were multi-
spectral and panchromatic ortho-corrected images obtained by the GF-2 satellite in August
2020, including multi-spectral data at 4 m resolution (four bands of red, green, blue and
near-red) and panchromatic data at 1 m resolution [27]. Radiation calibration, atmospheric
correction, geometric rectification, and alignment were performed on the CF-2 images
using the ENVI software, while the NNDiffuse Pan-Sharpening fusion algorithm was used
to generate multi-spectral remote sensing data with 1 m resolution.

3. Research Methods

Object-oriented classification methods based on feature selection mainly include the
steps of image pre-processing, multi-scale segmentation, construction of initial feature
space, and image classification. The technical process is depicted in Figure 2. Firstly, the
image data were preprocessed based on ENVI5.3. The detailed preprocessing process is
shown in Section 2.2. Secondly, eCognition9.0 was used to segment the image, and then
some objects were selected as training samples to calculate the eigenvalues of spectral,
texture and geometric features of each sample. Third, based on PyCharm software, five
feature selection methods were used to screen out feature subsets. Finally, four machine
learning classifiers were used to train the training samples and classify the images. The
accuracy of the classified remote sensing images was evaluated using validation samples.

https://data.cresda.cn/#/home
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Figure 2. Technical flow chart.

3.1. Build the Feature Space

Based on the ground object types in the study area as well as empirical knowledge,
the initial feature space constructed in this study contained 32 features. Spectral features
included the mean and standard deviation in bands 1–4 of the GF-2 images; geometric
features included the area, length, and width of objects; and texture features included
homogeneity, contrast, heterogeneity, angular second moment, entropy, and the correlation
between the gray-level co-occurrence matrix (GLCM) and gray-level difference vector
(GLDV). The feature information is shown in Table 1.

Table 1. Feature information.

Feature Type Feature Name Number of Features

Spectrum Mean value of bands 1–4, Standard deviation of
bands 1–4, Brightness, Max. diff, NDVI, NDWI 12

Geometry Area, Length, Width, Length/Width, Density,
Compactness, Border length, Number of pixels 8

Texture Homogeneity, Contrast, Dissimilarity, Ang. 2nd
moment, Entropy, Correlation, StdDev, Mean 12

3.2. Feature Selection

There are many kinds of image features. Choosing appropriate features can improve
the accuracy and efficiency of object-oriented automatic classification. The principle of
feature selection is to reduce the total quantity of data while not reducing the classification-
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related information by obtaining a small subset of features to achieve the purpose of feature
optimization.

(1) Fisher Score feature weight calculation. The Fisher Score provides an effective method
for feature selection, which mainly identifies features with strong performance. When it is as
small as possible within a class and as large as possible between classes, the optimal feature
subset can be selected [28–30]. Let the inter-class variance of the kth feature in the data set be
expressed by S(k)B . Then, the calculation formula is shown in Equation (1) [28,29].

S(k)
B =

c

∑
i=1

ni
n
(m(k)

i −m(k))
2

(1)

where c denotes the number of sample classes, n denotes the total number of samples, ni

denotes the number of samples in the ith class of the sample, m(k)
i denotes the mean of the

values taken by the samples in the ith class on the kth feature, and m(k) denotes the mean of the
values taken by the samples in all classes on the kth feature. Let the intra-class variance of the
kth feature on the data set be denoted by ni. Then, the formula is shown in Equation (2) [28,29]:

S(k)
w =

1
n

C

∑
i=1

∑
x∈wi

(x(k) −m(k)
i )

2
(2)

where x(k) denotes the value of sample x on the kth feature and wi denotes the ith class
sample. The weight coefficient of the kth feature on the data set is denoted by J f isher(k).
The calculation formula is shown in Equation (3) [28,30]:

J f isher(k) =
S(k)

B

S(k)
w

(3)

(2) mRMR filtering feature subset. The mRMR algorithm is a heuristic feature selec-
tion algorithm which calculates the correlation between features and attributes based on
an evaluation function, ranks the original features, and obtains a feature set with high
correlation and few redundant features [31–33].

The mutual information [34] is first calculated in order to determine the correlations
between features and between features and categories. The mutual information formula
for variables M and N is [32]:

I(M; N) = ∑
m∈M

∑
n∈N

p(m, n)log
p(m, n)

p(m)p(n)
(4)

where p(m) and p(n) denote the probability density functions of the random variables m and
n, and p(m, n) denotes the joint probability density function of the random variables m and n.
The greater the mutual information, the greater the correlation between M and N. A feature
subset S containing K features is searched to maximize the correlation between the K features
and a category c. The maximum correlation is calculated as shown in Equation (5) [31,32]:

maxD(S, c), D =
1
|S| ∑

xi∈S
I(xi; c) (5)

The correlation between feature set S and class c is determined by the average of all
mutual information values between each feature xi and class c, and k sets with maximum
average mutual information are selected. Subsequently, the redundancy between the k features
is eliminated, where the minimum redundancy is calculated as shown in Equation (6) [31,32]:

minR(S), R =
1
|S|2 ∑

xi ,xj∈S
I
(
xi, xj

)
(6)
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The maximum correlation and minimum redundancy are combined to form the mRMR
algorithm, and the formula for calculating D and R using the operator Φ(D, R) is shown in
Equation (7) [17,31]:

maxΦ(D, R), Φ = D− R (7)

Using this feature selection criterion, the features are selected by maximizing the
defined operator Φ(), using an incremental search method. Based on the feature subset
Sk−1, the kth feature is calculated from the remaining feature space X− Sk−1, which is made
to maximize Φ() using the following equation, that is, the incremental feature selection
optimization formula [17,31]:

max
xj∈X−Sk−1

[
I
(
xj; c

)
− 1

k− 1 ∑
xi∈Sk−1

I
(

xj; xi
)]

(8)

The weight of each feature is calculated according to the Fisher Score, and features with
higher weight have better classification ability. As the correlation between features is not
calculated, redundant features cannot be removed. However, the mRMR algorithm can obtain
the feature subset that has the maximum correlation with the target category and the least
redundancy, but it cannot obtain the weight coefficient of each feature, and the extracted feature
subset cannot reflect the difference of the effect of different features on the classification.

Firstly, the Fisher Score calculation method was used to build the ranking rules of
feature index importance, and the features with larger weight were selected by calculating
the weight value of each feature. The feature vector with a high weight can be used as the
dominant vector of the classification set, and the feature vector with a low weight has less
influence on the classification result. Then, the mRMR algorithm was used to calculate
the selected features, and the features with the maximum correlation and the minimum
redundancy between the categories were selected. Therefore, by combining the Fisher
Score and mRMR algorithms for feature dimension reduction, an optimal feature subset
can be obtained.

In addition to the above two methods, in order to verify the reliability in the experi-
ment, the commonly used recursive feature elimination (RFE) algorithm (a wrapped feature
selection method) and logistic regression (LR) algorithm (an embedded feature selection
method) were selected.

(3) RFE is a greedy algorithm [35]. It takes the whole data set as the starting point of
the search and uses a feature ordering approach to select backward sequences from the
whole set, eliminating one feature with the lowest ranking each time, until the feature
subset that is most important for the classification results is selected. In the iterative process
of the above steps, the order in which features are eliminated depends on their importance.
The RFE algorithm requires a suitable classifier for modeling and prediction, for which the
linear regression model was used in our experiment.

(4) LR is a machine learning model with simple form and good interpretability [36].
The LR model studies the multiple regression relationship formed between one dependent
variable and multiple independent variables. Assuming a vector x = (x1, x2, . . . , xn) of
n independent variables, representing n characteristics of each sample, and letting the
conditional probability p(y = 1|x ) = p be the probability of occurrence of an event x
relative to an observed quantity, the LR model [36] can be expressed as

p(y = 1|x ) = 1
1 + e−g(x)

(9)

where g(x) = w0 + w1x1 + . . . + wnxn, w0, w1, . . . , wn are the weights estimated with
maximum likelihood.
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3.3. Image Classification

In the classification process, the choice of classifier is an important factor determining
the classification results. The CART decision tree, RF, k-nearest neighbors (kNN), and
support vector machine (SVM) methods comprise four different classification algorithms.

The basic principle of CART is to form the test variables and the target variables into a
data set, select the optimal segmentation features by calculating the Gini coefficient, then
build a binary tree according to the feature values. These steps are cycled until the sample
set to be classified reaches a stopping condition. There are two conditions for stopping:
One is that there are no more feature variables for the target classification, and the other is
that all samples of a given node belong to the same class. If the sample points of the stop
classification node are of multiple classes, the node is specified as the class with the highest
number of subclasses, and a new leaf is created within that class [37]. The binomial tree
structure of the CART decision tree greatly improves the operational efficiency compared
to the multinomial tree structure of the traditional decision tree [38].

The RF algorithm is an integrated classifier based on multiple decision trees. Through a
bootstrap sampling method, a subset of samples is randomly selected from the original data
as training samples, and decision trees are constructed for each training sample separately.
A randomly selected feature is used as a node (m < N) of the decision tree, which is split
and grown based on the amount of feature information. The training process is iterated
until the maximum tree depth set by the user is reached or the splitting cannot continue [39].
An RF consists of N decision trees, and voting is used for each decision tree to obtain the
final classification result [40]. RF has the advantage of high prediction accuracy, coupled
with the fact that it is less prone to overfitting. Therefore, it has been widely used for image
classification in high-resolution remote sensing data sets.

The kNN classification algorithm is a relatively simple machine learning algorithm [41].
In remote sensing image classification, this method determines the nearest k neighbors by
calculating the distance between the samples to be classified and the training samples, then
judges according to the categories of these k neighbors selected. The category to which the
k neighbors belong the most is selected, and the samples to be classified are considered to
belong to this category.

The SVM is a new machine learning method developed on the basis of statistical
learning theory [42,43]. It is a non-parametric classifier. Based on the structural risk mini-
mization criterion, the SVM solves image classification and regression problems by finding
the optimal classification hyperplane in the high-dimensional feature space. According
to the limited sample information, the best compromise between learning accuracy and
learning effect can be obtained. The support vector machine has the advantages of simple
implementation and high operational efficiency.

The above four classification algorithms each have their own advantages. In this
study, all four algorithms are used to classify the optimized feature combination and the
unoptimized full feature combination.

4. Object-Oriented Classification Process

The image segmentation in this study used the multi-scale segmentation [44] algo-
rithm, where the segmentation parameters were determined by control variates. The
basic principle of the control variates method is that all other parameters are unchanged,
while only one of them is adjusted, and the best segmentation parameter combination
is determined by adjusting the parameter values until each segmentation parameter is
determined. Firstly, the shape factor and compactness factor are set as a fixed value, and
then different segmentation scale parameters are set. The smaller the segmentation scale
parameter, the larger the segmentation degree, and the more objects after segmentation.
When the segmentation parameter is large, the image is undersegmented, and several
ground objects are segmented into one object. After comparison, we found that when the
segmentation scale is 80, the segmentation result is the best, and all different ground objects
are divided. The size of shape factor and compactness factor also affect the segmentation
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result. A small form factor leads to poor segmentation of results, while a large form factor
leads to excessively fragmented results. The compactness factor uses the shape criterion to
optimize the results of the affected objects considering the overall compactness. When the
shape factor is set to 0.1 and the compactness factor is set to 0.5, the segmentation effect of
the experimental study area is better. After experimental analysis, when the segmentation
scale, shape factor, and compactness factor were 80, 0.1, and 0.5, respectively, a relatively
good segmentation effect was obtained, as depicted in Figure 3.
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Figure 3. Typical ground object segmentation plot: (a) buildings; (b) water; (c) roads; (d) bare land.

4.1. Feature Selection Results

As the classification results of image classification are influenced by the number of
samples and spatial location, stratified random sampling was adopted for each category
of features, such that the number of samples in each category was proportional to the
total area of the category. We selected 2/3 of the segmented objects to extract the features,
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including texture, geometric, and spectral feature values, while the remaining samples
were used for accuracy testing.

To explore the importance ranking of the relevant features, the top 15 features obtained
with the five feature selection methods are listed in Table 2, while the proportions of
different types of features in different subsets are shown in Table 3. The results show
that the features screened by different feature selection methods presented significant
differences. In general, spectral and texture features accounted for a large proportion of the
top 15 features. Figure 4 shows the correlation coefficient matrix of the top 15 features of
different feature selection methods. The darker the grid color, the smaller the correlation
coefficient between the features, and the more negative the correlation between the two
features. On the contrary, the larger the correlation coefficient between features, the more
positive the correlation between the two features.

Table 2. Top 15 features using various FS methods.

Fm Fisher mRMR REF LR

Standard_G NDVI Standard_R GLCM_Entropy GLCM_Ang_2nd
moment

Density NDWI NDVI Compactness GLCM_Correlation
Standard_R Mean_NIR Length/Width Standard_B NDWI

Mean_B Mean_B GLCM_StdDev Standard_R Width
Width_Pxl Area_Pxl Standard_G LengthWidt GLCM_Mean

Border_length Standard_B Density GLCM_StdDev length
NDVI Standard_NIR Compactness GLCM_Dissimilarity GLDV_Entropy

Max_diff Max_diff GLCM_Correlation GLCM_Mean_ GLCM_Homogeneity
GLDV_Entropy Mean_R GLCM_Dissimilarity Mean_B GLCM_StdDev

Standard_B Width Mean_B Mean_G Density
NDWI Mean_G Width_Pxl Mean_NIR max_diff

Mean_NIR GLCM_Homogeneity NDWI Mean_R Standard_NIR
GLDV_Ang_2nd moment Standard_G Number_of_ Standard_G Length/Width

Mean_R GLCM_Ang_2nd
moment Standard_B GLDV_Entropy NDVI

GLCM_Homogeneity Brightness GLCM_Mean Standard_NIR Standard_G

Table 3. Summary of the characteristics in the different categories of the top 15 characteristics
according to Table 2.

Feature Selection
Method Feature Description Spectral Geometric Texture

Fm
Number of features 9 3 3
Top 15 feature ratios 60.00% 20.00% 20.00%

Fisher
Number of features 11 2 2
Top 16 feature ratios 73.33% 13.33% 13.33%

mRMR
Number of features 7 5 4
Top 17 feature ratios 46.67% 33.33% 26.67%

REF
Number of features 8 2 5
Top 18 feature ratios 53.33% 13.33% 33.33%

LR
Number of features 5 4 6
Top 19 feature ratios 33.33% 26.67% 40.00%
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Overall, the spectral features appeared significantly more frequently than the geomet-
ric and texture features. In the filtered feature selection method, NDVI, NDWI, Mean_B,
Standard_B, Standard_G, and Width features were all present, while the number of texture
features was more than 1/3. The mRMR and RFE algorithms selected seven features among
the first 15 features which were the same, showing strong consistency. In addition, the LR
algorithm appeared to choose more geometric and texture features, reaching 50% of the
features in each category.

From the feature extraction results, it can be seen that spectral features were the most
numerous. From the remote sensing images of the research area, the vegetation and water
areas were larger than other land features, and NDVI and NDWI can effectively extract
vegetation and water bodies. Secondly, there were many geometric features. Ground
objects are usually characterized by large area and complex spectral features. It is difficult
to distinguish objects such as roads and construction land from other ground objects only
using spectral features, but they can be effectively classified using geometric features.

4.2. Comparison of Classification Results

As shown in Figure 5 below, based on the four classification methods, the trend of
overall accuracy was obtained by continuously increasing the number of feature fields, and
the feature selection methods were compared. As the number of features increased, the
overall accuracy gradually improved. When the number of features reached about 15, the
classification accuracy decreased slightly with an increase in the number of features, then
remained stable. Therefore, in the process of object-oriented classification experiments,
when too many features are involved in the classification, it may not be possible to achieve
the optimal classification results, and instead the classification accuracy and classification
efficiency are reduced. Overall, filtered feature selection methods presented better results
than wrapped methods, while embedded feature selection methods presented the worst
results. Furthermore, the SVM classification results were relatively stable, and the impact
of different feature selection methods on the classification accuracy was smaller than the
use of other classification methods.

Figure 5. Cont.
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Figure 5. The variation trend of number of features and overall accuracy of five feature selection
methods with different classifiers: (a) CART; (b) RF; (c) KNN; (d) SVM.

According to Figure 6, the proposed Fm was found to have higher overall accuracy than
the other feature selection methods with both RF and kNN classifiers, with accuracies of 95.18%
and 96.14%, respectively. Although it was not optimal with the CART and SVM classifiers,
the overall accuracy still achieved good results. This indicates that the combined scheme of
Fisher Score and mRMR algorithm can obtain high-accuracy classification results with specific
classifiers and can outperform both wrapped and filter feature selection methods.
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As shown in the bar chart, the overall accuracy of Fm is better than the other four
feature selection methods. In the CART classifier, the overall accuracy of Fm is 3.28%,
5.27%, and 6.61% higher than mRMR, RFE, and LR, respectively, and 0.41% lower than
Fisher Score. In the SVM classifier experiment, the overall accuracy of Fm is higher than
Fisher Score, RFE, and LR, respectively, and the overall accuracy of Fm is 0.39% lower than
mRMR. Among RT and KNN classifiers, Fm achieves the highest overall accuracy, which is
0.38%, 3.03%, 2.12%, and 6.94% higher than Fisher Score, mRMR, REF, and LR and 0.58%,
3.18%, 2.12%, and 5.78% higher than Fisher Score, mRMR, and LR, respectively.

In the case of limited samples, excessive features do not improve the classification accuracy
of the image. However, the classification accuracy can be improved to a certain extent by taking
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into account the correlation between features through the mRMR algorithm or only considering
the separability of a single feature through the Fisher Score algorithm. Our experiments
showed that the proposed Fm method can effectively improve the classification accuracy of
high-resolution remote sensing images with the RF and kNN classifiers.

4.3. Classification Results

For further analysis, the optimal combinations of the four classification methods and
five feature selection methods were selected—Fisher–CART, Fm–RF, Fm–kNN, and mRMR–
SVM—and the classification graphs of these four combinations are shown in Figure 7.
Meanwhile, in order to analyze the accuracy of the classified ground objects, the overall
accuracy, as well as kappa coefficients, were calculated to evaluate the classification results,
based on the decoded flags and visually decoded sample points, as shown in Table 4, as
well as the specific land-cover classification accuracies.
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(c) Fm-KNN; (d) mRMR-SVM.

Table 4. Accuracy of ground cover classification.

Fisher-CART Fm-RF Fm-KNN mRMR-SVM

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Roads 95.00% 76.61% 97.00% 93.26% 93.00% 95.87% 97.00% 89.81%
Buildings 74.00% 91.02% 85.00% 91.40% 92.00% 91.08% 85.00% 94.44%

Water 92.93% 97.87% 93.94% 97.90% 96.96% 98.96% 97.98% 98.97%
Bare land 97.14% 94.44% 100% 90.90% 98.57% 94.52% 98.57% 97.18%
Vegetation 99.33% 98.68% 99.33% 99.33% 99.33% 98.67% 99.33% 98.03%

Overall
accuracy 91.52% 95.18% 96.14% 95.76%

Kappa 0.8923 0.939 0.951 0.9461
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From the analysis in Table 4, the producer’s and user’s accuracies for water, bare
land, and vegetation in all four scenarios were greater than 94%. The water and vegetation
extraction was improved, followed by that of bare land. The reason for this is that sparse
grass can be classified as vegetation and bare land, and it is difficult to accurately determine
which type the associated features belong to. The extraction effect of buildings and roads
was relatively poor as the resolution of the images was high, and some narrow roads
were interspersed among the buildings, making it easy to divide the roads and buildings
together during segmentation, causing confusion between the two types of features. From
the overall accuracy of the four schemes, the overall accuracy of Fm–RF, Fm–kNN, and
mRMR–SVM were all greater than 95%, which indicates that Fm can better combine and
optimize feature subsets and improve the classification ability of the used feature sets.
All of the feature selection methods based on Fm could achieve effective surface feature
information extraction. Meanwhile, the RFE and LR classification methods did not present
high classification accuracy. Wrapper feature selection methods rely on feature models and
specific machine learning algorithms, and the optimal feature combinations change as the
learners change, which, in some cases, can have detrimental effects. In our experiment,
there were negative values in the NDVI and NDWI feature values, and there was a data
imbalance; for the embedded LR feature selection method, it is difficult to solve the data
imbalance problem. In conclusion, both the single filtering feature selection methods
and the combination of the proposed two filtering feature selection methods presented
good performance, and filtering feature selection methods can more easily obtain better
classification results when performing object-oriented classification.

4.4. Validation of the Fm Method

In order to test the effectiveness of the Fm method, we selected different research
areas and GF-2 images and carried out experiments. The classification results and overall
accuracy with different classifiers are shown in the Figure 8.

Figure 8. Cont.
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Figure 8. Fm classification image with different classifiers: (a) CART; (b) RF; (c) KNN; (d) SVM.

As shown in Table 5, Fm achieves better classification results in the different study
area. The overall accuracy of Fm with CART, RF, KNN, and SVM classifiers were 88.67%,
92.04%, 91.08%, and 88.68%, respectively. The kappa coefficient also reached 0.8545, 0.8979,
0.8852, and 0.8546, respectively. The overall accuracy of RF and KNN is better than that
of the CART and SVM, which is consistent with the experimental results above. Verified
experiments show that Fm can effectively reduce the dimensionality of high-dimensional
data and obtain the optimal feature subset. RF and KNN classifiers are more suitable for
image classification combined with Fm.

Table 5. Overall accuracy and kappa coefficient of Fm with different classifiers.

CART RF KNN SVM

Overall accuracy 88.67% 92.04% 91.08% 88.68%
Kappa 0.8545 0.8979 0.8852 0.8546

5. Conclusions

In this paper, an algorithm combining the Fisher Score and mRMR algorithms is pro-
posed to address the problem of high dimensionality of the feature space in object-oriented
classification. Although Fisher Score and mRMR feature selection methods have good
applicability in feature screening, a single method cannot take into account the redundancy
between features and the correlation between features and categories at the same time.
The Fisher Score algorithm does not take into account the redundancy between features,
and the mRMR algorithm cannot reflect the differences in the role of different features in
classification. The combination of the Relief and mRMR algorithms can effectively make
up for their shortcomings. After the experiments involving four different machine learning
classification methods, the overall accuracy of Fm combined with RF and KNN is better
than that of RF and CART.

Through a comparative test of four kinds of classifiers, we determined that: (1) Fea-
ture selection can allow for the elimination of redundant features, and high classification
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accuracy can still be achieved when using a small number of features. Accordingly, filtered
feature selection methods were found to perform better than wrapped and embedded
feature selection methods. (2) Two classifiers—RF and SVM—exhibited better stability
than the other two classifiers as the number of features increased during the experiment.
(3) In this study, the proposed Fm feature selection method was used in the classification
experiment and showed the best performance when used with the RF and kNN classifiers,
allowing for better optimization of the feature set. The final classification accuracy and
efficiency were improved obviously by using the Fm feature subset. The overall accuracy of
the Fm–RF and Fm–kNN approaches reached 95.18% and 96.14%, respectively. The kappa
coefficient reached 0.939 and 0.951, respectively. Except for the mapping accuracy of Fm-RF
construction land, the mapping accuracy and user accuracy of Fm-RF and Fm-KNN both
reached more than 91%.
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