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Abstract: The images of surface defects of industrial products contain not only the defect type but
also the causal logic related to defective design and manufacturing. This information is recessive
and unstructured and difficult to find and use, which cannot provide an apriori basis for solving
the problem of product defects in design and manufacturing. Therefore, in this paper, we propose
an image semantic refinement recognition method based on causal knowledge for product surface
defects. Firstly, an improved ResNet was designed to improve the image classification effect. Then,
the causal knowledge graph of surface defects was constructed and stored in Neo4j. Finally, a
visualization platform for causal knowledge analysis was developed to realize the causal visualization
of the defects in the causal knowledge graph driven by the output data of the network model. In
addition, the method is validated by the surface defects dataset. The experimental results show that
the average accuracy, recall, and precision of the improved ResNet are improved by 11%, 8.15%, and
8.3%, respectively. Through the application of the visualization platform, the cause results obtained
are correct by related analysis and comparison, which can effectively represent the cause of aluminum
profile surface defects, verifying the effectiveness of the method proposed in this paper.

Keywords: knowledge management; industrial knowledge graph; cause knowledge; convolutional
neural network; surface defect

1. Introduction

In the manufacturing industry, large-scale industrial production requires the produc-
tion of homogeneous products. However, product design and manufacturing processes are
influenced by manufacturing resources, processing methods, processing sequences, and
process design principles in the actual production process, resulting in the production of
undesirable products [1]. Among them, surface defects are the most intuitive manifesta-
tion of product quality that is affected. There is causal logic between the surface defects
of products and the defect design and manufacture of products [2]. This information
is recessive, unstructured, scattered, difficult to find and use, and cannot fully express
complex relationships between surface defects and product design and manufacturing.
Suppose this causal logical information is knowledge processed and organized by specific
rules. In that case, the formation of an explicit, structured, and networked body of causal
knowledge for product surface defects can provide an apriori basis for solving the problem
of product defects from the aspects of design and manufacture. Therefore, in order to
ensure the qualified rate and reliability of product quality, it is necessary to construct
the causal knowledge system of surface defects while detecting them, which realizes the
point-to-point relationship mapping of “surface defect type-defect causal knowledge”. At
this point, surface defect detection not only obtains a series of relevant information, such
as defect category, position, and contour from the macro perspective, but also realizes
the representation of causal knowledge behind defects from the micro perspective, which
enriches the semantic information of defect image.
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In the aspect of defect detection, with the increasing level of the manufacturing indus-
try, computer vision is widely used instead of human eyes to detect the surface quality of
products, which has become a hot spot in modern manufacturing. Coupled with the rapid
development of deep learning, detection methods based on DCNN (deep convolutional
neural network) are increasingly widely used in the field of defect detection. This network
model realizes image defect detection through complete end-to-end training. According to
their functions in defect detection, they can be divided into defect classification networks,
defect detection networks, and defect segmentation networks, which solve the problems
of what the defect is, where the defect is, and how the defect is shaped, respectively.
In addition, the network performance can be improved by setting the hyperparameters
of the network model and improving the network structure. For example, VGG, as a
common convolutional neural network, has the characteristics of simple structure and
strong practicability. Gao et al. [3] fine-tuned the structure of VGG-11 when detecting gear
surface defects, showing the network’s high reliability and robustness in classification.
Akram et al. [4] proposed an improved VGG-11 structure, which made the classification ac-
curacy of solar cell surface defects reach 93.02%, increased by 6.5%. Aplipour et al. [5] used
VGG16 as the backbone network to establish an FCN network to achieve the segmentation
of concrete surface cracks. Therefore, the product surface defect detection based on DCNN
can quickly realize defect classification and detection.

In the construction of a surface defect causal knowledge system, KGs (knowledge
graphs) have been increasingly widely used in the organization, management, and un-
derstanding of manufacturing information due to their structured representation form,
rich semantic information, and appropriate description of complex relationships. Hedberg
et al. [6] used a KG to connect the design data of different stages in product design, manu-
facturing, quality, and so on to form the digital main line, which provided the information
traceability of product life cycles and the generation and reuse of related knowledge. Dom-
browski et al. [7] integrated data from different information systems into a KG to solve the
problem of data islands in the plant planning process, providing data quickly according to
the needs of planners. Therefore, KG technology can realize the storage, management, and
visualization of causal knowledge of product surface defects.

At present, the storage of information about product surface defect problems is mainly
based on images and texts. Intuitively, the images store the feature information of de-
fects, and text stores the description of defect features, causality, and other aspects. From
the above analysis, it can be seen that the classification of defect images can rely on
computer vision technology, while the storage and visualization of defect causal knowl-
edge can rely on KG technology. Considering the point-to-point relationship mapping of
“surface defect-defect causal knowledge”, it can be found that the surface defect detec-
tion of industrial products based on the deep convolutional neural network has obvious
shortcomings, namely:

(1) The DCNN only obtains the data output of the category and location information
of product surface defects but cannot express the implicit causal knowledge behind
the image defects, which ignores the rich semantic information of the surface defect
image itself and the huge potential connection among information.

(2) The knowledge graph can visualize knowledge, making finding the relationship
between knowledge easier. Therefore, to enrich the semantic information of surface
defect images through knowledge graph technology, it is necessary to fuse the content
of image classification technology and knowledge graph technology. Still, they have a
vast semantic gap, and the joint task is challenging to solve.

Therefore, some researchers have begun to integrate computer vision technology and
KG technology for multimodal information processing. Zhou et al. [8] proposed an image
captioning system, CNET-NIC, to produce better image captions by detecting objects in
images. The background knowledge of the image is stored in the form of a knowledge
graph. Firstly, the objects in the image are detected by a convolutional neural network, and
then the detected objects are used to identify related terms and concepts. Then, these terms
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or concepts are connected to the corresponding nodes in the knowledge graph. Finally, the
subtitle or image description produced by the machine is improved by the relationship
between nodes. Zhang et al. [9] proposed an image classification technology based on
KG technology, which improves the performance of image classification by constructing
an image knowledge graph (IKG). However, there are still few studies on multimodal
information processing in the cause analysis of product surface defects. In addition, the
text datasets of defect cause in the engineering field are limited, which cannot represent the
potential knowledge of poor design and manufacturing related to defect images. Based on
the technology of multimodal information processing and inspired by the success of the
semantic refinement method [10], we propose an image semantic refinement recognition
method based on causal knowledge for product surface defects. It aims to visualize
the output of image defects and the complete causal knowledge behind them through
KG technology, which transforms them into a visually understandable structured form,
enriching the image semantic information of product surface defects.

The rest of this article is organized as follows. Section 2 introduces the related work
about computer vision technology and knowledge graph technology. In Section 3, we
propose the framework of a semantic refinement recognition structure for product surface
defect images based on causal knowledge. The Section 4 carries on the relevant experiment
through the application case. Section 5 presents a framework for developing a visual
system. Section 6 discusses the conclusions and future work.

2. Related Works
2.1. Computer Vision Technology

Since the middle of the 20th century, image classification technology in the field of
computer vision has made constant progress. With the rise of deep learning in recent
years, image classification based on deep convolutional neural network (DCNN) has
achieved positive results in intelligent data acquisition and efficient processing. At present,
image classification technology has many applications in aerial remote sensing [11], ocean
remote sensing [12], face recognition [13], and so on. Convolution operation is a multi-
layer feedforward neural network model. Its network structure is characterized by the
use of a separate set of convolution kernels in each layer, which helps to extract useful
features from locally relevant data points. In the training process, CNN learns by BP (back
propagation) algorithm and updates the weights of network nodes. The continued success
of BP algorithms and CNN has led to network models such as LeNet [14], AlexNet [15],
VGG [16], GoogLeNet [17], ResNet [18], and MobileNet [19]. At the same time, because
CNN adopts the network structure with core weight sharing, it can gain a better learning
effect by increasing network depth when dealing with complex problems.

The basic architecture of CNN is mainly composed of a convolution layer, activation
layer, normalization layer, pooling layer, and full connection layer.

The function of the convolution layer is to extract the features of input data. Convo-
lution is usually calculated with the size of 3 × 3, 5 × 5, or 7 × 7 convolution kernels to
obtain a multidimensional feature map. The common convolution operations are standard
convolutions, transpose convolution [20], dilated convolution [21], depth separable con-
volution [22], deformable convolution [23], and so on. Standard convolution is a process
in which the convolution kernel slides onto the image and calculates the gray values of
all image pixels through a series of matrix operations. This process is also known as the
down-sampling process. Transposed convolution realizes the reverse operation of convolu-
tion, also known as up-sampling, and is widely used in semantic segmentation. Compared
with the conventional convolution, dilated convolution increases the distance between the
values of the convolution kernel, so as to extract better features. Deep separable convolution
realizes the separation of channels and regions in normal convolution, which can greatly
reduce the parameters of a network model. It is applied to the lightweight network model
MobileNet. Deformable convolution adds an additional direction vector to each element of
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the convolution kernel, which can automatically adjust its shape according to the different
scale or deformation of the object to better extract the input features.

The function of the activation layer is to increase the nonlinearity of the neural network
model through an activation function. Common activation functions are the rectified linear
unit (ReLU) [24], sigmoid function [25], and tan hyperbolic (tanh) functions. ReLU is the
most significant unsaturated activation function, which is more efficient than sigmoid and
tanh. Their expressions are shown in Equations (1)–(3).

Relu(x) = max(0, x) (1)

σ(x) = sigmoid(x) = 1/
(
1 + e−x) (2)

Tan(x) = (ex − e−x)/
(
ex + e−x) (3)

The function of batch normalization (BN) [26] enables researchers to select larger
learning rates. While the training speed of the model grows rapidly, the model has fast
convergence, and the problems of gradient dispersion and gradient explosion are avoided.
Its expression is shown in Equation (4).

bi
x,y = αi

x,y/

k + a
min(N−1,i+ n

2 )

∑
j=max(0,i− n

2 )

α
j2
x,y

β

(4)

where i represents the output of the ith neuron after using the activation function, n
represents the number of adjacent kernel maps at the same location, and N represents the
total number of kernels. K, n, α, and β are all hyperparameters, generally set as 2, 5, e−4,
and 0.75, respectively.

The function of the pooling layer is to reduce the dimension of the data and represent
the image with higher level features. The common pooling methods are max pooling,
average pooling [27], and spatial pyramid pooling [28]. These pooling methods can better
achieve feature compression and feature extraction.

The full connection layer is usually connected at the end of the neural network,
reducing the dimension of the output feature and aligning the feature map with the
final classification.

The above statement gives a basic structure of a network model from the perspective
of the depth and modularity of the CNN structure.

Based on the above network model and basic composition structure, many excellent
target detection algorithms have been borne in the field of visual detection technology,
such as YOLO [29], Faster RCNN [30], MASK RCNN [31], etc. With the development of
technology, these network models are combined with some other new algorithms, such as
channel attention mechanism [32], PANET [33], GhostNet [34], and so on, which further
optimize the network model and improve the detection rate of product surface defects.
Yang et al. [35] reduced the missing rate of casting defects effectively through the fusion of
the improved Faster RCNN, Cascade RCNN, and YOLOv3. Xie et al. [36] carried on the
rule characterization processing to the welding joint defect, further improving the defect
detection rate. Zhang et al. [37] improved the detection rate of casting defects by using the
Adversarial Generating Network and the Supervised Learning Model of MASK RCNN.
Li et al. [38] improved the detection rate of surface defects by improving the Focalloss in the
YOLOV4. These network models, which integrate new algorithms, have achieved positive
results in the surface defect detection of industrial products. However, these detection
technologies only show the types and positions of the distribution of those defects on a
macroscopic level, which makes them unable to explain causal knowledge, such as the
formation mechanism of surface defects. At present, the research of computer vision
technology mainly focuses on the classification and detection of product quality problems
but not the information entropy of product quality.
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2.2. Knowledge Graph Technology

According to the above, computer vision classification techniques cannot represent the
information entropy of product quality problems, while the causal knowledge of surface
defects is an essential resource. The formation mechanism of defects is a common causal
knowledge, which contains the manufacturing information in the manufacturing process.
The storage, organization, and management of knowledge through effective means can
realize the accumulation, inheritance, and reuse of knowledge. It can help people to
analyze data and improve work efficiency and manufacturing quality. A knowledge graph
(KG) is an efficient tool for knowledge management. It can reuse, retrieve, and visualize
knowledge in a structured way. In addition, it can discover and reason hidden knowledge
from multiple perspectives. KGs provide new technical support for the construction of
knowledge bases. KG technology has received a lot of attention and research since Google
first proposed the concept in 2012. It is widely used in semantic retrieval, semantic question
and answer, personalized recommendation, and information analysis.

A KG is essentially a semantic knowledge base with a directed graph structure based
on a semantic network. It is an organic combination of a knowledge base and ontology,
which describes the concepts and their relationships in the physical world in symbolic
form. In a KG, the knowledge is stored in triples, such as < subject, property, object >.
Subject and object are nodes of the KG that represent subject entity knowledge and object
entity knowledge, respectively, and property is the edge of the KG that represents the
relational knowledge (predicate) from subject to object. The basic architecture of a KG
is composed of a schema layer and data layer, and its construction methods are usually
divided into three modes: top-down, bottom-up, and mixed. The schema layer is the
generalization knowledge, which is used to standardize and constrain the data layer. The
data layer is information about the individual. The data and schema layers are mainly
composed of the knowledge base with entity, relationship, and attribute. Ontology is a
concept template that defines concept content, concept attributes, and concept relations.
The knowledge in the schema layer is generally defined by ontology, which is a kind of
knowledge base with low redundancy and hierarchical structure. When semantic relations
are integrated into ontology, a KG is formed. Traditional methods of knowledge graph
construction include the skeleton method, the Toronto Virtual Enterprise Ontology Project
(TOVE) method, the Methontology method, and the seven-step method [39]. Among them,
the seven-step method proposed by Stanford University School of Medicine is more mature
and detailed and has been widely used in professional fields. It is based on the tool Protégé
(https://protege.stanford.edu, accessed on 25 May 2022), which is used to build ontologies.

At present, KG technology can be divided into general knowledge graphs and vertical
knowledge graphs from the perspective of application target knowledge. The general
knowledge graph emphasizes the breadth of knowledge and involves common-sense
knowledge. The representative large-scale common knowledge graphs include YAGO,
Freebase, DBpedia, KBpedia, NELL, PROSPERA, and Wikidata. The Chinese common-
sense graph includes Zhishi.me and CN-Dbpedia. The vertical knowledge graph is different
from a general knowledge graph in that it is an explicit conceptualization of high-level
subject domain and its specific subdomains [40]. In the process of conceptualization,
expert knowledge is needed to help construct vertical domain ontology. The representative
vertical domain knowledge graphs include medical knowledge graphs [41], education
knowledge graphs [42], maritime product knowledge graphs [43], geoscientific knowledge
graphs [44], and a COVID-19 (coronavirus disease 2019) knowledge graph [45], etc. In [45],
the author mentioned that to better aid the exploration and usage of the generated COVID-
19 Knowledge Graph, a web application was developed by using Biological Knowledge
Miner (BiKMi), which enables users to explore and query the network visually. Because
the vertical knowledge graph has a strong specialization and cohesion in its domain
knowledge, it covers few domains and integrates few entities. There is no unified and
mature construction process, but it develops rapidly in the application-driven. In addition,

https://protege.stanford.edu
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against the vast majority of KG literature, vertical domain knowledge maps are usually
constructed in a top-down approach to ensure high quality in the knowledge graphs.

The above-mentioned vertical knowledge graph mainly focuses on entities and at-
tribute relations defined in the specific domain to solve where, what, and other problems.
In the causal relationship of product surface defects, there is a large number of causal event
descriptions and a large amount of causal event logic knowledge related to design and
manufacturing. The knowledge graph of entity and attribute relation type is not ideal for
the expression of this part of knowledge, not fully expressing the causal knowledge that
relates design, manufacture, and other aspects, such as the corresponding knowledge about
countermeasures. The causal event knowledge graph takes events as the core concept and
focuses on the events triggered by predicates and their logical relationships. It not only
reflects the essence of events, but also shows the development law of events, and pays
attention to how to solve the problem while tracing the causal knowledge. As a new type of
knowledge graph, it has attracted researchers’ attention. Hoang Long et al. [46] proposed a
knowledge graph of social events, which took the description of social events as the core.
Then, these events were decomposed into four types, such as person, time, place, and event,
and corresponding attributes were constructed, which increased the understanding and
causal traceability of social events. Hellweg F et al. [47] established the manufacturing
cost estimation domain ontology, which increased the traceability of the manufacturing
cost, and the knowledge graph was instantiated with the manufacturing information on
electric wheel shaft gears. Zeng et al. [48] established the knowledge graph of the causal
relationships of train equipment failure, which increased the understanding of failure law
and failure cause in railway train equipment.

In summary, event knowledge has been used in manufacturing, social events, and
other fields. It mainly takes events as nodes and edges as relations between events, reflect-
ing the logic relation between events, but it has not been applied to the causality tracing
of the surface defects of industrial products. The above research provides reference for
constructing a causal knowledge graph of product surface defects. Through analyzing the
formation mechanism of the surface defects of industrial products, and from the analysis of
the causes of the surface defects of industrial products, the causal knowledge of surface
defects can be fully excavated and displayed by the way of “defect type-cause analysis-
solution countermeasures”. It provides a reference for the decision maker to analyze the
follow-up problems and make the overall optimization scheme. It is also enough to illus-
trate the feasibility of constructing causal knowledge of product surface defects through
knowledge graph technology.

2.3. Research on Image Semantic Refinement Recognition of Product Surface Defects Based on
Causal Knowledge

From the above analysis, it can be seen that, in a macroscopic aspect, the research
on the neural network structure for the classification and detection of product surface
defects is more in-depth. In a microscopic aspect, KG technology is deeply studied in
product knowledge representation. However, it is relatively weak that the application
research that fuse these two aspects together realize the output data of the network model
to drive the defect cause visualization of causal knowledge graph. Either from the angle of
technical management or cost control, it is very important to classify the types of surface
defects and analyze the causal knowledge. The integration of these two aspects can make
corresponding solutions, such as adjusting product process drawing or process equipment
design. Therefore, it is necessary to explore an integrated knowledge representation method
combining computer vision technology and knowledge graph technology to assist the opti-
mization of product quality. At present, knowledge representation combining computer
vision and knowledge graphs belongs to a multi-modal information processing process.
This kind of multi-modal information processing is still limited in the field of intelligent
manufacturing and there is some research in other fields. Thanasis Mavropoulos et al. [49]
combined computer vision, speech recognition, data representation, sensor data analysis,
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and other advanced technologies to analyze and collect information about patients by
observing the behavior of patients, which dramatically improved the efficiency of medical
staff to collect information. In visual Q & A, S. Toor [50] proposed a multimodal biometrics
technology through the fusion of computer vision technology and natural language pro-
cessing technology, which achieved the classification of biological features and related to
the detailed description of the feature. Hong et al. [51] constructed a hierarchical feature
network (HFnet), based on encoding visual semantics, by using low-level and higher-order
features of CNN, which realized answer reasoning by learning high-level features of images.
Pan et al. [52] proposed a video2entities framework that combines the perceptual ability of
computer vision with the cognitive ability of the KG to extract invisible entities from videos
and update them to the KG through ZSL (zero-shot learning) technology, which solved the
problem of invisible entities recognition and enriched the semantic information of images.

Through the analysis of computer vision technology and knowledge graph technology,
we can see that it is completely feasible to integrate computer vision technology and
KG technology to extract features and represent feature knowledge. The classification
of product surface defects is realized by computer vision classification technology and
the causal knowledge of surface defects is expressed by KG technology, thus enriching
the image semantic knowledge of product surface defects. Based on this, the current
research on image semantic refinement recognition of product surface defects based on
causal knowledge aims at realizing the causal visualization of the defects in the causal
knowledge graph driven by the output data of the network model. Firstly, a convolutional
neural network model was constructed. Then, the defect causal knowledge graph was
constructed. Then, the output data of the defect type of the convolutional neural network
model was connected with the corresponding nodes in the knowledge graph to drive the
visualization of the defect cause in the causal knowledge graph. Finally, web applications
were developed to better help explore and visualize the causal knowledge graph. In
the whole experiment, we use the surface defect images of Tianchi industrial aluminum
profiles (https://tianchi.aliyun.com/competition/entrance/231682/information, accessed
on 30 May 2022) as the image dataset.

3. The Framework of the Proposed Method and the Data Required for the Experiment
3.1. Overall Framework

The research on image semantic refinement recognition of product surface defects
based on causal knowledge is a combination of computer vision recognition technology and
KG technology. The convolutional neural network realizes the recognition and classification
of surface defects, and then the output data of the network drives the causal visualization
of the defects in the causal knowledge graph. It is a way of associating external knowledge.
Therefore, this work involves computer vision classification technology and knowledge
mapping technology. Its overall architecture is shown in Figure 1.

3.1.1. Image Classification in Computer Vision

(1) Selection of convolutional neural network model

Image classification, object detection, and image segmentation are the three major
tasks in the field of computer vision. Feature extraction is carried out by a feature extractor
(convolution kernel). The channels in the shallow layer learn the simple basic features,
such as colors and points, at the beginning. With the increase of layers, these channels start
to learn the features of line segments and edges. The deeper the layer, the more specific
and abstract the features learned. Deep neural network (DNN) is widely used in image
classification, detection, and semantic segmentation due to its powerful feature extraction
and feature representation in convolutional layers. Feature extraction is the most critical
step in DNN. The quality of feature extraction directly affects the accuracy and relevant
evaluation standards in image classification, detection, and semantic segmentation.

https://tianchi.aliyun.com/competition/entrance/231682/information
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Figure 1. Fusion knowledge representation architecture based on computer vision and natural
language technology.

The ResNet network model is a kind of deep convolutional neural network model.
In the application of image classification, the image data are convolved and pooled by
multiple filters in the network to extract the edge features, such as cracks, sizes, surface
defects, and so on. ResNet generally includes a convolution layer, pooling layer, local
normalization layer, activation function layer, and full connection layer.

At the same time, the essential difference between ResNet and other convolutional
neural networks (such as VGG) is residual structure. The residual structure is introduced
into ResNet, proposed by He et al. [18], which successfully solves the problems of gradient
disappearance, gradient explosion, and model degradation. Residual blocks are the pow-
erful part of ResNet network, which uses the shortcut to transfer the high-quality weight
x from the previous layer to the next layer. In this way, even if the middle layer F(x) is
poorly trained and the training error is large, the training result of the upper layer is not
affected. The residual output is H(x), as shown in Equation (5).

H(x) = F(x) + x (5)
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According to the different positions of residual structure, there are two main structures:
identity mapping and projection mapping. The first structure is shown in Figure 2a, which
is adopted when the input dimension and the output dimension are the same, including a
convolution layer (Conv) with a 3 × 3 convolutional kernel, a batch normalization layer
(BN), and an activation function layer (ReLu). The second structure, shown in Figure 2b, is
used when the input dimension and the output dimension are different. In this structure,
a 1 × 1 convolution kernel is added to the shortcut line for channel dimension raising to
ensure that the output dimension of the shortcut line is consistent with that of the main
line. On the premise of improving model precision, the deepest ResNet network structure
reaches more than 1000 layers, and the commonly used ones are ResNet18, ResNet34,
ResNet50, Resnet101 and ResNet152. Considering the equipment environment and the
difficulty of image training, ResNet101 was used as the classification model in this work.
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(2) Introduction of deformable convolution modules

Conventional convolutional kernels are usually fixed in size and shape and have
poor adaptability to unknown changes, which limits the modeling ability of the geometric
transformation of network models. As shown in Figure 3a, the size and shape of the 3 × 3
convolution kernel are fixed, and the capability of geometric modeling in the convolution
process is inadequate. According to the actual shape of the feature map, the deformable
convolution kernel can learn the offset ability from the parallel convolution layer and focus
on the region of interest so as to better extract the input features. As shown in Figure 3b–d,
each element of the convolution kernel is shifted according to certain rules and the sampling
position is also shifted, which improves the recognition and detection ability of irregular
objects, non-rigid objects, and objects in complex environments [53]. Figure 4 shows the
calculation process of the convolution kernel. The offset is calculated for the input feature
graph using the convolution layer and the offset has the same resolution as the output
feature map.
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For an input feature map x and an output feature map y in a conventional two-
dimensional convolution, the mathematical model of the convolution can be expressed as
Equation (6).

y(Pn) = ∑
PnR

W(Pn)× x(P0 + Pn) (6)

In the formula, R defines a 3× 3 convolution kernel with an expansion rate of 1, which
enumerates all positions in the output eigenmap. Where R = {(1, 1), (1, 0), (1, 1), . . . , (1, −1),
(1, 0), (1, 1)}, W(·) is the weight corresponding to the sampling point.

In deformable convolution, the regular grid is extended by adding an offset
({∆pn|n = 1, 2, . . . , n, N = |R|}) and the filter deforms. The mathematical model of the
deformed convolution can be expressed as Equation (7).

y(p0) = ∑
pn∈R

w(pn)× x(p0 + pn + ∆pn) (7)

where n is the number of sampling locations and p_0 + p_n is the offset of the sampling
position. The process of deformable convolution is shown in Figure 3.
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Since the offset is a decimal, it needs to be converted to an integer by a bilinear
interpolation algorithm, as shown in Equation (8).

x(p) = ∑
q

G(q, p)× x(q) (8)

where p represents any position after offset (p = p0 + pn + ∆pn) and enumerates the spatial
position of all feature maps x. G(·) is the kernel of bilinear interpolation.

G is a two-dimensional vector, which can be expressed as the product of two one-
dimensional vectors, as shown in Equation (9).

G(q, p) = g(qx, px)× g
(
qy, py

)
(9)

where g(qx, px) and g
(
qy, py

)
can be calculated by the following Equations (10) and (11).

g(qx, px) = max(0, 1− |qx − px|) (10)

g
(
qy, py

)
= max

(
0, 1−

∣∣qy − py
∣∣) (11)

The offset can be learned by a backpropagation algorithm. In contrast to conventional
standard convolutions, deformable convolutions contain the definition of standard con-
volution and can change and adjust their own shapes according to the demand of feature
extraction, which provides more choices for the convolutional neural network in feature
extraction, and has high adaptability to sample feature extraction [54].

Figure 5 shows the comparison between the feature point receptive fields of conven-
tional convolution and deformable convolution. Take the defect (such as scratch) on the
surface of an aluminum profile as an example. By comparison, it can be seen that the feature
points of conventional convolution have a fixed size receptive field, while the deformable
convolution can adaptively learn the sampling location of receptive field. Because the recep-
tive field is more consistent with the shape and size of the object, it is more advantageous
to feature extraction.
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(3) Improved ResNet network model

Res-DBR (ResNet101 + Deformable conv + BN + ReLu) is a residual network module
with deformable convolution. The module consists of a transformable convolutional layer, a
BN layer, and an activation layer. ‘Res’ stands for ResNet101. ‘DBR’ stands for Deformable
conv, BN, and ReLu. The image input size is 224 × 224 × 3. Experimental results show that
the accuracy of the model is higher when deformable convolution is added to the residual
branch, as shown in Figure 6.
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3.1.2. Construction Process of Knowledge Graph

The construction process of a knowledge graph is essentially a process in which the
required knowledge is obtained and organized into a whole in an appropriate form and
method. The main content of this paper is how to enrich the semantic information of surface
defect images through knowledge graph technology and realize the causal visualization of
the defects in a causal knowledge graph driven by the output data of the network model.
Therefore, the text content of the surface defect needs to correspond to the information
contained in the surface defect image. However, in practical engineering, it is difficult to
obtain the text dataset of surface defect causes and the image dataset of surface defects
at the same time, so to make our research succeed, we finally chose to obtain the text
dataset of surface defect causes from the Internet to form the text dataset of the experiment.
First, it was necessary to collect data about the subjects through the Internet and to extract
entities, attributes, and relationships from it. Second, the scheme layer of a knowledge
graph, namely the construction of surface defect knowledge ontology, was designed and
completed. Then, the data layer of a knowledge graph was stored in the Neo4j graph
database. After that, query and visualization of knowledge were performed based on the
existing data in the KG.

The research framework for this section is shown in Figure 7.
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3.2. Data Collection and Preprocessing

The data introduced in this paper mainly consist of two parts. One is the surface defect
image dataset, and the other is surface defect text description data.

3.2.1. Selection and Preprocessing of Surface Defect Dataset for Industrial Products

After considering several datasets of the surface defects of industrial products, Tianchi
aluminum profile surface defect picture dataset was finally selected. Four kinds of defects,
such as scratch, bump, al-powder, and dirty spot were selected. The total number of
images is 465, and the image pixel size is 2560 × 1920. In order to extract the relevant
information of the sample data more easily, it was necessary to preprocess the data before
the network model training, which includes data enhancement, image sample labeling,
and dataset partitioning.

In the marking processing, natural numbers are used to express the category:
1 represents scratch, 2 represents bump, 3 represents al-powder, 4 represents dirty spot.
The label of the picture sample is bound with the picture corresponding to the sample
data. The category sample of the experimental dataset is shown in Figure 8. At the same
time, in order to ensure the generalization ability of the model, the dataset is enhanced by
increasing brightness, color enhancement, contrast enhancement, affine transformation,
rotation, perspective deformation, elastic distortion, etc. The number of images before
and after the expansion is shown in Figure 9 below, with a total of 4336 images.
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The dataset contains four types of surface defect images. The sample numbers of
scratch, bump, al-powder, and dirty spot in the training set are 1015, 905, 888, and 987,
respectively. In addition, that in the validation set are 145, 129, 127, and 140, respectively.
The division of the entire dataset is shown in Table 1.

Table 1. Division of dataset of surface defects of aluminum profiles.

Category Training Set Validation Set Label

scratch 1015 145 1
bump 905 129 2

ai-powder 888 127 3
dirty spot 987 140 4

3.2.2. Text Data Acquisition and Preprocessing

The method of data collection was manual collection and processing. The surface
defect type and their formation mechanism of aluminum profiles are the contents of the
aluminum profile manufacturing field. Therefore, the description of the surface defects
of aluminum profiles is distributed in the official website of the major aluminum man-
ufacturers. In order to ensure the accuracy of data collection, we needed to collect data
on the websites of major manufacturers and the related literature, and eventually form
four categories: defect type, feature, cause, and solution. Taking into account the manu-
facturing process of aluminum profiles, the “cause” and “solution” are divided into four
sub-categories respectively: “surface treatment”, “extrusion”, “casting”, and “mould”, as
shown in the Figure 10 below.
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4. Experiments on Convolutional Neural Network and Construction of Surface
Defect Ontology
4.1. Convolutional Neural Network Experiment

After the surface defect datasets are completed, the network model needs to be trained.
In this work, the ResNet101 neural network was constructed by Pytorch, trained by GPU,
and accelerated by cudnn. The GPU is RTX3060 and the CPU is core i7. In the experiment,
the network model was pretrained first. The training and test datasets selected the divided
datasets. The learning rate was set to 0.001. The training mode was set to multistep and
the batch size in the training was set to 128. The maximum training times was set to 100,
and the test was taken after each training session. In order to evaluate the performance of
ResNet101 fused with deformable convolutions, we needed to compare the experimental
results on datasets before and after the introduction of deformable convolutions under the
same experimental environment.

To determine the appropriate place to add deformable convolutions in ResNet101, exper-
iments were carried out by adding deformable convolution modules to the beginning (first
layer) and middle (containing trunk and shortcut branches) of the network model input. The
deformable convolution modules consists of a deformable convolve layer, a BN layer, and
a ReLu layer, namely the deformable convolution module = DeformConv + BN + ReLu. The
construction of the model is shown in Table 2. Line 1 represents the direct training of
the partitioned dataset in the ResNet101 model. Line 2 represents that the deformable
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convolution module is added only at the beginning of the input of ResNet101, which can
be understood as adding the deformable convolution module to the head of the network.
Line 3 represents the addition of deformable convolution modules to the trunk part and
the shortcut branch part of ResNet101, which can be understood as adding deformable
convolution modules to the middle of the network. Line 4 represents the addition of
deformable convolution modules in the head and middle of ResNet101. The evaluation
index of the training effect of the network model is the accuracy and cross-entropy loss.
By comparing the training set’s and validation set’s accuracy with the cross-entropy loss
value, we can determine that the network model with the deformable convolution module
in the middle of the network is better. Therefore, we chose the ResNet101 network model
with deformable convolution in the middle.

Table 2. Four ResNet models with deformable convolution at different locations.

Model
The Change Curve of Accuracy and
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Confusion matrix, accuracy, recall, and precision are common evaluation indices
of classification problems. The ResNet101 network model was tested on a dataset of
560 surface defect samples. The resulting four-classification confusion matrix is shown
in Table 3.
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Table 3. Four-classification confusion matrix of ResNet101 network model.

Confusion Matrix
Prediction

Scratch Bump Al-Powder Dirty Spot

true

scratch 120 3 3 8
bump 3 138 4 5

al-powder 6 6 128 3
dirty spot 10 5 8 110

The four-classification confusion matrix in Table 3 is normalized to preserve three
significant digits after the decimal point, as shown in Figure 11.
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The ResNet101 network model with deformable convolution is validated on a dataset
of 560 surface defect samples, obtaining a four-classification confusion matrix, as shown
in Table 4.

Table 4. Fusion of deformable convolution and deep residual network surface defect image classifica-
tion verification set confusion matrix.

Confusion Matrix
Prediction

Scratch Bump Al-Powder Dirty Spot

true

scratch 128 5 1 0
bump 0 148 0 2

al-powder 2 1 140 1
dirty spot 1 6 0 125

After the normalization of the four-classification confusion matrix of the introduced
deformable convolution ResNet101 network model, three significant digits after the decimal
point are retained, as shown in Figure 12.
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The accuracy of the two models is calculated from the experimental data in the
confusion matrices in Tables 5 and 6. The accuracy of the ResNet101 model is 86.6% on the
validation set, and the model with deformable convolution is 96.6%, which is improved by
11%. Similarly, the accuracy and recall are calculate as shown in Tables 5 and 6.

Table 5. Precision rate of model on validation set (%).

Model Scratch Bump Al-Powder Dirty Spot

ResNet101 86.3 90.8 95.8 87.3
Deform_ResNet101 97.7 92.5 99.3 97.7

Table 6. Recall rate of model on validation set (%).

Model Scratch Bump Al-Powder Dirty Spot

ResNet101 89.6 92 89.5 82.7
Deform_ResNet101 95.6 98.7 97.2 94.7

According to Tables 5 and 6 above, the average precision rate and recall rate of the
ResNet101 network model are 88.5% and 88.45%, respectively. The average precision rate
and recall rate of Deform_ResNet101 are 96.8% and 96.6%, respectively. The ResNet101
network model with deformable convolution improves the precision and recall rate by
8.3% and 8.15%, respectively, on the whole. The results in Tables 5 and 6 verify that
the introduction of deformable convolution can obtain more information related to task
objectives for the characteristic parameters extracted from network model ResNet101 and
abandon other useless or minor information.

4.2. Ontology Construction of Aluminum Profile Surface Defect
4.2.1. Methods of Constructing Ontology

A top-down approach is used to construct a causal knowledge graph of surface
defects. Firstly, the schema layer of the knowledge graph is defined by constructing domain
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ontology. Secondly, entities, attributes, and relationships between entities are extracted
from various types of data sources. Finally, the graph database Neo4j is used to store the
data of the KG.

The construction of a causal knowledge graph for surface defects is oriented to the
analysis of a specific defect formation mechanism. Moreover, the standardization of field
terms and the wide applicability of concept categories, as well as the hierarchical structure
of the concepts in the abstract field, are considered. The related attributes of each concept
and the relationship between concepts are defined [55]. We used the seven-step method
published by Stanford University to manually construct the domain ontology, the domain
ontology with the four elements of “Type—Feature—Cause—Solution” for the defect as the
core, and elements related to defect subjects, manufacturing tools, technological process,
and other entities, as shown in Figure 13.
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Figure 13. Mapping relationship between surface defect formation mechanism analysis and corre-
sponding ontology.

Entities, relationships, and attributes are extracted from each category and their
information is shown in the following table.

(1) Entity extraction: Four types of surface defects of aluminum profiles are selected and
the entity types of defects are shown in Table 7.

Table 7. Description of entity comparison.

Entity Name Description

scratch Slight rubbing of other objects after surface treatment (painting), resulting
in marks.

bump
When the aluminum is lifted by the crane, it is accidentally touched, or the
forklift is not careful to lift the material, resulting in the concave surface of
the aluminum.

al-powder Surface treatment powder spraying failed to evenly spray powder,
resulting in a pile of a pile of protrusion.

dirty spot Surface treatment, dust or some dirty things failed to erase, resulting in
coating particles more prominent.

(2) Relational extraction: The extraction of the surface defect relationship needs to inte-
grate relevant manufacturing tools, manufacturing processes, and other information
so that complex defect causes can be expressed as the relationship between various
processes and redundant information can be effectively removed, as shown in Table 8.
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Table 8. Entity relationship extraction.

Head of the Entity Relationship Tail Entity

scratch defect phenomenon scratches on the surface
scratches on the surface process surface treatment

surface treatment condition slide wiped
slide wiped measure move carefully after surface treatment to avoid collision

scratch internal cause mould
scratch external cause surface treatment
rough position mould

(3) Attribute extraction: Information is extracted from the formation mechanism and
solution of each defect type as the relevant explanations of entity or relationship. The
results of the partial attribute extraction are shown in Table 9.

Table 9. Entity attributes.

Object Property

mould rough, ribbed, die hole blocked with foreign body
surface treatment foreign body on work surface

The extraction of relations and attributes is based on the formation mechanism of
surface defects, especially the manufacturing process information of aluminum profiles.
Take the “scratch” defect as an example to supplement the relevant process information.
The description of the defect information is gradually structured by adding entities, such
as “mould”, “surface treatment”, and “cause site”, as well as relationships and attributes,
such as “condition”, “solution countermeasure”, etc., as shown in Figure 14.
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Figure 14. Network knowledge structure diagram of “scratch“ defect.

4.2.2. Storage of Knowledge

Considering the ease of use and stability, “Python + Neo4j” technology is adopted to
create and store the KG of surface defects. Neo4j is a high-performance NoSQL graphics
database that stores structured data on the network rather than in tables. Neo4j is also a
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high-performance graphics engine with graph computing capabilities. This work uses the
Python language to operate the Neo4j graph database with Cypher statements through
the py2neo library. Py2neo (https://github.com/py2neo-org/py2neo, accessed on 25 May
2022) is a community third-party library that makes it easier to use Python to operate
Neo4j. In the Neo4j graph database, the four-component ontology model is described by
labels, nodes, relations, and attributes. The detailed description is shown in Table 10. The
specific method of creating atlas elements is as follows: Use create () statement to create
nodes, node labels, and node attributes. Use match (), then create () statements to create
the relationships and relationship attributes between two nodes. The loading, searching,
matching, and sorting of the graph elements, such as entity, relation, and attribute, can be
realized by using return (), where (), and match (). After the graph elements are created, all
nodes are connected by relations to form a knowledge network that can express the logical
chain implied by the data relations. It is stored in the Neo4j graph database in the form of a
graph structure.

Table 10. Neo4j diagram database element description.

Neo4j Diagram
Database Elements Function Expression Object

label description of ontology concepts ontology concepts such as defect type, formation mechanism
and solution

node description of entity scratch, surface treatment, grinding wall and other specific objects

relationship description of relationships
between entities

process flow, cause position, condition, internal cause, external
cause and so on

property description of attributes of
entities and relationships

defect type description, process number and other entity
attributes and relationship attributes

According to the knowledge structure diagram in Figure 14, the structured information
is visualized through the Neo4j platform, and the refined defect knowledge graph is
shown in Figure 15 below. The description of visible defect information is fully displayed
through the relationships and attributes among entities, and more connections are generated
among entities.
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5. Development of Web Visualization System

In order to better help to explore and generate a causal knowledge graph, and also
to better drive the generation of the causal knowledge graph through the output data of
the convolutional neural network so as to better visualize the causal knowledge of surface
defects, we need to develop a visualization system. The system is developed based on
JavaScript, using WebStorm editing and Vue front-end architecture. It mainly includes a
classification module of aluminum profile surface defects and a database module of corre-
sponding causal knowledge. The Browser/Server (B/S) mode application system based on
web development has three layers of architecture, which are the image classification layer,
data layer, and user layer. The overall architecture is shown in Figure 16 below.
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5.1. Image Classification Layer

The convolutional neural network model is the main part of the image classification
layer, which realizes the classification of image defects. The network model is a trained
defect recognition and classification network based on the Pytorch framework. The main
framework of the network can be the Res-DBR network model proposed in this paper, or
other network models (such as MobileNet). The network model automatically classifies
the defect pictures, which need to be classified as long as the user inputs them into the
network models.

5.2. Data Layer

The data layer is a graphical database that stores the causal knowledge of all defects.
The knowledge is stored in Neo4j according to the storage structure of “defect type-cause-
solution”. Query, storage, and management of data are realized by the py2neo module. At
the same time, the output data of the network model is connected with the corresponding
data node of Neo4j by py2neo.

5.3. User Layer

The user layer is a user-friendly, interoperable, and fully functional visual interface.
After entering the system interface, the formation mechanism analysis visualization system
is divided into six regions, which realizes the loading of pictures, the classification of
pictures, and the visualization of the causal knowledge implied by the picture.
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Shown in Figure 17 below, the whole visualization system interface contains the defect
picture loading region (Region 1), convolutional neural network selection region (Region 2),
defect knowledge graph display level region (Region 3), causal knowledge textualization
region (Region 4), and knowledge graph display region (Region 5). Region 1 is used to
load the pictures to be classified. Region 2 is where the appropriate network is selected to
identify and classify the loaded defect images, and the corresponding causal knowledge
is displayed in Region 5 according to the output classification results. Region 3 is for the
selection of the display levels for all defect knowledge graphs, with the first-order showing
the “defect type”, the second-order showing the “cause analysis”, and the third-order
indicating the “solution”. In Region 4, the causal knowledge in the knowledge graph
is converted into text, which is convenient for the subsequent text processing work of
technical personnel. Region 5 and Region 6 are “parent-child” level display relationships
that facilitate the overall and partial control of the defect knowledge graph.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 26 
 

 

personnel. Region 5 and Region 6 are “parent-child” level display relationships that facilitate 

the overall and partial control of the defect knowledge graph. 

 

Figure 17. Diagnosis system for classification and formation mechanism analysis of product surface 

defects. 

6. Conclusions 

In order to solve the problem that information about defective design and manufac-

turing related to product surface defects is difficult to find and use, in this paper, we dis-

cuss how to enhance the representation of the causal knowledge behind the defect image 

through the knowledge graph, so as to enhance the image semantics of product surface de-

fects. We took the dataset of surface defects in Tianchi Industrial Aluminum Profiles as an 

example to carry out the experiment. Our contributions can be summarized as follows: 

(1) Given the irregular defects on the surface of industrial products, an improved ResNet 

deep convolutional neural network model is proposed and verified on the dataset of 

surface defects. The results show that the improved network model’s average accu-

racy, recall, and precision are increased by 11%, 8.15%, and 8.3%, respectively, effec-

tively improving its classification effect. 

(2) Based on the four elements of “defect type, characteristic, cause, and solution,” we 

constructed the knowledge graph of aluminum profile surface defects , which 

R
eg

io
n

 5
R

eg
io

n
 6

R
eg

io
n

 1
R

eg
io

n
 2

R
eg

io
n

 3
R

eg
io

n
 4

first-order relation second-order relation third-order relation

Figure 17. Diagnosis system for classification and formation mechanism analysis of product
surface defects.

6. Conclusions

In order to solve the problem that information about defective design and manu-
facturing related to product surface defects is difficult to find and use, in this paper, we
discuss how to enhance the representation of the causal knowledge behind the defect image
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through the knowledge graph, so as to enhance the image semantics of product surface
defects. We took the dataset of surface defects in Tianchi Industrial Aluminum Profiles as
an example to carry out the experiment. Our contributions can be summarized as follows:

(1) Given the irregular defects on the surface of industrial products, an improved ResNet
deep convolutional neural network model is proposed and verified on the dataset
of surface defects. The results show that the improved network model’s average
accuracy, recall, and precision are increased by 11%, 8.15%, and 8.3%, respectively,
effectively improving its classification effect.

(2) Based on the four elements of “defect type, characteristic, cause, and solution”, we
constructed the knowledge graph of aluminum profile surface defects, which realizes
the storage and visual representation of causal knowledge about aluminum profile
surface defects.

(3) By establishing a web visualization platform, the deep convolutional neural network
model was integrated with the causal knowledge graph to realize the causal visual-
ization of the defects in the causal knowledge graph driven by the output data of the
network model.

In the future, we will explore in the following directions:

(1) We will increase the types of defects in future work and conduct a more detailed
analysis of the causes of surface defects.

(2) We will design the corresponding application according to the framework structure.
For example, KBQA (knowledge graph question answering) has a broad application
prospect in solving the causes of product surface defects. Fast response to the causes
of defects can be achieved through KBQA.
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