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Abstract: Due to the leaps of progress in the 5G telecommunication industry, commodity pricing
and consumer choice are frequently subject to change and competition in the search for optimal
supply and demand. We here utilize a two-stage extensive game with complete information to
mathematically describe user-supplier interactions on a social network. Firstly, an example of how
to apply our model in a practical 5G wireless system is shown. Then we build a prototype that
offers multiple services to users and provides different outputs for suppliers, where in addition, the
user and supplier quantities are independently distributed. Secondly, we then consider a scenario
in which we wish to maximize social welfare and determine if there is a perfect answer. We seek
the subgame perfect Nash equilibrium and show that it exists, and also show that when both sides
reach it, social welfare likewise reaches its maximum. Finally, we provide numerical results that
corroborate the efficacy of our approach on a practical example in the 5G background.

Keywords: social network; game theory; provider competition; 5G wireless production; equilibrium

1. Introduction

Because of the telecommunication industry’s irregularity, wireless consumers have
complete freedom in selecting providers to achieve the greatest future tradeoff. Public Wi-Fi
connections are a well-known example, where users may connect to any Wi-Fi provider for
free but are charged for the time they spend connected. Despite the fact that the majority of
users prefer to connect to free public Wi-Fi, there are still many users who are willing to pay
for a premium service [1]. In this paper, we focus on the Wireless Service Providers (WSPs)
in the 5th Generation Mobile Communication Technology (5G) who offer specific limited
resources, such as a wireless frequency band, time slots, or transmission power. 5G is a
new generation of broadband mobile communication technology that has high-speed rates,
minimal latency, and a strong connection, making it superior to previous generations. How
providers set commodity pricing and how users pick a source and commodity quantities
is an important and fascinating issue. Suppliers are supposed to give different degrees of
service to consumers, and users are aware of the difference for in-depth analysis, to monitor
each interaction for each characteristic. As a result, each user is thought to have their own
utility functions.

We study the widely used linear pricing schemes in the literature (see [2,3]). This spurs
many ideas: the current TCP protocol can be explained as usage-based pricing methods
that solve the problem of maximizing network utility [2]. Many researchers in the related
literature look at resource supply and interaction through the lens of price strategy and
game theory. The related research of wireless settings generally is classified as follows: the
majorization-based allocation of one supplier’s resource (see [4–9]), theoretical study of
the game between one supplier’s buyers (see [10–13]), competition between suppliers in
the name of users(see [14,15]), and the price competition between suppliers (see [16–24]).
Additionally, one work studies a three-tier system for a particular utility function, and the
model is similar to ours [20]. The work we are interested in [22] uses evolutionary game
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theory to study multi-buyer, multi-seller dynamics in a cognitive radio setting. Then finally,
the price competition of multihop wireless networks is studied in [23,24]. The work [25]
by Chen inspired us to design and prove the decentralized algorithm. Nevertheless, our
work has many significant differences. First, we used a less-rigorous precondition to prove
our convergence. Second, our research shows that there are a finite (rather than infinite)
number of globally optimum solutions. Third, with our work, consumers are free to use
any resource quantity they choose. Finally, current research only focused on a single OFDM
cell in resource allocation optimization, while we prefer to investigate NOMA or uRLLC
with a high-speed network and low delay in the 5G background [26].

In this study, we explain the user-supplier interaction in the 5G wireless system using
a two-stage extended game with comprehensive information (see [27]). To understand how
to apply our model in a practical 5G wireless system, we take a 5G popular technology
as a specific example. Then we explain how the two-stage works. Suppliers set their
commodity pricing in the first stage, and consumers select the amount and supplier in
the second stage. A user may choose the less costly commodity with poor service or the
more expensive commodity with superior service. Based on users’ responses to suppliers’
prices, the suppliers take advantage and maximize profits. With this in mind, we first create
a prototype that provides consumers with a variety of services and distinct outputs for
providers. A multistage game model is utilized to describe the user-supplier relationship,
and the user and supplier quantities are independently distributed. Next, we consider a
social welfare maximization situation and determine that there must be an optimal solution.
At that point, we move to the supplier competition game, which generates a decentralized
algorithm that gradually finds equilibrium. The flowchart of the proposed algorithm
is shown in Figure 1. Users make decisions based merely on the suppliers’ set price;
meanwhile, suppliers determine the pricing based on demand (the user’s want). Finally,
we present numerical results that demonstrate the efficacy of the suggested approach.

Figure 1. The flowchart of the proposed framework.

Our model aims to address the lack of a strong strategy to address the mismatch
between supply and demand in the current 5G market, as well as the insufficient structure
of market, which can have extremely negative effects. The model provides the user with a
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perspective on how to select a supplier, also provides a perspective for suppliers on the
needs of users. It targets welfare maximization and provides an efficient way of managing
supply and demand-side constraints. At the same time, the model helps to motivate market
participants to make decisions that are most beneficial to the remaining economic agents.

2. The Model

Let us start with the features of 5G. In this section, 5G wireless networks will surpass
the mobile Internet. In addition to increasing data rates compared to today’s 4G and 4.5G
(LTE Advanced), new IoT and key communication examples will require new ways to
improve performance. For example, “low latency” is about providing real-time interactivity
for services that use the cloud: this is crucial to the success of self-driving cars for example.
In addition, low power consumption enables networked objects to run for months or years
without human assistance.

To better understand our research, we explain some notions here. As we set about for-
mulating our problem, initially, we assume there are two sets:M = {1, . . . , M} represent
the 5G wireless suppliers and N = {1, . . . , N} represent the 5G wireless users. Supplier
m ∈ M provides a Rm unit commodity to the users to maximize its return. User n ∈ N
buys commodities from one or more suppliers to maximize its payoff. We assume that
each user utilizes orthogonal resources, there is no interference between them, and mean-
while, the communication can be upward or backward. We simplify the interaction to be a
multileader-follower game (see [28,29]), with suppliers leading the way and users following.
In a relatively static network environment, channel gains are almost constant and also, pub-
lic information is known to both sides. For example, every supplier gathers its respective
channel information on every user and then applies it to all users. Section 4 assumes that
our decentralized algorithm yields the same outcome as the supplier competition game.

2.1. Supplier Competition Game

There are two stages in the supplier competition game. Each supplier claims its price
in the first stage. In the price vector b = [b1,. . . ,bM], bm represents the price for the unit
commodity that supplier m charges. In addition, every user n ∈ N chooses a demand from
different suppliers, depicted by vector rn = [rn1,. . . ,rnM]. Then we use a vector to depict the
overall demand: r = [r1,. . . ,rN].

In the second stage, as prices b have already been set, user n selects its demand
rn to maximize its payoff based on the price. We define the payoff as a utility after
subtracting expenses:

vn(rn, b) = un(
M

∑
m=1

rnmcnm)−
M

∑
m=1

bmrnm. (1)

In this equation, cnm is the offset of channel quality between provider m and user
n (see Example 1 and Assumption 2). Here, un is the utility function, which is concave
and increases with quantity. We can see that the utility function is based on the term
∑M

m=1 rnmcnm, which is the amount of service that users acquire, and also the function
of commodity uses. In the first stage, after taking into account the resource constraint
∑N

n=1 rnm 6 Rm, and in the second stage, after factoring users’ demand, then supplier m
sets the price to bm to maximize its return bm ∑N

n=1 rnm. We assume linear pricing, with each
user facing the same price.

In this model, any user can buy a commodity from more than one supplier simultane-
ously. In other words, for users, n, more than one rnm (m ∈ M) can be positive. It may be
reasonable only if the user’s device has several wireless interfaces. Interestingly, for most
users (N −M at least), the optimal strategy is to select one or no supplier.

In the following, a specific example shows how to apply our model in a practical 5G
wireless system.
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Example 1 (NOMA). Non-Orthogonal Multiple Access (NOMA) is a popular technology to
improve the efficiency of the 5G spectrum, with low latency, low signaling cost, and attenuation
resistance (see [30,31]). Wm, m ∈ M are the non-orthogonal frequency bands on which wireless
providers operate. rnm is the portion of time user n can transmit exclusively on supplier m’s
frequency band, in which ∑n∈Nm rnm = 1, m ∈ M is the constraint. We assume a peak power

constraint Pn exists as well for each user. Then we define cnm as Wm log (1 + Pn |hnm |2
σ2

nmWm
) by Shannon’s

theorem, in which the channel’s Gaussian noise variance is σ2
nm between provider m and user n,

while hnm is channel gain, channel gain describes the transmission capability characteristics of the
channel itself. The payoff for the user, then, is the remaining utility after subtracting payment for
the service, vn = un(∑M

m=1 rnmcnm)−∑M
m=1 bmrnm.

Similarly, our model applies when suppliers sell bandwidth of ultra-reliable low
latency communication (uRLLC) tones to users who face a maximum power constraint [32].
For example, cnm—the offset factor in Example 1—not only represents channel capability
but essentially any aspect of the channel capacity’s increasing function. Compared with
other previous technologies, 5G has a more significant channel gain. According to the
Shannon formula, when the channel gain hnm increases, the channel capacity cnm will
increase to achieve an extremely low delay.

Although the payment for the 5G service is high, the significant improvement of
quality of service(QoS): utility function un, is enough to offset the payment, and the final
income is significantly higher than that of time division multiple access(TDMA), and it can
also meet the requirements of low delay and high spectrum efficiency in modern times.

Finally, we find that this problem resembles a generalized network flow setting’s
multipath routing problem. A user parallels a source, similar to how a supplier corresponds
to a link. Fortunately, there is one fundamental similarity: the multipath routing problem is
equal-weighted, which applies to our model and does not hold in the TDMA model.

2.2. Assumptions about the Model

To focus on the problem of social welfare optimization, we make hypotheses, ignor-
ing some unnecessary factors in the supplier competition game. Here, we outline our
model assumptions.

Assumption 1. un(y) is increasing, differentiable, and strictly concave in y for each user n ∈ N .
In the network literature, this is how resilient data applications typically are modeled.

Assumption 2. We draw offset cnm for the channel’s quality from continuous, different probability
distributions. cnm are independent of each other, and evidently, different cnm cannot be equal.
cnm indicates that a user will have different results if it buys the same commodity quantity from
different suppliers.

As Example 1 shows, cnm is a function of hnm, which is the channel gain between a
supplier and user. Given that hnm is drawn from the independent continuous-probability
distributions, these assumptions can be fulfilled. In the next section, we study a related
socially optimal resource-allocation problem to analyze the supplier competition game.
Additionally, we show the solution based on a user’s unique demand. In Section 4, we
return to the supplier competition game. We find that the socially optimal, unique solution
resembles the supplier competition game’s unique equilibrium. Here, even when suppliers
and users are selfish, the game remains as efficient as previously.

3. Social Welfare Optimization
3.1. Maximizing Social Welfare

In the following, we study social welfare, a problem where we maximize the sum of
payoffs for both users and suppliers. We show that the solution is unique based on the
user’s demand. As users pay for advanced 5G resources and give money to suppliers,
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the payments between users and suppliers offset one another. Therefore, to maximize
social welfare, we need to maximize users’ utility functions. We define the social welfare
maximization problem as a function of service acquired by users, which is ultimately
inherent to users’ interests.

Definition 1. Let y = [y1, . . . , yN ] be the vector of services acquired, where the service acquired
by user n, yn = ∑M

m=1 rnmcnm acts as a function of rn = [rn1, . . . , rnM], the demand for resources
by user n.

Then we define the social welfare optimization problem (SWO) as

SWO : max u(y) =
N

∑
n=1

un(yn) + c

s.t.
N

∑
n=1

rnm = Rm, m ∈ M

M

∑
m=1

rnmcnm = yn, n ∈ N

over rnm, yn ≥ 0, ∀n ∈ N , m ∈ M.

(2)

Here, c is a variable that denotes the unpredictable change, but for simplicity, we set
c = 0. Two variables comprise the SWO: the service-acquired vector y and the demand
vector r. In fact, y is uniquely determined by r. So y is a function of variable r. Then we can
write y as y(r). For brevity, we write u(y(r)) as u(r).

3.2. Socially Optimal Demand Vector r∗’s Uniqueness

However, it is interesting that un(·)s fail to be strictly concave to the demand vector
rn, as is the case of SWO to r. As we all know, a maximization problem that is not strictly
concave may have more than one global optimal solution (see [33,34]). To get more than
one solution of vector r∗ in SWO, we simply modify cnms, Rms, and un(·)s to some value.
For example, if cnm is constant and the same for different n, m as it is for Rm, we can get a
non-unique maximizer of SWO. However, as we showed previously, cnms are independent
random variables from continuous distributions, and the probability of that case occurring
is zero (see Assumption 2).

As we also learn in Lemma 1, no two maximizing demand vectors can exist in SWO
that possess the same nonzero components. If two maximizing demand vectors combine,
the result is still a maximizing demand vector. Finally, with the previous intermediate
result, we see that maximizing demand vectors yields no convex combinations possessing
different nonzero components, and this contradicts Lemma 1. So, we can use this to prove
the primary finding of this section (Theorem 1).

Next, we define a demand vector rn’s support set.

Definition 2. User n’s support set is composed of suppliers from which user n’s demand is
strictly positive:

M̂n(rn) = {m ∈ M : rnm > 0.}

Given demand vector r, we define the support sets’ ordered collection M̂1,M̂1, . . . ,M̂N as
{M̂n}N

n=1.

Lemma 1. If r∗ is SWO’s maximizing demand vector containing the corresponding collection of
support sets of {M̂n}N

n=1, then it is almost true that r∗ can be a unique maximizing demand vector
compared to {M̂n}N

n=1.

Proof. Equation (2) holds for the maximizing demand vector r∗, and r∗ is uniquely con-
structed from {M̂n}N

n=1.
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Then two categories exist for the users: decided and undecided.
We define that the decided users are those who buy from one supplier (|M̂n| = 1),

while the undecided users are those who buy from more than one supplier (|M̂n| > 1). In
fact, some users will buy nothing. Without loss of generality, these users are defined as
decided users. y∗n = ∑M

m=n r∗nmcnm holds for all users. If user n is a decided user—which
means that he only buys from supplier m and buys nothing from other suppliers—we can
reduce the equation to y∗n = r∗nm̄cnm̄, because other terms are zero. Then the unique demand
vector that corresponds is r∗n = [0 . . . 0, y∗n

cnm̄
, 0 . . . 0].

Theorem 1. There is a unique maximizing solution b∗ with probability 1 in SWO. There are no
multiple maximizing demand vectors, and the convex combination of SWO for maximizing demand
vectors retains the same support.

Proof. Suppose that more than one SWO optimal demand vector exists. Two of them are
r′ and r∗. We learn from Lemma 1 that r∗ and r′ almost certainly have distinct support
sets

{
M̂∗n

}N
n=1 and

{
M̂′n

}N
n=1. Then, let rλ = λr∗ + λ̄r′, λ ∈ (0, 1), λ̄ = 1 − λ. If y∗n =

∑M
m=1 r∗nmcnm = ∑M

m=1 r′nmcnm and ∑M
m=1 rλ

nmcnm = λ ∑M
m=1 r∗nmcnm + λ̄ ∑M

m=1 r′nmcnm = y∗n,
then we can say that rλ is an SWO maximizing solution for each λ ∈ (0, 1). Next, we can
say that support set M̂λ

n (rλ) =
{

m ∈ M : rλ
nm = λr∗nm + λ̄r′nm > 0

}
when user n is M̂λ

n =

M̂∗n ∪ M̂′n, for every (λ ∈ (0, 1)). Note that the support sets
({

M̂λ
n
}N

n=1

)
, in particular, are

the same for all (λ ∈ (0, 1)). If two maximizing demand vectors exist with different support
sets of SWO, then the convex combinations of SWO for two maximizing demand vectors
retain the same support. This contradicts Lemma 1.

We prove the uniqueness and existence of a Lagrange multiplier vector b∗ based on
an SWO’s optimal demand vector r∗ [35]. In the following, we explain how the supplier
competition game’s unique equilibrium is (r∗, b∗).

4. Game Analysis

So far, with the multileader-follower supplier competition game, we showed that the
equilibrium is existing and unique, which is compared to the Lagrange multipliers and
SWO’s unique optimal solution. Now, here we explain that the Lagrange multipliers are
prices announced by suppliers. Furthermore, in this equilibrium, there are no more than
M− 1 undecided users.

The equilibrium concept is interpreted as follows [27]:

Definition 3. Say that we have a subgame perfect equilibrium (SPE) with a price demand tuple
(b∗, r∗), in which no participant would like to change at any stage of the game. Moreover, given the
price b∗, every user maximizes their payoff. Given users’ demand, r∗(b∗) and other participants’
price, every supplier maximizes its return.

The equilibrium is solved by backward induction. In Stage 2, the users’ equilibrium
strategy, users choose the best amount of resource r∗(b) based on the vector of prices b.
The function of Stage 2 is used to substitute the terms in Stage 1, the suppliers’ equilibrium
strategy, resulting in equilibrium price b∗. According to BGR decoding, r∗(b) is uniquely
determined by equilibrium price b∗.

4.1. Users’ Equilibrium Strategy

Taking every user’s decision into account, we can solve the problem of user payoff
maximization (UPM):

UPM : max
rn>0

vn = max
rn>0

un(
M

∑
m=1

rnmcnm)−
M

∑
m=1

bmrnm. (3)
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Lemma 2. Regarding the UPM problem, with each maximizer rn, ∑m=1 cnmrnm = y∗n, for a
unique nonnegative value of y∗n. Furthermore, for any m such that rnm > 0, bm

cnm
= mink∈M

bk
cik

.

Proof. We can easily verify that Slater’s conditions are satisfied via UPM [36]. The follow-
ing are the Karush–Kuhn–Tucker (KKT) conditions required for an optimal solution rn ≥ 0
of UPM of user n:

u′n(yn)cnm ≤ bm, m ∈ M (4)

rnm(u′n(yn)cnm − bm) = 0, m ∈ M, (5)

where yn =
M

∑
m=1

rnmcnm, rn ≥ 0. (6)

Here, (4) implies that u′n(yn) ≤ ϕ, where ϕ = mink∈M
bk
cnk

. Based on user n’s utility
function, two scenarios are possible: u′n(0) < ϕ and u′n(0) ≥ ϕ.

For the first scenario, u′n(0)cnm − bm < 0, so cnmu′n(yn) − bm < 0 for all m ∈ M
since, by Assumption 1, u′n(·) is a marginal utility-with a strictly decreasing function. So,
keeping (5) in mind, rnm = 0 for all m ∈ M. Then rn = 0, and with (6), we see y∗n = 0. So,
Equations (4)–(6) hold for the y∗n = 0 unique value.

With the second scenario, u′n(0) ≥ ϕ. However, keeping in mind that u′n(·) dwindles
to zero (Assumption 1), a unique ŷn ≥ 0 exists, such that u′n(ŷn) = ϕ. First, we make sure
rn exists, such that Equations (4)–(6) hold with yn = ŷn. We find that Equation (4) holds,
because u′n(ŷn) = ϕ ≤ bm/cnm for all m ∈ M. Then, with (5), we remember that for any m
such that bm/cnm > ϕ = u′n(ŷn) there is rnm = 0. For any other m, bm/cnm = ϕ = u′n(ŷn),
so, when it comes to (5), rnm can take any non-negative value. In particular, so that (6) holds
for the set {m ∈ M : bm/cnm = ϕ}, it is possible to choose rnm’s.

We provide the last part of the lemma by noting that rnm is positive only when
bm/cnm = ϕ. It remains to be seen whether ŷn is the only value of yn for which rn satisfies
Equations (4)–(6). We can say that for any yn < ŷn, u′n(yn) > ϕ, which violates (4) for m ∈
arg min bk/cnk. Then, for each yn > ŷn, un(yn) < ϕ, which means that un(yn)cnm − bm < 0
for every m ∈ M. Equation (5) implies, then, that rnm = 0 for every m ∈ M, meaning that
yn = 0; this is contradictory to yn > ŷn > 0. The unique searched value y∗n is thus ŷn.

Definition 4. Each supplier m ∈ M with bm
cnm

= mink∈M
bk
cik

is included in user n’s preference
setMn(b) for price vector b.

According to Lemma 2 and Section 2, we can divide users into decided and undecided
users based on the preference sets’ cardinality. The support sets in Section 2 are quite
similar to the preference sets. However, unlike support sets where users buy resources from
suppliers, it is just possible for a user to request a resource from suppliers in the preference
set. Evidently, the support set acts as a subset for the preference set: M̂n(r(b)) ⊂Mn(b).
Knowing this, we set about using the preference sets to construct a BGR so that there are
on-loops with probability 1.

We define the Lagrange multipliers b∗ as prices. Every user knows this information,
so it is not difficult to calculate the preference sets of other users and construct the BGR
in comparison. Undecided users can determine their unique demand vector using a BGR
decoding algorithm. For this, we consider all the demand vectors at a specific time and
consider the equality of supply and demand. Then we find the uniqueness of the demand
from BGR decoding. Although an infinite amount of best responses exist under prices
b∗, the supply and demand will balance only if the demands are found by BGR decoding.
Later, we prove that it is the supplier competition’s unique SPE.
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4.2. Suppliers’ Equilibrium Strategy

The user’s utility functions determine the suppliers’ optimal choice of prices. A utility
function un can be characterized by its coefficient of relative risk aversion [37], i.e., kn

RRA =

− yu′′n (y)
u′n(y)

. This quantity characterizes the relationship between price and user demand.

Assumption 3. Relative risk-aversion coefficient. kn
RRA < 1, ∀n ∈ N.

Some utility functions satisfy Assumption 3—for example, log(1 + y) and the ϕ− f air

utility function s y1−ϕ

1−ϕ , for ϕ ∈ (0, 1) [38]. To maximize the return, a monopoly will sell
all the resources Rm. Once a supplier decreases the price, the users’ demand substantially
increases, resulting in the supplier earning more than before. Thus, the supplier will lower
the price until total supply and total demand are equal.

Theorem 2. In keeping with Assumption 3, SPE as a price vector tuple meeting KKT conditions.
We constitute the supplier competition game’s SPE using the Lagrange multiplier vector b∗ and
SWO’s unique socially optimal demand vector r∗.

Proof. Suppose b = [b1, b2, . . . , bM] is the price that suppliers charge. As defined in
Equation (3), every user faces a local maximization problem UPMn(b). Given Assumption 3,
we further remark that r is an SPE of the supplier competition game only if each supplier’s
supply equals demand, n.e., ∑N

n=1 rnm = Rm for every m ∈ M. So, we consider the SPE as
a price vector tuple meeting KKT conditions. Moreover, these meet the KKT conditions for
any vector tuple b, r to be the SWO’s maximizing solution. We, therefore, designed a formal
equivalence between the maximizing demand vector and SPE of the supplier competition
game and the SWO problem (r∗, b∗)’s Lagrangian multipliers. From this, we deduce that
(r∗, b∗) form the supplier competition game’s unique SPE.

That social efficiency is not reduced by suppliers’ competition results in users’ utility
functions being strictly concave and the users’ demand is relatively elastic. Therefore, if the
price decreases a bit; demand will increase so much that the return is more than before.
If suppliers set the price different from the optimal price b∗, the supply and demand are
unequal. According to Theorem 2, we define the supplier competition game’s unique SPE
(b∗, r∗) as the equilibrium.

5. The Algorithm

Here, we provide a continuous-time algorithm, in which all the variables are func-
tions of time. For brevity, we write rnm(t) and bm(t) as rnm and bm, respectively. Then
we write their time derivatives ∂rnm

∂t and ∂bm
∂t as ˙rnm and ˙bm. Note that r∗ is the SWO’s

unique maximizer, while the corresponding Lagrange multiplier vector is b∗. According to
Theorem 2, we know that the supplier competition game’s unique SPE is (b∗, r∗), and its
values are invariant.

Given the demand vector rn(t), we write user N’s marginal utility according to rnm as
ψnm(t) or simply ψnm.

ψnm =
∂un(rn)

∂rnm
= cnm

∂un(y)
∂y

|y=yn=∑M
m=1 rnmcnm

. (7)

Here, we denote ψnm(t)’s value evaluated at r∗n as ψ∗nm. Then we define column vectors:
∇un(rn) = [ψn1, . . . , ψnM]T and ∇un(r∗n) = [ψ∗n1, . . . , ψ∗nM]T .

Next, (y)+ = max(0, y) is defined, so that

(y)+x =
{

y x > 0
(y)+ x ≤ 0.
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In the following, the standard primal-dual variable update algorithm is motivated by
the work in [25]:

ṙnm = kr
nm(ψnm − bm)

+
rnm

, n ∈ N , m ∈ M (8)

ḃm = kb
m(

N

∑
n=1

rnm − Rm)
+
bm

, m ∈ M. (9)

Here, kr
nm and kb

m are the constants that represent update rates. It is ensured that a
variable of interest (rnm or bm) will not turn negative when it is zero, even if the update’s
direction is negative. We define the tuple (r(t), b(t)) controlled by Equations (8) and (9) as
the differential equations’ solution trajectory. Users only need to be given the prices that
suppliers request. The providers do not need to be given other suppliers’ demands of the
users, except for that of their resources. Only user n needs to know cnm, m ∈ M.

The procedure of bipartite graph representation is as follows. First of all, for every
undecided node n ∈ N̂ , calculate the checksum Λn ← y∗n. Then, for every supplier m ∈ M̂
calculate the checksum Γm ← Rm −∑n:(n,m)/∈G r∗nm, ∀m ∈ M̂. Next, for every r∗nm > 0, add
edge (n, m) to the edge set E. And we have two steps in the loop. Step 1, Find a leaf node l
and associated edge (n, m), if the leaf node is a user node, then r∗nm ← Λn

cnm
, else r∗nm ← Γn.

Step 2, Let Λn ← (Λn − r∗nmcnm) and Γn ← (Γn − r∗nm), remove edge (n, m). Keep doing
these two steps until E ∈ ∅.

To find the unique optimal r∗n for undecided users, the algorithm provides detailed
procedures. Here, E,

(
N̂

)
, and

(
M̂

)
are sets of edges, user nodes, and supplier nodes

separately. Using the algorithm, we can find the demand of undecided users. Because the
probability that a BGR has no loops is 1, suppose that the BGR is an unrooted tree. Then
an uncomplicated iterative algorithm can remove a node with a single associated edge,
which we define as a leaf node and its incoming edge at each iteration. First, a leaf node is
found in the BGR. Second, the demand of the leaf node’s incoming line is given from BGR
Feature (1) or (2). Third, the parent node’s check-sum is updated with this value. Finally,
the leaf node and incoming edge are removed. This process is one iteration. Iterate until no
edges exist in the graph.

We can run the step finding the demand of undecided users because the probability
that a BGR has no loops is 1, and we suppose that the BGR has no loops. However, in
the last iteration, only one supplier node m plus one user node n exist, connected via
an edge with value r∗nm. Λn and Γm are their check-sums, which satisfy Λn = Γmcnm,
because Λn = r∗nmcnm and Γm = r∗nm. At last, undecided users’ unique demand is given by
the algorithm.

6. Numerical Results

We need to expand the settings to get numerical results. In Example 1, the fraction
of time restricted to the 5G wireless supplier’s frequency band is the resource that is
being sold, i.e., Rm = 1 for m ∈ M. Let Wm = 700 MHz, m ∈ M. Wm means the 5G
wireless suppliers’ bandwidth. anlog(∑M

m=1 rnmcnm + 1) is user n’s utility function, in which
the spectral efficiency cnm from the Shannon formula 1

2 Wlog(1 + Eb/N0
W |hnm|2), an is the

“willingness to pay” factor, which we assume is the same among users, rnm is allocated time
fraction, and Eb/N0 is the transmit power divided by thermal noise.

Suppose that the coding choices and modulation are perfect, with a continuum of
values supplying a steady communication rate. Users are placed, then, uniformly in field
that is 500× 500 square meters. We only provide these parameters to elucidate our point;
we can change the numbers and the theory still applies to the parameters. Let us think
of an example in the 5G background with 5 suppliers and 20 users. In Figures 2 and 3,
the equilibrium prices are represented as dashed lines. The competition among users can
influence the equilibrium. Notice that supplier d offers a higher price than supplier a.
Therefore, although supplier d can provide better resource quality, the user’s choice will
also be affected by the equilibrium prices. Meanwhile, supplier b has the most buyers, its
price is the highest, as Figures 2 and 3 shows.
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Figure 2. Evolution of difference between demand and supply.

Figure 3. Evolution of prices. The chart shows that when the equilibrium state is reached, the price
of supplier d is approximately 1.5 times higher than that of supplier a.

As for the convergence time in the discrete-time version: Suppose there are only
five suppliers, then the number of users increases from 20 to 100. At each condition, we
repeat the experiments 2000 times with random locations of suppliers and users. That way,
we can obtain the average convergence speed and plot it. We define convergence as the
number of iterations after which εRm is larger than the gap between demand and supply.
For different ε, Table 1 shows the average convergence time. Generally, if ε = 10−3, the time
to convergence is 2000–4000. If ε = 10−4, the time to convergence is 3000–6000.
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Table 1. Average time to convergence for different ε. When εRm is larger than the gap between
demand and supply, we define the number of iterations as convergence. In comparison, the smaller
the parameter ε, the larger the gap between supply and demand, so more iterations are required.
For instance, if ε = 10−3, the time to convergence is 2000–4000 in most cases, if ε = 10−7, the time to
convergence is 6000–12,000.

Number of Users ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7

Number of iterations

20 2022.4 3105.7 4209.9 5314.0 6209.9
30 2068.8 3006.3 4068.8 5110.5 6110.5
40 2407.0 3802.9 5011.2 6302.9 7532.0
50 2786.8 4203.5 5807.7 7016.0 8203.5
60 3145.8 4833.3 6312.5 8020.8 9520.8
70 3525.6 5129.8 7025.6 8733.9 10,067.3
80 3988.8 5509.6 7530.4 9509.6 10,926.3
90 4243.6 6035.3 8056.1 10,076.9 11,931.1

100 4435.9 6456.8 8435.9 10,540.1 12,519.3

In Table 2, we change the number of suppliers and see how the average convergence
time changes. Now, let ε = 10−4, and let it be constant. The update rates decide the
convergence time: with low rates, the variables are likely to stabilize, and they will not
take long to converge. In contrast, with high rates, the variables may converge rapidly.
Based on Section 4’s theoretical analysis, to obtain the algorithm’s global convergence, let
us distribute update variables randomly. Generally, the algorithm will iterate many times
to converge if the ratio of users per supplier is too low or too large.

Table 2. Average time to convergence for different numbers of suppliers when ε = 10−3. The chart
shows that when the ratio of suppliers to users is too high or low, the algorithm will iterate many
times to converge. For instance, nearly 7000 iterations are required for 9 suppliers and 20 users. When
the number of users increases gradually, the number of users is approximately positively correlated
with the average convergence time.

Number of Users 5 Suppliers 7 Suppliers 9 Suppliers

Number of iterations

20 6814.7 4199.3 3199.3
30 3947.5 3493.0 3045.4
40 3493.0 3793.7 3793.7
50 3849.6 4150.3 4255.2
60 4402.0 4604.8 4807.6
70 4807.6 5101.3 5304.1
80 5108.3 5437.0 5611.8
90 5611.8 5723.7 6108.3

100 6059.4 6213.2 6562.9

At last, Table 3 presents the average convergence time when there are five suppli-
ers with the standard variation. If the number of users is not 20, it does not affect the
convergence time variance. If the number of users per supplier is under 4, update rates
significantly impact the algorithm. In Table 2, we find that demands and prices vibrate and
converge slowly in such instances.
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Table 3. Including standard deviation in the average time to convergence.

Number of Users Mean Standard Deviation

Number of iterations

20 3098.0 2397.7
30 3053.3 899.1
40 3804.0 1095.1
50 4208.9 853.1
60 4798.3 1002.9
70 5306.9 904.9
80 5608.1 1089.3
90 6013.0 1037.5

100 6510.1 1198.8

7. Conclusions

This paper considers the competition between a random number of 5G wireless
providers to attract users with different channel gains and willingness to pay. In this study,
we utilized a two-stage wireless provider game to simulate the interaction in this work,
and we proved the convergence and unique equilibrium. In the provider competition, our
findings show that there is only one socially optimum resource allocation. At equilibrium,
there are some undecided users. There are also fewer undecided users than providers.
Finally, we designed a decentralized algorithm that uses only regional information to
converge to the equilibrium demand vectors and price.
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