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Abstract: Since the hardware limitations of satellite sensors, the spatial resolution of multispectral
(MS) images is still not consistent with the panchromatic (PAN) images. It is especially important
to obtain the MS images with high spatial resolution in the field of remote sensing image fusion.
In order to obtain the MS images with high spatial and spectral resolutions, a novel MS and PAN
images fusion method based on weighted mean curvature filter (WMCF) decomposition is proposed
in this paper. Firstly, a weighted local spatial frequency-based (WLSF) fusion method is utilized
to fuse all the bands of a MS image to generate an intensity component IC. In accordance with
an image matting model, IC is taken as the original α channel for spectral estimation to obtain a
foreground and background images. Secondly, a PAN image is decomposed into a small-scale (SS),
large-scale (LS) and basic images by weighted mean curvature filter (WMCF) and Gaussian filter
(GF). The multi-scale morphological detail measure (MSMDM) value is used as the inputs of the
Parameters Automatic Calculation Pulse Coupled Neural Network (PAC-PCNN) model. With the
MSMDM-guided PAC-PCNN model, the basic image and IC are effectively fused. The fused image
as well as the LS and SS images are linearly combined together to construct the last α channel. Finally,
in accordance with an image matting model, a foreground image, a background image and the last α

channel are reconstructed to acquire the final fused image. The experimental results on four image
pairs show that the proposed method achieves superior results in terms of subjective and objective
evaluations. In particular, the proposed method can fuse MS and PAN images with different spatial
and spectral resolutions in a higher operational efficiency, which is an effective means to obtain higher
spatial and spectral resolution images.

Keywords: weighted mean curvature filter (WMCF); image matting model; multi-scale morphological
measure (MSMDM); parameters automatic calculation pulse coupled neural network (PAC-PCNN)

1. Introduction

Nowadays, many remote sensing images with different resolutions can be obtained.
The panchromatic (PAN) images have high spatial resolution and reflect the spatial structure
information contained in the target region. The multispectral (MS) images contain rich spec-
tral information, which is suitable for recognition and interpretation in the target region, but
the spatial resolution is low. By fusing the MS and PAN images, the fused images have both
higher spatial detail representation ability and retain the spectral features contained in the
MS images, which can obtain a richer description about the target information. The fusion
between the MS and PAN images is also known as pan-sharpening. With the improvement
of remote sensing satellite sensor technology, the information integration and processing
technology has been enhanced, and the pan-sharpening technology has been widely ap-
plied in various aspects such as military reconnaissance, remote sensing measurement,
forest protection, mineral detection, image classification, and computer vision.

The pan-sharpening methods are divided into various fusion strategies. The compo-
nent substitution-based (CS) methods mainly include the intensity hue saturation (IHS)
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transform-based method [1], principal component analysis-based (PCA) method [2], adap-
tive Gram–Schmidt-based (AGS) method [3], etc. Moreover, Choi et al. [4] proposed a
partial replacement-based adaptive component substitution-based (PRACS) method. This
method generates high-resolution fused components by partial substitution and performs
high-frequency injection based on statistical ratios. Vivone et al. [5] proposed a band-
dependent spatial-detail with physical constrains-based (BDSD-PC) method. This method
adds physical constraints to the optimization problem for guiding the band-dependent
spatial-detail method toward a more robust solution. In general, the CS-based methods can
effectively enhance the spatial resolution of the fused image. On the other hand, it may
cause the spectral distortion to some extent.

The multi-resolution analysis-based (MRA) methods mainly include the Wavelet
Transform-based (WT) [6], Curvelet Transform-based [7], and Non-Subsampled Shearlet
Transform-based (NSST) methods [8]. With the MRA-based methods, the source image
is disintegrated into several sub-images with different scales through some multi-scale
decomposition methods. Then, different fusion rules are developed for sub-images at
different scales, so that the sub-images can be fused. Finally, the final fused image is
obtained by inverse transformation. In general, the MRA-based methods can obtain
higher spectral resolution, but their spatial resolution is inferior in comparison with the
CS-based methods.

Moreover, Fu et al. [9] proposed a variational local gradient constraints-based (VLGC)
method. This method first calculates the gradient differences between the PAN and MS
images in different regions and bands. Then, a local gradient constraint is added to the
optimization objective, so as to fully utilize the spatial information contained in the PAN
images. Wu et al. [10] proposed a multi-objective decision-based (MOD) method. This
method designs a fusion model based on multi-objective decision making, which, in turn,
performs a generalized sharpening operation by spectral modulation. Khan et al. [11]
proposed a Brovey Transform-based method that integrates Brovey and Laplacian filter to
improve the pan-sharpening effects.

In recent years, edge-preserving filters (EPF) are extensively applied for image pro-
cessing. Li et al. [12] proposed a novel method in accordance with a guided filter. This
method applies a guided filter to enhance the spectral resolution of the fused image.
EPF can fully utilize the spatial information contained in the original images by preserv-
ing the edge information while smoothing it. Thus, EPF is often used as a decomposi-
tion method. Another important method is the Pulse Coupled Neural Network (PCNN)
model [13]. After several iterations, the PCNN model can accurately extract the features
contained in the image. Thus, it is suitable for the field of image fusion [14,15]. For the
traditional PCNN model, the primary obstacle it faces is how to set the free parameters
scientifically. Thus, the Parameters Automatic Calculation Pulse Coupled Neural Network
(PAC-PCNN) model [16] is introduced into the pan-sharpening process. All parameters in
the PAC-PCNN model can be automatically calculated according to the inputs with a fast
convergence speed.

In general, the fusion images obtained by the CS-based methods can obtain higher
spatial resolution, but many spectral information will be lost. The fusion images obtained
by the MRA-based method can retain the spectral information, but will lose many spatial
details. In particular, the fusion images obtained by the MRA-based methods tend to have
spatial distortion, while the fusion images obtained by the CS-based method tend to have
spectral distortion. It is important to balance spatial distortion and spectral distortion.
Thus, a novel MS and PAN images fusion method based on weighted mean curvature filter
(WMCF) decomposition is proposed. The proposed method combines the advantages of
EPF decomposition and PAC-PCNN model, and focuses on solving spatial and spectral
distortion problems. Firstly, a weighted local spatial frequency-based method (WLSF) is
used to fuse all the bands of the MS image to generate intensity component IC. According
to an image matting model, IC is used as the original α channel for spectral estimation to
obtain a foreground and background images. Secondly, a PAN image is decomposed into a
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small-scale (SS) image, a large-scale (LS) image and a basic image by WMCF and GF. The
multi-scale morphological detail measure (MSMDM) values are used as the inputs of the
PAC-PCNN model. With the PAC-PCNN model guided by the MSMDM values, the basic
image and IC are effectively fused by the PAC-PCNN model. The fused image, and the LS
and SS images are linearly combined together to construct the last α channel. Finally, the
last α channel, foreground and background images are reconstructed in accordance with an
image matting model to acquire the final fused image.

The four primary contributions of this paper are listed below:

(1) An image matting model is introduced to effectively enhance the spectral resolution
of the fused image. The preservation of spectral information contained in the MS
image is mainly achieved by the image matting model;

(2) A MSMDM method is used as a spatial detail information measure within a local
region. By using the multi-scale morphological gradient operator, the gradient infor-
mation of an original image can be extracted at different scales. Moreover, summing
the multiscale morphological gradients helps both to measure the clarity and to
suppress noise within a local region;

(3) A PAC-PCNN model is introduced in the fusion process. The MSMDM values are
taken as the inputs to the PAC-PCNN model. All parameters in the PAC-PCNN model
are calculated automatically in accordance with the inputs and the conversion speed
is also fast;

(4) WLSF method improves the calculation by adding the diagonal direction based on
the original spatial frequency. In addition, based on the Euclidean distance, it is
determined that the weighting factor for the row and column frequencies is

√
2;

(5) A WMCF method is used to decompose image with multi-resolution, which has
advantages including robustness in scale and contrast, fast computation, and edge
protection.

The remainder of the paper is organized below. Section 2 introduces the related meth-
ods, including an image matting model, a MSMDM method, a PAC-PCNN model, a WLSF
method, and a WMCF method. Section 3 describes the fusion process in detail. Section 4
performs comparison experiments on four image pairs and analyzes the experimental
results. Section 5 presents the summary and some future works.

2. Related Methods
2.1. Image Matting Model

On the basis of an image matting model [17], an input image D can be separated into
a foreground image F and a background image B by a linear synthesis model, i.e., the
color of the i-th pixel is a linear combination of the corresponding foreground color Fi and
background color Bi, as shown below:

Di = αiFi + (1− αi)Bi (1)

where Fj
ix is the foreground color of the i-th pixel. Bi is the background color of the i-th pixel.

α is the opacity of the foreground image F. After the inputs D and original α channel are
determined, the foreground image F and the background image B are evaluated through
addressing the formula:

min∑
i

∑
j
(αiFi

j + (1− αi)Bj
i )

2
+ |αix|((Fj

ix)
2
+ (Bj

ix)
2
) + |αiy|((Fj

iy)
2
+ (Bj

iy)
2
) (2)

where i is the i-th channel. Fj
ix, Fj

iy, Bj
ix, Bj

iy, αix, and αiy are the horizontal and vertical

derivatives of the foreground color Fj, background color Bj, and α channel, respectively.
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2.2. Multi-Scale Morphological Detail Measure

A multi-scale morphological detail measure (MSMDM) method [18] is used as a
spatial detail information measure within a local region. By the multi-scale morphological
gradient operator, the gradient information of an original image can be extracted at different
scales. Moreover, summing the multiscale morphological gradients of a local region helps
both to measure the clarity and to suppress noise within a local region. The detailed
implementation process of MSMDM is as follows:

Firstly, the multi-scale structural elements should be constructed, as detailed below:

TEj = TE1 ⊕ TE1 · · · ⊕TE1︸ ︷︷ ︸
t

, t ∈ {1, 2, 3, · · ·, n} (3)

where TE1 is a basic structure element whose radius is r, and n is the number of scales.
The structural elements with different shapes can extract different kinds of features

contained in the original image. Moreover, it can be extended to several scales by altering
the size of the structural elements. Then, using the structure element, a comprehensive
gradient feature can be extracted from the original image.

Then, a multi-scale morphological gradient operator is used to extract the gradient
features Gk at scale t from an image g.

Gk(x, y) = g(x, y)⊕ TEk − g(x, y)	 TEk, k ∈ {1, 2, 3, · · ·, n} (4)

where ⊕ and 	 denote the morphological expansion and corrosion operators, respectively.
The gradients can be expressed as local pixel value difference information in the

original image. In particular, the maximum and minimum pixel values in the local area
for an original image can be obtained by the expansion and erosion operators, respectively.
In essence, the morphological gradient is the difference between the results obtained by
expansion and erosion operations. Thus, the local gradient information contained in an
original image can be extracted completely by the morphological gradient. Moreover, the
gradients can be extracted at different scales by using multi-scale structural elements.

Moreover, the gradients at all scales are integrated into the multi-scale morphological
gradient (MSMG).

MSMG(x, y) =
n

∑
k=1

[wk × Gk(x, y)] (5)

where wk denotes the weight of the gradient at scale k:

wk =
1

2× k + 1
(6)

The weighted summation is an effective method for fusing multi-scale morphological
features. Thus, we can first multiply the gradient values at each scale with appropriate
weights to obtain the morphological gradient values at each scale. Then, the morphological
gradient values of all scales are summed, and, thus, the multiscale morphological gradient
values are calculated.

In this paper, we assign larger weights to the smaller scale gradients and smaller
weights to the larger scale gradients. In particular, for the smoother parts of the image,
the pixel values vary less and the corresponding gradient values are smaller. Thus, the
gradient-weighted sum of different scales can reflect the spatial detail information.

Finally, the multi-scale morphological gradients in local region are summed to calculate
the MSMDM values and the specific details are shown in Formula (9). Summing the multi-
scale morphological gradients can help measure the clarity as well as suppress the noise
within a local region. Two examples of MSMDM are shown in Figure 1.

MSMDM(x, y) = ∑
(p,q)

MSMG(p, q), (p, q) ∈ B (7)
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There are three parameters to be set in MSMDM, i.e., the shape of the structural
element, the size of the basic structural element and the number of scales. In this paper,
a flat structure is chosen as the shape of the structure element. To suppress the noise, the
radius of the basic structural element TE1 is set to 4. Then the radius of the structural
element at the n-th scale will be equal to (2n + 1). Finally, the number n of scales from 4 to 9
is tested experimentally, and the best results were obtained when n = 6.

2.3. Parameters Automatic Calculation Pulse Coupled Neural Network

The Pulse Coupled Neural Network (PCNN) model was proposed by Johnson et al.
by improving and optimizing the Eckhorn model and Rybak model [13]. A single neuron
consists of three parts: the input part, the link part, and the pulse generator. Compared
with the artificial neural networks, the PCNN model does not require any training process.
In the PCNN model, there is a one-to-one correspondence between the pixels of an image
and neurons. The connection model of the PCNN neurons is shown in Figure 2.

For the traditional PCNN model, the primary obstacle it faces is how to set the free
parameters scientifically. In order to overcome the challenges and set these parameters
scientifically, a Parameters Automatic Calculation Pulse Coupled Neural Network (PAC-
PCNN) model [16] is introduced into the pan-sharpening process. All parameters in the
PAC-PCNN model are calculated automatically in accordance with the inputs and the
conversion speed is also fast. In this paper, the MSMDM value of the original image is
taken as the inputs of the PAC-PCNN model. Figure 3 demonstrates the structure of the
PAC-PCNN model.

In the above PAC-PCNN model, Lij denotes the connection input at the position (i, j).
Sij denotes the input information at the position (i, j). VL denotes the amplitude of the
connection input and Uij denotes the internal activity item. α f denotes the exponential
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attenuation coefficient and β denotes the connection strength. The output Yij has two states:
one is ignition (Yij = 1) and the other is non-ignition (Yij = 0). Its status depends on its
two inputs, i.e., the current internal activity Uij and the previous dynamic threshold Eij.
Moreover, αe and VE denote the exponential attenuation coefficient and the amplification
coefficient of Eij, respectively. W denotes the following connection matrix, whose value is
generally determined by experience.
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W =

0.5 1 0.5
1 0 1

0.5 1 0.5

 (8)

The PAC-PCNN model is mainly used to segment images, but it is also an effective
method to fuse images. In fact, the segmentation principle of PAC-PCNN-based image
segmentation methods is basically based on pixel intensity. It means that the PAC-PCNN-
based image fusion problem is strongly related to image segmentation. Thus, the PAC-
PCNN model is introduced into the fusion process.
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2.4. Weighted Local Spatial Frequency

The traditional spatial frequency (SF) [19] only describes spatial information in both
horizontal and vertical directions and lack diagonal information, resulting in some texture
and detail information is lost. However, this detail information is crucial for image fusion.
SF is calculated by Formula (9).

SF(x, y) =
√

RF2(x, y) + CF2(x, y) (9)

where RF(x, y) and CF(x, y) denote the row and column frequencies at the position
(x, y), respectively.

In this paper, the calculation of spatial frequency is improved by adding the calculation
of diagonal direction on the basis of the original one. In addition, based on the Euclidean
distance, it is determined that the weighting factor for row and column frequencies is√

2. The improved spatial frequency is called weighted local spatial frequency (WLSF),
which contains both row, column and diagonal directions, and the spatial frequencies in
the eight directions are weighted and summed. WLSF can reflect the activity of each pixel
in the neighborhood, and a larger spatial frequency value indicates that more spatial detail
information is contained within a local area. WLSF is calculated as follows:

WLSF(x, y) =
√

2RF2(x, y) + 2CF2(x, y) + DF2(x, y) (10)

where RF(x, y), CF(x, y), and DF(x, y) denote the row, column, and diagonal frequencies
at the position (x, y), respectively. RF and CF contain horizontal and vertical directions. DF
contains positive and negative diagonal directions. The detailed definitions are as follows:

RF = RF1 + RF2, CF = CF1 + CF2 (11)

DF = DF1 + DF2 + DF3 + DF4 (12)

RF1 =

√√√√ 1
(2M + 1)(2N + 1)

M

∑
j=−M

N

∑
k=−N

[P(x + j, y + k)− P(x + j, y + k− 1)]2 (13)

RF2 =

√√√√ 1
(2M + 1)(2N + 1)

M

∑
j=−M

N

∑
k=−N

[P(x + j, y + k)− P(x + j, y + k + 1)]2 (14)

CF1 =

√√√√ 1
(2M + 1)(2N + 1)

M

∑
j=−M

N

∑
k=−N

[P(x + j, y + k)− P(x + j− 1, y + k)]2 (15)

CF2 =

√√√√ 1
(2M + 1)(2N + 1)

M

∑
j=−M

N

∑
k=−N

[P(x + j, y + k)− P(x + j + 1, y + k)]2 (16)

DF1 =

√√√√ 1
(2M + 1)(2N + 1)

M

∑
j=−M

N

∑
k=−N

[P(x + j, k + n)− P(x + j− 1, y + k− 1)]2 (17)

DF2 =

√√√√ 1
(2M + 1)(2N + 1)

M

∑
j=−M

N

∑
k=−N

[P(x + j, y + k)− P(x + j + 1, y + k + 1)]2 (18)

DF3 =

√√√√ 1
(2M + 1)(2N + 1)

M

∑
j=−M

N

∑
k=−N

[P(x + j, y + k)− P(x + j− 1, y + k + 1)]2 (19)

DF4 =

√√√√ 1
(2M + 1)(2N + 1)

M

∑
j=−M

N

∑
k=−N

[P(x + j, y + k)− P(x + j + 1, y + k− 1)]2 (20)
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where (2M + 1) (2N + 1) denotes the size of the local area. P(x, y) denotes the pixel value at
the position (x, y).

2.5. Weighted Mean Curvature

The weighted mean curvature (WMC) [20] has the advantages of sampling invariance,
scale invariance and contrast invariance as well as computational efficiency. With a given
image U, the WMC is calculated as follows:

Hw(U) = n‖∇U‖2H(U) = ‖∇U‖2(∇ ·
∇U
‖∇U‖2

) (21)

where ∇ and ∇· denote the gradient operation and the scattering operation, respectively.
In particular, for a two-dimensional image, i.e., n = 2, Formula (21) can be simplified
as follows:

Hw(U) = ∆U −
U2

yUyy + 2UxUyUxy + U2
xUxx

U2
x + U2

y
(22)

where ∆ denotes the isotropic Laplace operator, Ux and Uy denote the partial derivatives
in the x and y direction. Uxx, Uyy, and Uxy denote the corresponding second-order partial
derivatives. The detailed derivation process can be found in [20]. WMC can be considered
as the gradient weighted by the mean curvature (MC) and also as the mean curvature
weighted by the gradient. The connection between WMC, the gradient and MC is shown
in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 23 
 

 

Figure 4. The connection between ΔU , ( )H U  and wH U . 

Formula (22) is a continuous form definition of WMC. However, the pixel points con-
tained in the actual image are discrete. Thus, we should define a discrete form for WMC. 
For a 3 × 3 window, eight normal directions are considered. Figure 5 shows the eight pos-
sible normal directions. 

 
Figure 5. Eight possible normal directions. 

The eight distances can be calculated from the above eight kernels as follows: 

, 1,2,...,8= ∗ ∀ =i id h U i  (23)

where ∗  denotes the convolution operation. The discrete form of Formula (22) is shown 
below: 

, arg min { ; 1,2,...,8}≈ = =w
k iH d k d i  (24)

For convenience, the simplified process of WMC can be expressed as follows: 

WMC( )=out inI I  (25)

where inI  and outI  are the input and filtered image, respectively. WMC( )  denotes the 
WMC filtering operation. 

3. Methodology  
3.1. Fusion Steps 

Figure 6 shows the fusion steps of a novel MS and PAN images fusion method based 
on weighted mean curvature filter (WMCF) decomposition, and the detailed fusion pro-
cess is described below: 
(1) Calculation the Intensity Component. 

Gradient

MC

Joint Prior

WMC

Figure 4. The connection between ∆U, H(U) and Hw(U).

Formula (22) is a continuous form definition of WMC. However, the pixel points
contained in the actual image are discrete. Thus, we should define a discrete form for
WMC. For a 3 × 3 window, eight normal directions are considered. Figure 5 shows the
eight possible normal directions.
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The eight distances can be calculated from the above eight kernels as follows:

di = hi ∗U, ∀i = 1, 2, . . . , 8 (23)

where ∗ denotes the convolution operation. The discrete form of Formula (22) is shown below:

Hw ≈ dk, k = argmin{|di|; i = 1, 2, . . . , 8} (24)

For convenience, the simplified process of WMC can be expressed as follows:

Iout = WMC(Iin) (25)

where Iin and Iout are the input and filtered image, respectively. WMC(·) denotes the WMC
filtering operation.

3. Methodology
3.1. Fusion Steps

Figure 6 shows the fusion steps of a novel MS and PAN images fusion method based
on weighted mean curvature filter (WMCF) decomposition, and the detailed fusion process
is described below:

(1) Calculation the Intensity Component.
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The main purpose of this step is to fuse all bands of the MS image in accordance with
a WLSF-based fusion method, thus generating an intensity component.

If a simple averaging rule is used, some details and texture information contained in
the original image will be dropped. Before performing the fusion operation, it is necessary
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to weight the different regions in the image according to the importance of the information
contained in the original image. The weighting factor size will directly affect the effect of
fusion. Thus, a WLSF-based fusion method is utilized to fuse all the bands of a MS image
to generate an intensity component IC. More specific details about WLSF can be found
in Section 2.4.

An individual pixel fails to accurately represent all features within a local area. WLSF
can make full use of the multiple pixels in a local area including horizontal, vertical, and
eight neighborhoods in the primary and secondary diagonal directions. Different weights
are assigned according to the Euclidean distance from the center pixel, and then participate
in the weighted calculation. WLSF can be used as a quantitative index for important
information such as details and textures. The pixels with larger WLSF values are more
important for fusion and should be assigned with a larger weight, e.g., detail, texture, and
other spatial detail information. Then, these pixels are given larger weights in the fusion
process. Thus, we design a coefficient ωd for adaptive weighted averaging based on the
WLSF value, as shown below:

IC(i, j) =
n

∑
d=1

1
ωi(i, j)

MSd(i, j) (26)

ωd(i, j) =
WLSFd(i, j)

n
∑

d=1
WLSFd

(27)

where n denotes the band number contained in the MS image. In the MS image, WLSFd(i, j)
denotes the WLSF value of the d-th band at the position (i, j), MSd(i, j) denotes the pixel
value of the d-th band at the position (i, j). ωd(i, j) denotes the weighting factor of the d-th
band at the position (i, j). IC(i, j) denotes the pixel value at the position (i, j) in IC.

(2) Spectral Estimation.

The main purpose of this step is to extract the foreground and background colors
in accordance with an image matting model, thus preserving the spectral information
contained in the MS image.

Setting IC as the original α channel, a foreground image F and a background image B
are obtained in accordance with Formula (2) in Section 2.1 to facilitate subsequent image
reconstruction operations using F and B.

(3) Multi-scale Decomposition.

The main purpose of this step is to perform multi-scale decomposition for the PAN
image on the basis of WMCF and Gaussian filter (GF), so as to sufficiently extract the spatial
detail information contained in the PAN image.

The multi-scale decomposition is based on WMCF and GF. By Formulas (30)–(34) in
Section 3.2, a PAN image can be decomposed into three sub-images with different scales,
which are a large scale image LS, a small scale image SS and a basic image, respectively.
More specific details about multi-scale decomposition can be found in Section 3.2.

(4) Component Fusion.

The main purpose of this step is to fuse the primary spatial information contained in
the MS and PAN images in accordance with a MSMDM-guided PAC-PCNN fusion strategy,
thus improving the spatial resolution of the final fused image.

The MSMDM value of the basic image and IC are used as the inputs of the PAC-
PCNN model, respectively. All parameters in the PAC-PCNN model can be automatically
calculated in accordance with the inputs with a fast convergence speed. In this paper, we
set the maximum iteration number for the PAC-PCNN model to 2000. When the maximum
number of iterations is reached, the iteration is stopped and then a fused image FA can be
obtained. More specific details about component fusion can be found in Section 3.3.
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(5) Image Reconstruction.

The main purpose of this step is to substitute the final α channel, F and B, into an
image matting model to obtain the final fused image.

A fused image FB is reconstructed through a linear combination of SS, LS, and FA, as
shown in Formula (28). Then, FB is utilized as the last α channel. According to Formula (1)
in Section 2.1, the final fusion result HD is calculated through combining the final α channel,
F, and B, as shown in Formula (29).

FB = SS + LS + FA (28)

HD = FB× F + (1− FB)× B (29)

Finally, the proposed method is summarized in the following Algorithm 1.

Algorithm 1: A WMCF-based pan-sharpening method

Input: low resolution MS image and high resolution PAN image
Output: high resolution MS image
1: Calculation the Intensity Component

A WLSF-based fusion method is utilized to fuse all the bands of MS image to generate an intensity
component IC.

2: Spectral Estimation
Setting IC is the original α channel, a foreground image F and a background image B are obtained
in accordance with Formula (2).

3: Multi-scale Decomposition
Based on WMCF and GF, PAN is decomposed into three different scales by Formulas (30)–(34):
large scale image LS, small scale image SS and basic image.

4: Component Fusion
A MSMDM-guided PAC-PCNN fusion strategy is used to fuse the basic image and IC. Then, a
fused image FA can be obtained.

5: Image Reconstruction
A fused image FB is reconstructed through Formula (28). FB is utilized as the last α channel.
According to Formula (1), the final fusion HM result is calculated through combining the final α

channel, F, and B.
6: Return HM

3.2. Multi-scale Decomposition Steps

WMCF can be used for image decomposition because it can preserve edge information
while smoothing the image. In addition, Gaussian filter (GF) is a widely used image
smoothing operator. In this paper, the multi-scale decomposition is based on WMCF and
GF. The multi-scale decomposition of the PAN image using WMCF and GF obtains a
large-scale image LS, a small-scale image SS and a basic image Basic. By this decomposition
method, an input image can be decomposed into three sub-images with different scales.
The specific decomposition process is as follows:

Firstly, the input image M is processed using WMCF and GF to obtain the filtered
images Iw and Ig, respectively.

Secondly, SS is obtained by the difference of M and Iw. LS is obtained by the difference
of Iw and Ig.

Finally, Ig is used as the basic image, i.e., Basic. Formulas (30)–(34) show the specific
computational procedure. The flow chart of the image decomposition method based on
WMCF and GF is shown in Figure 7.

Ig = GF(M, δ, ρ) (30)

Iw = WMCF(M) (31)

SS = M− Iw (32)

LS = Iw − Ig (33)
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Basic = Ig (34)

where ρ and δ represent the size of the radius and the variance of the GF. M represents a
PAN image. WMCF(·) and GF(·) represent the GF and WMCF operation, respectively.
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3.3. Component Fusion Steps

The PAC-PCNN model is introduced into the image fusion process. The MSMDM val-
ues of the basic image and MS intensity component IC, respectively, are used as the inputs
of the PAC-PCNN model. The detailed design of the MSMDM is shown in Section 2.2.

There are five free parameters in the PAC-PCNN model: α f , β, VL, VE, αe. The weighted
connection strength is denoted by λ = βVL. Thus, the weighted connection strength is
expressed. According to the analysis in [16], all the free parameters can be calculated
adaptively according to the input information, which solves the difficulty of setting free
parameters in the traditional PCNN model. All the free parameters in the PAC-PCNN
model are automatically calculated in accordance with Formulas (35)–(38):

α f = ln
(

1
σ(S)

)
(35)

λ =
Smax

S′ − 1
6

(36)

VE = e−α f + 1 + 6λ (37)

αe = ln

 VE
S′

1−e
−3α f

1−e−α f + 6e−α f λ

 (38)

where σ(S) is the standard deviation of the normalized input image S. S′ and Smax indicate
the normalized Ostu threshold and the maximum intensity of the input image, respectively.

When the maximum number of iterations is reached, the iteration is stopped. Then, the
sum of the ignition times with the basic image and IC are obtained, respectively. That will
provide the total number of ignitions TBasic and TIC for the basic image and IC, respectively.
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The fusion results Fused are acquired through using the large number of ignition times.
The fusion rules are as follows:

Fused(x, y) =
{

IC(x, y), TIC ≥ TBasic
Basic(x, y), TIC ≤ TBasic

(39)

where Fused(x, y) represents the fused value at the position (x,y) in the fusion image,
IC(x, y) represents the pixel value at the position (x,y) in IC, and Basic(x, y) represents the
pixel value at the position (x,y) in the basic image.

4. Experiments and Analysis
4.1. Datasets

We used a dataset which contains 36 image pairs [21]. Each image pair contains both
MS and PAN images, and their pixel sizes are 200 × 200 and 400 × 400, respectively.

Firstly, we up-sampled the original MS image to obtain the MS image with pixel size
of 400 × 400. Then, the MS image and PAN images are down-sampled to acquire the MS
image and the PAN image with pixel size of 200 × 200 as the experimental images. In this
case, the final obtained image is used as the experimental image, and the original image is
used as the reference image.

We choose four image pairs from different scenes for comparison experiments. Figure 8
shows four image pairs containing MS and PAN images and will be utilized for the
comparison experiments.
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4.2. Comparison Methods

In this paper, ten existing pan-sharpening methods are used for comparison with the
proposed method. These ten methods are BL [11], AGS [3], GFD [12], IHST [1], MOD [10],
MPCA [2], PRACS [4], VLGC [9], BDSD-PC [5], and WTSR [6], respectively.

4.3. Objective Evaluation Indices

There are two ways to evaluate a pan-sharpening methods: subjective visual effects
and objective evaluations. Each objective evaluation index considers different dimensions
of the problem, and generally has an overall consistency, which can reflect the true image
fusion results and also be consistent with the subjective evaluation indices. In order to
objectively evaluate the quality of the fused images obtained by each method, five widely
used quantitative indices are used in this paper. Some detailed introduction of each index
is shown below:
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(1) Correlation Coefficient (CC) [22]. It can calculate the correlation between the reference
MS image and a fused image. Its optimum value is 1;

(2) Erreur Relative Global Adimensionnelle de Synthse (ERGAS) [23]. It can reflect the
overall quality of a fused image and its optimum value is 0;

(3) Relative Average Spectral Error (RASE) [24]. It can reflect the average performance on
spectral errors and its optimum value is 0;

(4) Spectral Information Divergence (SID) [25] can evaluate the divergence between
spectra and its optimum value is 0. For more specific details about the SID index,
please refer to the literature [25];

(5) No Reference Quality Evaluation (QNR) [26]. When without a reference MS image,
it can reflect the overall quality of a fused image. QNR is composed of two parts: a
spectral distortion index Dλ and a spatial distortion index Ds. Its optimum value is 1.
For QNR, a higher value indicates a better fusion effect.

QNR = (1− Dλ)(1− DS) (40)

(6) Dλ can reflect the spectral distortion [26]. For Dλ, a lower value indicates a better
fusion effect and its optimum value is 0;

(7) Ds can reflect the spatial distortion [26]. For Ds, a lower value indicates a better fusion
effect and its optimum value is 0.

4.4. Experimental Results and Analysis

In Figures 9–12, give four groups visualization results obtained by BL, AGS, GFD,
IHST, MOD, MPCA, PRACS, VLGC, BDSD-PC, and WTSR, and the proposed method on
the first image pair, the second image pair and the third image pair, respectively. Moreover,
the last one gives the MS image as reference. In order to more visually compare the
differences between the fusion results obtained by each method, all fusion results were
locally enlarged.
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Tables 1–4 show four groups of quantitative results for the fusion results obtained by
eleven different pan-sharpening methods on the four image pairs, respectively. There are
five quantitative indices in total, including spectral and spatial quality evaluation. These
five indices are Correlation Coefficient (CC), Erreur Relative Global Adimensionnelle de
Synthse (ERGAS), Relative Average Spectral Error (RASE), Spectral Information Divergence
(SID) and No Reference Quality Evaluation (QNR). In particular, the best values for all
quantitative indices are displayed in bold red. The second best values for all quantitative
indices are displayed in bold green. The third best values for all quantitative indices are
displayed in bold blue.

Table 1. The first group of quantitative results.

CC (1) ERGAS (0) SID (0) RASE (0) QNR (1)

BL 0.663 7.519 0.014 20.753 0.586
AGS 0.494 8.804 0.019 28.837 0.373
GFD 0.755 7.216 0.010 16.435 0.629
IHST 0.663 7.643 0.009 24.117 0.521
MOD 0.945 1.801 0.004 7.334 0.887

MPCA 0.500 7.900 0.011 24.146 0.552
PRACS 0.943 1.813 0.008 7.369 0.784
VLGC 0.946 1.789 0.004 7.358 0.863

BDSD-PC 0.945 1.809 0.003 7.335 0.843
WTSR 0.841 3.044 0.006 12.392 0.498

Proposed 0.948 1.488 0.002 4.956 0.948

In Figure 9, compared with the reference MS image, the BL, AGS, IHST, and MPCA
methods appear spectral distortion with different degrees in the overall region. In particular,
for the BL method, the green part becomes dark blue in the local magnification region. For
the GSA and MPCA methods, the green part becomes yellowish in the local magnification



Appl. Sci. 2022, 12, 8767 17 of 21

area. Moreover, the WTSR and GFD method have some distortion with different degrees in
the spatial details. The fused images obtained by the MOD, PRACS, VLGC, and BDSD-PC
methods have higher spectral resolution and retain the spectral information contained in
the MS images. However, compared with these methods, the spatial details of the proposed
method are more defined, especially in the local magnification region. In Figure 7, from the
analysis of subjective vision, the proposed method has clearer spatial details and higher
spectral resolution, which means that the proposed method improves spatial details while
more spectral information contained in the MS images is retained.

Table 2. The second group of quantitative results.

CC (1) ERGAS (0) SID (0) RASE (0) QNR (1)

BL 0.721 5.093 0.010 23.304 0.495
AGS 0.491 5.986 0.018 28.299 0.316
GFD 0.768 5.614 0.015 22.543 0.676
IHST 0.735 5.509 0.009 21.980 0.550
MOD 0.949 1.765 0.002 7.202 0.894

MPCA 0.592 5.120 0.010 20.987 0.504
PRACS 0.930 1.860 0.003 7.566 0.780
VLGC 0.952 1.730 0.002 7.124 0.956

BDSD-PC 0.949 1.765 0.002 7.200 0.884
WTSR 0.869 2.764 0.006 11.273 0.567

Proposed 0.950 1.488 0.001 4.956 0.984

Table 3. The third group of quantitative results.

CC (1) ERGAS (0) SID (0) RASE (0) QNR (1)

BL 0.796 2.658 0.010 8.092 0.548
AGS 0.793 3.697 0.016 9.058 0.435
GFD 0.845 2.157 0.015 7.627 0.648
IHST 0.731 1.674 0.009 6.741 0.515
MOD 0.913 1.106 0.002 4.595 0.894

MPCA 0.798 1.851 0.017 7.707 0.535
PRACS 0.887 1.233 0.019 5.068 0.851
VLGC 0.912 1.120 0.003 4.651 0.909

BDSD-PC 0.911 1.106 0.006 4.595 0.884
WTSR 0.836 1.448 0.013 5.966 0.640

Proposed 0.914 1.488 0.001 4.956 0.946

Table 4. The fourth group of quantitative results.

CC (1) ERGAS (0) SID (0) RASE (0) QNR (1)

BL 0.442 6.683 0.050 28.734 0.584
AGS 0.313 7.504 0.065 26.254 0.351
GFD 0.757 5.611 0.021 20.598 0.568
IHST 0.464 6.129 0.029 26.129 0.597
MOD 0.943 1.604 0.007 5.147 0.903

MPCA 0.473 6.240 0.049 26.640 0.558
PRACS 0.943 1.606 0.009 5.174 0.816
VLGC 0.944 1.601 0.008 5.157 0.901

BDSD-PC 0.942 1.611 0.007 5.159 0.884
WTSR 0.733 3.053 0.021 11.237 0.573

Proposed 0.947 1.488 0.005 4.956 0.925

In Table 1, the proposed method can obtain the best values on all six quantitative
indices. Moreover, the VLGC method can obtain the second best values on the CC and
ERGAS indices, and the third best values on the SID and QNR indices. The MOD method
can obtain the second best values on the RASE and QNR indices, and the third best values
on the CC, ERGAS, and SID indices. The BDSD-PC method can obtain the second best
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value on the SID index and the third best values on the CC and RASE indices. Thus, from
the perspective of objective evaluation in Table 1, the proposed method has superior spatial
detail retention characteristics and spectral retention characteristics, and the overall effect
is better.

In Figure 10, compared with the reference MS image, the BL, AGS, IHST, and MPCA
methods appear spectral distortion with different degrees in the overall region. Especially,
in the local magnification region, for the BL method, the dark green part becomes dark
blue. For the AGS and MPCA methods, the dark green part becomes yellowish. For
the IHS method, the dark green part becomes light green. Moreover, the WTSR and
GFD methods have severe spatial detail distortion. The fused images obtained by the
MOD, PRACS, VLGC, and BDSD-PC methods have a higher spectral resolution and retain
the spectral information contained in the MS images. However, compared with these
methods, the spatial details of the proposed method are more defined, especially in the
local magnification region. In Figure 8, from the analysis of subjective vision, the proposed
method has clearer spatial details and higher spectral resolution, which means that the
proposed method improves spatial details while more spectral information contained in
the MS images is retained.

In Table 2, the proposed method can obtain the best values on all six quantitative
indices. In particular, the QNR value of the proposed method is 0.984, which is relatively
close to the optimal value of 1. In addition, the VLGC method can obtain the second best
values on all six indices. The MOD method can obtain the second best value on the SID
index and the third best values on the CC, ERGAS and QNR indices. The BDSD-PC method
can obtain the second best value on the SID index and the third best values on the CC and
RASE indices. The PRACS method can obtain the third best value on the SID index. Thus,
from the analysis of the objective evaluation results in Table 2, the proposed method has
superior spatial detail retention characteristics and spectral retention characteristics, and
the overall effect is better.

In Figure 11, compared with the reference MS image, the BL and GFD methods appear
spectral distortion with different degrees. In particular, in the local magnification region,
for the BL method, the light gray part becomes dark gray. For the GFD method, the
yellowish part becomes pink. Moreover, the WTSR and GFD methods have severe spatial
detail distortion. The fused images obtained by the MOD, PRACS, VLGC, and BDSD-PC
methods have a higher spectral resolution and retain the spectral information contained in
the MS images. However, compared with these methods, the spatial details of the proposed
method are more defined, especially in the local magnification region. In Figure 9, from the
analysis of subjective vision, the proposed method has clearer spatial details and higher
spectral resolution, which means that the proposed method improves spatial details while
more spectral information contained in the MS images is retained.

In Table 3, the proposed method can obtain the best values on all six quantitative
indices. Besides, the VLGC method can obtain the second best values on the ERGAS and
QNR indices, and the third best values on the CC, SID, and RASE indices. The MOD
method can obtain the second best values on the CC, SID, and RASE indices, and the
third best values on the ERGAS and QNR indices. Thus, from the analysis of the objective
evaluation results in Table 3, the proposed method has superior spatial detail retention
characteristics and spectral retention characteristics, and the overall effect is better.

In Figure 12, compared with the reference MS image, the BL, AGS, IHST, and MPCA
methods show spectral distortion with different degrees in the overall region. In particular,
in the local magnification region, for the BL and IHST methods, the pink part becomes
dark red and the dark green part becomes light blue. For the AGS and MPCA methods,
the pink part became dark green and the dark green part became light pink. Moreover, the
WTSR and GFD methods have spatial detail distortion with different degrees. The fused
images obtained by the MOD, PRACS, VLGC, and BDSD-PC methods have higher spectral
resolution and retained the spectral information contained in the MS images. However,
compared with these methods, the spatial details of the proposed method are more defined,
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especially in the local magnification region. In Figure 10, from the analysis of subjective
vision, the proposed method has clearer spatial details and higher spectral resolution, which
means that the proposed method improves spatial details while more spectral information
contained in the MS images is retained.

In Table 4, the proposed method can obtain the best values on all six quantitative
indices. In addition, the VLGC method can obtain the second best values on the ERGAS
and CC indices, and the third best values on the SID, QNR and RASE indices. The MOD
method can obtain the second best values on the QNR, SID and RASE indices, and the third
best values on the ERGAS and CC indices. The BDSD-PC method can obtain the second
best value on the SID index. The PRACS method can obtain the third best values on the
CC and SID indices. The PRACS method can obtain the third best value on the CC index.
Thus, from the objective evaluation results in Table 4, the proposed method has superior
spatial detail retention characteristics and spectral retention characteristics, and the overall
effect is better.

From the perspective of subjective vision, the fusion results obtained from the pro-
posed method have clearer spatial details and higher spectral resolution. From the perspec-
tive of objective evaluation, the fusion result obtained from the proposed method performs
best on all six quantitative indices. In general, the comprehensive evaluation based on
objective evaluation and subjective visual effects can show that the proposed method has
superior spatial detail retention characteristics and spectral retention characteristics.

5. Conclusions

In this paper, a novel MS and PAN images fusion method based on WMCF decompo-
sition is proposed. A WLSF-based method is used to fuse all the bands of the MS image
to generate the intensity component IC. In accordance with an image matting model, IC
is used as the original α channel for spectral estimation to obtain a foreground image F
and a background image B. WMCF and GF are used to decompose a PAN image into
three scales, i.e., a small scale (SS) image, a large scale (LS), and a basic image, respec-
tively. Then, a MSMDM-guided PAC-PCNN fusion strategy is used to fuse IC and the
basic image obtained from the PAN image. All parameters in the PAC-PCNN model can
be automatically calculated in accordance with the inputs with a fast convergence speed.
Finally, the fused images, and the LS and SS image are combined as the last α channel.
In accordance with an image matting model, the foreground color F, background color B
and the last α channel are reconstructed to obtain the final fused image. The experimental
results show that the method proposed in this paper has better performance than some
representative pan-sharpening methods and can solve the problem of spatial distortion
and spectral distortion.

We conducted experiments using four different image pairs to compare with ten
representative pan-sharpening methods. The experimental results show that the proposed
method can achieve superior results in terms of visual effects and objective evaluation.
The proposed method can obtain more spatial details from the PAN image with higher
efficiency while retaining more spectral information contained in the MS image. By fusing
the MS and PAN images, the fused images have both higher spatial detail representation
ability and retain the spectral features contained in the MS images, which can obtain a
richer description about the target information. With the improvement of remote sensing
satellite sensor technology, the information integration and processing technology has been
enhanced. Thus, the proposed method can be better applied to various aspects, such as
military reconnaissance, remote sensing measurements, forest protection, vegetation cover,
image classification and machine vision.

In the future research, we will work on developing more effective fusion strategies
and explore the application of our method in other fields.
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