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Abstract: Quantum computing requires large numbers of resources of entangled qubits, which cannot
be satisfied using traditional methods of entanglement generation, such as optical systems. Therefore,
we need more efficient ways of entanglement generation. It has been proved that multi-coin quantum
walks can be used to replace direct Bell state measurements during the process of entanglement
generation in order to avoid the difficulty of Bell state measurement. In this paper, we take one
step further and generate 4-qubit cluster states using multi-coin quantum walks, which simplifies
the generation of 4-qubit cluster states by using only Bell states and local measurements. We also
propose a method for preparing 4-qubit cluster states with quantum circuits to facilitate their use in
quantum computing.
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1. Introduction

With the development of quantum information technology, quantum computing
is becoming more demanding and realistic than ever. Traditional quantum computing
is based on quantum circuits composed of single-qubit and multi-qubit quantum gates,
which is difficult to implement in real world. As an improvement of traditional quantum
computing, Briegal and Raussendorf et al. proposed the concept of measurement-based
quantum computing (MBQC) in 2001 [1,2]. Although MBQC simplifies the process of
quantum computing, it requires an efficient way to generate cluster states to carry out
the operations.

Cluster states, introduced by Nielsen in 2004 [3], are multiple qubits that are highly
entangled. Compared with other types of entangled states, cluster states are easier to
maintain their entangled properties, which is very suitable for quantum computing. Cluster
states are traditionally generated based on optical systems and requires a large number
of repetitive operations. Improved methods have been proposed: Browne et al. proposed
the Browne–Rudolph protocol in 2005 [4], which can generate new cluster states with
a probability of 0.5 by using two types of fusion gates while consuming one photon;
Gilbert et al. proposed an improved Browne–Rudolph protocol in 2006 [5]; Louis et al.
proposed a new method for generating cluster states using weak non-linearity in 2007 [6].
However, these methods are still too complicated to be implemented in real applications.
Therefore, easier and more efficient methods of cluster state generation are required.

Multi-coin quantum walk can be used to address this problem. Coined quantum
walk is one kind of discrete-time quantum walk that combines the freedom of qubits with
the classical random walk and defines a new type of quantum coin [7,8]. Additionally,
multi-coin quantum walk involves several coin operators that manipulate the qubits, which
can be implemented to carry out specific operations [9–12]. Recent researches have proved
that quantum walk-like protocols can be used to carry out entanglement swapping [13]
and multi-coin quantum walk can generate 2-qubit entangled state and 3-qubit GHZ state
using only Bell states and local measurement [14]. It has also been proved that coined
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quantum walk can be used to construct quantum gates and implement universal computing
in 2-qubit ot 3-qubit systems [15]. In this paper, we extend the method proposed in [14]
and generate 4-qubit cluster states between targeted qubits with 3 pairs of Bell states and
local measurement, which significantly simplifies the process of traditional cluster state
generation. We also propose a practical implementation of 4-qubit system of quantum
gates and construct a quantum circuit using multi-coin quantum walk to generate 4-qubit
cluster state. This method provides a more physically feasible option for real applications.

This paper is organized as follows. First, we briefly introduce the process of multi-coin
quantum walk and describe the generation of 3-qubit GHZ state and 4-qubit cluster state
in detail. Next, we introduce the formation of Controlled-Z gate and Hadamard gate in a
4-qubit system using multi-coin quantum walk and then generate 4-qubit cluster state with
the composed quantum circuit. Finally, we make a summary of our work.

2. Generating Cluster States through Multi-Coin Quantum Walk

Before introducing the generation process, we briefly describe the process of multi-coin
quantum walk in an arbitrary graph with m(m ≥ 2) nodes. The whole evolutionary Hilbert
space is H = HP ⊗HC1 · · · ⊗ HCk , where HP and HCj represent the position space and
the j-th coin space, respectively. At j-th step of quantum walks, the corresponding unitary
operator is described as

Uj = Sj · (Cj ⊗ I), (1)

where j implies the j-th step of quantum walk while S and C are conditional shift operator
and coin operator, respectively. Here, Cj acts on the j-th coin spaceHCj and Sj acts on the
combination space of positionHP and j-th coin spaceHCj . Assume that the initial state is
|ψ(0)〉, then the system state after k steps becomes

|ψ(k)〉 = (UkUk−1 · · ·U1)|ψ(0)〉 = (
k

∏
j=1

Uj)|ψ(0)〉. (2)

where Uj = (Sj ⊗ IH
C1 · · · ⊗ IH

Cj−1 ⊗ IH
Cj+1 · · · IHCk ) · (IH

P ⊗ IH
C1 · · · ⊗ IH

Cj−1 ⊗ Cj ⊗
IH

Cj+1 · · · IHCk ) [14]. Conditional shift operator Sn−com in an n-complete graph [16] with m
nodes can be described as

Sn−com =
n−1

∑
x,i=0
|(x + i)mod n〉〈x| ⊗ |i〉〈i|, (3)

and when m = 2, corresponding S2−com can be simplified to

S2−com = (|0〉〈0| ⊗ |1〉〈1|)⊗ |0〉〈0|+ (|1〉〈0| ⊗ |0〉〈1|)⊗ |1〉〈1|. (4)

2.1. GHZ States Generation

Before we generate 4-qubit cluster state, it is necessary to generate 3-qubit GHZ state
through quantum walk first. Therefore, we consider the generation of GHZ state using 2
pairs of Bell states. The system state of 4 qubits is

|ϕ(0)〉 = 1
2
(|00〉+ |11〉)01(|00〉+ |11〉)23 (5)

and our target is to generate GHZ state between qubit 0, 2, and 3, which means that our
method is deterministic rather than post-selection based. In the case of 2-complete graph,
we only need to go through two quantum walks to obtain the GHZ state, and its evolution
is shown in Figure 1, where the circle represents the qubit and the straight line represents
the entanglement. Through quantum walks described in Equations (6) and (7), GHZ state
formed between qubit 0, 2, and 3 can be obtained. In the implementation of 2-step quantum
walks, qubit 0 serves as a walker and qubit 1, 2, and 3 as coins.
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Figure 1. Process of generating GHZ state with 2 pairs of Bell states through quantum walk.

|ϕ(1)〉 = S2−com
1 (C1 ⊗ I)|ϕ(0)〉 = 1

2
(|00〉+ |01〉)01(|00〉+ |11〉)23 (6)

|ϕ(2)〉 = S2−com
2 (C2 ⊗ I)|ϕ(1)〉 = 1

2
(|000〉+ |111〉)023(|0〉+ |1〉)1 (7)

In the first step (Equation (6)), to be specific, we take qubit 0 as walker and qubit 1 as
coin whose operator is C1 = I. In the second step (Equation (7)), we also take qubit 0 as
walker but qubit 2 as coin whose operator is C2 = I. After performing X-basis measurement
on qubit 1, we can achieve GHZ state between qubit 0, 2, and 3. This process is simulated
using IBM Quantum Experience and the result is shown in Figure 2. It can be seen that
GHZ states are generated between targeted qubits. This also proved that GHZ states can
be prepared through quantum walk only by using Bell states.

(a)

(b)

Figure 2. Generating GHZ states through 2-step multi-coin quantum walk: (a) Quantum circuit
generating GHZ states and (b) simulation results. CNOT gates are indicated by blue circles in
the circuit.
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2.2. 4-Qubit Cluster States Generation

The 4-qubit cluster states can be described in the form below [17]:

|ψ〉0123 =
1
2
(|0000〉+ |0011〉+ |1100〉 − |1111〉)0123 (8)

Based on the GHZ state achieved above, we can introduce another pair of Bell state
to obtain 4-qubit cluster state through quantum walk, the process of which is shown
in Figure 3, where the circle represents the qubit, and the straight line represents the
entanglement. Again, the result is determined and we want to form cluster state between
qubit 0, 2, 3, and 5 through multi-coin quantum walk in a 2-complete graph.

Figure 3. Process of generating 4-qubit cluster state with Bell states through quantum walk.

The initial state of the system is composed of 3 pairs of Bell states and can be de-
scribed as:

|ψ(0)〉 = 1
2
√

2
(|00〉+ |11〉)01(|00〉+ |11〉)23(|00〉+ |11〉)45. (9)

We first repeat the 2-step quantum walk mentioned above to generate GHZ state (11)
and (12), during which qubit 0 serves as a walker and qubit 1 and 2 as coins in turn with
C1 = I and C2 = I. Then, the newly introduced Bell state steps in. In the third step, we take
qubit 5 as walker and qubit 4 as coin described as C3 = I. In the fourth step, we also take
qubit 5 as walker but qubit 0 as coin with C4 = H0, where H0 is Hadamard gate performed
on qubit 0:

H0 =
1√
2

[
1 1
1 −1

]
(10)

For the system state, each step of quantum walk can be described as:

|ψ(1)〉 = 1
2
√

2
(|00〉+ |01〉)01(|00〉+ |11〉)23(|00〉+ |11〉)45 (11)

|ψ(2)〉 = 1
2
√

2
(|0〉+ |1〉)1(|000〉+ |111〉)023(|00〉+ |11〉)45 (12)

|ψ(3)〉 = 1
2
√

2
(|0〉+ |1〉)1(|000〉+ |111〉)023(|00〉+ |01〉)45 (13)

|ψ(4)〉 = 1
4
(|0000〉+ |0011〉+ |1100〉 − |1111〉)0235|+〉1|+〉4 (14)

After four steps of quantum walk, we perform X-basis measurement on qubit 1 and 4
and a 4-qubit cluster state between qubit 0, 2, 3, and 5 are achieved using only Bell states.

Same as GHZ states, we also use IBM Quantum Experience to verify our method. The
corresponding operations are implemented in quantum circuit and shown in Figure 4. We
can see that a 4-qubit cluster state are obtained between q[0], q[2], q[3], and q[5].
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(a)

(b)

Figure 4. Generating cluster states through 4-step multi-coin quantum walk: (a) Quantum circuit
generating cluster states and (b) simulation results.

In this part, 4-qubit cluster states are generated by multi-coin quantum walk in a
2-complete graph using only Bell states and local measurements. This result can also prove
that we can generate higher-dimensional entangled qubits following the the same method
by adding more pairs of Bell state. Take 5-qubit cluster state as an example: In order to
achieve the entangled state |ψ〉 = 1

2 (|00000〉 + |00111〉 + |11101〉 + |11010〉), a possible
8-step quantum walk can be implemented using 4 pairs of Bell states. The initial state of
the system is

|ψ(0)〉 = 1
4
(|00〉+ |11〉)01(|00〉+ |11〉)23(|00〉+ |11〉)45(|00〉+ |11〉)67 (15)

Firstly, we take qubit 0 as walker and qubit 2 and 3 as coins in turn with C1 = I and
C2 = I. Then, Hadamard gate C3 = H is performed on qubit 0. Next, we take qubit 5 as
walker and qubit 3, 4 and 2 as coins, in turn, with C4 = I, C5 = I, and C7 = I. Finally, we
take qubit 6 as walker and qubit 7 and 3 as coins with C6 = I and C8 = I. The process will
become more complicated as the dimension goes higher but the advantage of using only
Bell states and local measurements remain the same.

This method can also be used in some applications to simplify the process, for example
quantum secure direct communication (QSDC) [18]. A brief procedure of QSDC based on
our method can be described as follows:
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∣∣φ+
〉
=

1√
2
(|00〉+ |11〉)→ 00

∣∣φ−〉 = 1√
2
(|00〉 − |11〉)→ 11

∣∣ψ+
〉
=

1√
2
(|01〉+ |10〉)→ 01

∣∣ψ+
〉
=

1√
2
(|01〉 − |10〉)→ 10

(16)

Provided that the encoding scheme in Equation (16) is used by the sender Alice and
the receiver Bob:

Firstly, Alice prepared an ordered sequence of Bell states of |φ+〉, where every 3 Bell
states are seen as a group. For each group, qubit 0, 2, and 4 are kept by Alice while qubit 1,
3, and 5 are sent to Bob, creating sequence P024 and P135, respectively. After Bob receives
sequence P135, Alice and Bob carry out 4-step quantum walk using our method to generate
cluster states between qubit 0, 2, 3, and 5. X-basis measurement are made on qubit 1 and
4, which serves as the first security check. If both measurement results turn out to be |0〉,
the channel is secure and the corresponding sequences P

′
02 and P

′
35 (the ordered sequences

after measurements) are kept, otherwise they are discarded.
Secondly, sufficient groups of qubits are chosen from P

′
02 as checking qubits and

one of the operations in
{

I, σx, σy, σz
}

is performed on each of the checking qubit. The
information to be sent is then encoded onto the remaining groups in P

′
02 and sent to Bob.

Extra disturbing qubits are added during this process and the positions of disturbing qubits
and checking qubits are also told to Bob, as well as the operations carried out on checking
qubits and the corresponding results.

Next, Bob removes the disturbing qubits after receiving the sequence P
′
02 and then

measure the checking qubits and compare the result to what Alice has told Bob, which
is the second security check. If the results are the same, the channel is determined to be
secure and the checking qubits can also be removed. Otherwise, the channel is discarded
and another one needs to be established.

Finally, Bob can restore the information from cluster states in P
′′
02 and P

′′
35 (the sequences

after second security check) according to the encoding scheme.
Compared with original QSDC, cluster states can now be generated during the process

rather than beforehand and QSDC can be performed without adding extra qubits as
checking qubit or disturbing qubit for the first security check because there are qubits left
(qubit 1 and 4) after generating the cluster states. In addition, only X-basis measurements
are required in the first security check which slightly simplifies the process.

3. Generating Cluster States Using Quantum Gates Formed by Multi-Coin
Quantum Walk

Multi-coin quantum walk can also construct quantum gates which are the basis of
quantum circuit. Therefore, we take one step further to generate 4-qubit cluster states using
quantum gates formed by quantum walk in order to introduce a more practical method of
cluster state generation. It is the most common case to use Controlled-Z gates (CZ gates)
to generate 4-qubit cluster states: 4 qubits with an initial state of |+〉1|+〉2|+〉3|+〉4 can
be converted to 4-qubit cluster state through 3 CZ gates and 2 Hadamard gates, which is
shown in Figure 5 and system states after each operation are described as below:
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|Φ(1)〉 = |+〉1|+〉2|+〉3|+〉4 (17)

|Φ(2)〉 = U12
CZ|Φ(1)〉 = 1√

2
(|0〉|+〉+ |1〉|−〉)12|+〉3|+〉4 (18)

|Φ(3)〉 = U2
H |Φ(2)〉 = 1√

2
(|0〉|0〉+ |1〉|1〉)12|+〉3|+〉4 (19)

|Φ(4)〉 = U23
CZ|Φ(3)〉 (20)

=
1
2
(|0〉|0〉|0〉+ |0〉|0〉|1〉+ |1〉|1〉|0〉 − |1〉|1〉|1〉)123|+〉4

|Φ(5)〉 = U4
HU34

CZ|Φ(4)〉 (21)

=
1
2
(|0〉|0〉|0〉|0〉+ |0〉|0〉|1〉|1〉+ |1〉|1〉|0〉|0〉 − |1〉|1〉|1〉|1〉)1234

Figure 5. Process of generating 4-qubit cluster state using several quantum gates.

Then, we introduce how to implement CZ gate and Hadamard gate using quantum
walk. Previous studies [15] describe the 2-qubit and 3-qubit systems in detail, but only give
a basic idea of the 4-qubit system. Here, we propose a complete and improved method
of quantum gate implementation in 4-qubit system. The idea is to indicate qubits using
computational basis and to simulate general computing gates using controlled conversion
operators. For 4-qubit quantum walk of a single particle, the qubit 1 is considered as walker
while the other 3 qubits describe the position in Hilbert space. Therefore, the process of
4-qubit quantum walk of a single particle can be mapped onto a 3D cube (shown in Figure 6)
and qubit 1 (real particle) will perform quantum walk within 8 positions according to the
operation to be implemented.

Figure 6. Mapping 4-qubit quantum walk onto a 3D cube.

As for the operators, the coin operator of the 4-qubit quantum walk is identical to the
one of the 2-qubit or 3-qubit quantum walks [15], which are generally described as:
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C(ε, α, θ) =

[
eiεcos(θ) eiαsin(θ)

e−iαsin(θ) −e−iεcos(θ)

]
, (22)

while shift operator S is more complicated. In order to cope with the extra qubit (extra
dimension in position space), shift operator S is different according to different transition
traces. If qubit 2 (first part of position) is fixed, in which case the state transition takes place
in the front and back side of the cube in Figure 6, S = I; if qubit 4 (third part of position) is
fixed, in which case the state transition takes place in the left and right side of the cube in
Figure 6, S = −I. Therefore, we have

S = I, when |000〉 → |001〉 → |011〉 → |010〉
and |100〉 → |101〉 → |111〉 → |110〉 (trace1),

S = −I, when |000〉 → |010〉 → |110〉 → |100〉
and |001〉 → |011〉 → |111〉 → |101〉 (trace2)

(23)

Based on this, we can build the required CZ gate and Hadamard gate.

3.1. CZ Gate

CZ gate can be described as:

UCZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (24)

According to the mapping mentioned above, the qubit 2, 3, and 4 of a 4-qubit system
are mapped to the position space and a position-dependent coin operator is implemented
on the walker. Position-dependent coin means that for the same operation (such as CZ
gate), the actual coin operator performed on the walker (qubit 1) is different according to
which position the walker occupies. The possible operators required to form a CZ gate can
be described as: 

Z = σz ⊗ Ip,

I = I ⊗ Ip,

V = eiπ I ⊗ Ip,

(25)

where Ip is the identity operator in the position space. We can then map the CZ gate onto
8 positions in the position space, as shown in Figure 7. The directions of the arrows are
determined by the shift operators, which only indicates how the walker moves instead of
the state conversion.

Take Figure 7a as an example. It describes the CZ gate between qubit 1 and 2, namely
U12

CZ. If qubit 1 (the walker) is at |000〉, then 2 possible operations might be carried out: if
the walker follows trace 1, then coin operator C = I and shift operator S = I are performed
on the walker, implementing a CZ gate and making the walker move from |000〉 to |001〉;
if the walker follows trace 2, then coin operator C = −I and shift operator S = −I are
performed on the walker, also implementing a CZ gate and making the walker move from
|000〉 to |010〉.
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Figure 7. Implementation of (a) U12
CZ, (b) U23

CZ and (c) U34
CZ through 4-qubit quantum walk. Qubit 2, 3

and 4 are used to determine the 8 positions in Hilbert space and actual CZ operation is performed on
qubit 1. The operator on the arrow indicates the operation performed on the walker if the walker
occupied the starting position of the arrow. The black arrows correspond to trace 1 while the red
arrows correspond to trace 2.

3.2. Hadamard Gate

In order to build Hadamard gate, conditional shift operator should be divided into two
parts S− and S+ to move the particle in left and right directions, which can be described
as [15]

Si
− = ∑

m∈Z,i
(|i〉〈i| ⊗ |m− 1〉〈m|+ |j 6= i〉〈j 6= i| ⊗ |m〉〈m|),

Sj
+ = ∑

m∈Z,j
(|j〉〈j| ⊗ |m + 1〉〈m|+ |i 6= j〉〈i 6= j| ⊗ |m〉〈m|),

(26)

where |i〉, |j〉 ∈ {|0〉, |1〉} are the basis of Hilbert space and m ∈ Z indicates the possible po-
sition in Hilbert space (in our case m ∈ [0, 7]). The overall transition operator of Hadamard
gate is

H1 = I(C(0, 0, π/4)⊗ Ip) (27)

where C(0, 0, π/4) is the coin operator given in Equation (22). The Hadamard gate is
implemented by combining S− and S+ differently to evolve the coin state of the particle
in superposition of position space which is composed of qubit 2, 3, and 4. It is a position-
dependent coin operation followed by shift operators.

The implementation of Hadamard gate also depends on the qubit it is performed on.
For U2

H (as shown in Figure 8a), the 8 positions in Hilbert space are marked as:

|000〉 → l = 0, |100〉 → l = 4

|001〉 → l = 1, |101〉 → l = 5

|011〉 → l = 2, |111〉 → l = 6

|010〉 → l = 3, |110〉 → l = 7

(28)

The quantum walk operations to be carried out following trace 1 (l = 0→ 1→ 2→ 3
or l = 4→ 5→ 6→ 7, shown as black arrows in Figure 8a) are:

H0
+|i〉 ⊗ |m〉 = σm

x Si
+(σx ⊗ I)

H1
+|i〉 ⊗ |m〉 = σm

x Si
+(σz ⊗ I)

H0
−|j〉 ⊗ |m〉 = σm

x Sj
−(σx ⊗ I)

H1
−|j〉 ⊗ |m〉 = σm

x Sj
−(σz ⊗ I)

(29)
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where σm
x = σx ⊗ |m〉〈m|+ I ⊗∑|p〉〈p| and |m〉 is the initial position. p = l + 4 when the

walker is on |000〉 to |010〉 circle and p = l − 4 when the walker is on |100〉 to |110〉 circle
(l 6= m for both conditions).

The quantum walk operations to be carried out following trace 2 (l = 0→ 3→ 7→ 4
or l = 1→ 2→ 6→ 5, shown as red arrows in Figure 8a) are:

Ĥ0
+|i〉 ⊗ |m〉 = σm

x (−Si
+)(−σx ⊗ I)

Ĥ1
+|i〉 ⊗ |m〉 = σm

x (−Si
+)(−σz ⊗ I)

Ĥ0
−|j〉 ⊗ |m〉 = σm

x (−Sj
−)(−σx ⊗ I)

Ĥ1
−|j〉 ⊗ |m〉 = σm

x (−Sj
−)(−σz ⊗ I)

(30)

where σm
x = σx ⊗ |m〉〈m|+ I ⊗∑l 6=m|l〉〈l|.

Figure 8. Implementation of (a) U2
H and (b) U4

H through 4-qubit quantum walk. Qubit 2, 3, and 4 are
used to determine the 8 positions in Hilbert space and actual Hadamard operation is performed on
qubit 1. The operator on the arrow indicates the operation performed on the walker if the walker
occupied the starting position of the arrow. Additionally, the specific operations are listed in detail on
the right side. The black arrows correspond to the trace 1 while the red arrows correspond to the
trace 2.

For U4
H (as shown in Figure 8b), the 8 positions in Hilbert space are marked as:

|000〉 → l = 0, |001〉 → l = 4

|010〉 → l = 1, |011〉 → l = 5

|110〉 → l = 2, |111〉 → l = 6

|100〉 → l = 3, |101〉 → l = 7

(31)

The quantum walk operations to be carried out following trace 1 (l = 0→ 4→ 5→ 1
or l = 3→ 7→ 6→ 2, shown as black arrows in Figure 8b) are the same as Equation (30).
Although the quantum walk to be carried out following trace 2 (l = 0 → 1 → 2 → 3 or
l = 4→ 5→ 6→ 7, shown as red arrows in Figure 8b) are the same as Equation (29).

Now we have successfully mapped the Hadamard gate to 8 positions in Hilbert space.
Same as above, the directions of the arrows result from the shift operator and only indicate
the movement of the walker in position space rather than state conversion. The actual
operation on the cube of Hadamard gate is similar to the one of CZ gate. Position-dependent
coin operator C and shift operator S will be determined by not only the position of the
walker and the trace it chooses but also the targeted qubit. After the operation, Hadamard
gate is performed on qubit 1 (walker), and it will move to next position according to the
shift operator.
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3.3. Generating Cluster States

So far we have implemented the required CZ gate and Hadamard gate by mapping
the corresponding quantum walk onto a 3D cube. Now we can combine the CZ gates and
the Hadamard gates and carry out the 4-step operations mentioned in Equations (17)–(21).
Figure 9 shows the equivalent quantum walk scheme for 4-qubit quantum circuit. The
system state remains the same from |Φ(1)〉 to |Φ(2)〉 and from |Φ(3)〉 to |Φ(4)〉, so the
corresponding cube do not change during these two steps. We can see that 4-qubit cluster
state is achieved after 5 coin operations: the qubit at |000〉, |100〉, |011〉 and |111〉 are
|0〉, |1〉, |0〉 and |1〉, respectively, which gives |0〉1|000〉234, |1〉1|100〉234, |0〉1|011〉234 and
|1〉1|111〉234.

Our improved method of simulating quantum gates using multi-coin quantum walk
can potentially be used to generate higher entangled qubits. However, the mapping scheme
can be different depending on the targeted qubits. Some possible schemes have been shown
in [15].

Figure 9. Generating 4-qubit cluster state using single particle quantum walk, where yellow circles
represent |0〉, black circles represent |1〉, and blue circles represent vacancies.

4. Conclusions

In this paper, we propose two methods of generating 4-qubit cluster state between
targeted qubits. We first extend former researches to a 4-qubit system and use multi-coin
quantum walk to generate 4-qubit cluster state with only 3 pairs of Bell states and local
measurement. Compared with traditional optical methods, this method simplifies the
generation process and lower the requirement of resources. Furthermore, we present
another method of generating 4-qubit cluster states by building quantum gates using multi-
coin quantum walk. We improve the quantum gate implementation described in former
works and make it suitable for the 4-qubit system, based on which we form the targeted
quantum circuit. This can be helpful in real quantum computing scenario. For future
researches, we think these methods can be extended to generate entangled states with more
qubits. For the first method, we can simply add extra Bell states to the current entangled
state and carry out additional quantum walk. New coin qubit and walker qubit are chosen
based on the targeted entangled states, following the same method for 3-qubit and 4-qubit
entangled states. It is more complicated for the second method since a different mapping
scheme might be required for more qubits. In addition, we do not take into consideration
the noise of the channel or any decoherence and depolarization of the channel. Studies on
the consumption rate of entanglement, transmission rate, and complexity of the execution
can also be done in future works.



Appl. Sci. 2022, 12, 8750 12 of 12

Author Contributions: Conceptualization, T.W. ; methodology, T.W.; software, T.W.; validation, T.W.;
formal analysis, T.W.; investigation, T.W.; resources, T.W. and J.L.; data curation, T.W.; writing—
original draft preparation, T.W.; writing—review and editing, T.W. and J.L.; visualization, T.W.;
supervision, X.C.; project administration, X.C.; funding acquisition, X.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Raussendorf, R.; Briegel, H.J. A one-way quantum computer. Phys. Rev. Lett. 2001, 86, 5188. [CrossRef] [PubMed]
2. Raussendorf, R.; Browne, D.E.; Briegel, H.J. Measurement-based quantum computation on cluster states. Phys. Rev. A 2003,

68, 022312. [CrossRef]
3. Nielsen, M.A. Optical quantum computation using cluster states. Phys. Rev. Lett. 2004, 93, 040503. [CrossRef] [PubMed]
4. Browne, D.E.; Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 2005, 95, 010501. [CrossRef]

[PubMed]
5. Gilbert, G.; Hamrick, M.; Weinstein, Y.S. Efficient construction of photonic quantum-computational clusters. Phys. Rev. A 2006,

73, 064303. [CrossRef]
6. Djordjevic, I.B. Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach

Second Edition; Elsevier Inc.: Amsterdam, The Netherlands, 2021.
7. Venegas-Andraca, S.E. Quantum walks: A comprehensive review. Quantum Inf. Process. 2012, 11, 1015–1106. [CrossRef]
8. Kempe, J. Quantum random walks: An introductory overview. Contemp. Phys. 2003, 44, 307–327. [CrossRef]
9. Lovett, N.B.; Cooper, S.; Everitt, M.; Trevers, M.; Kendon, V. Universal quantum computation using the discrete-time quantum

walk. Phys. Rev. A 2010, 81, 042330. [CrossRef]
10. Jingbo Wang, Kia Manouchehri. Physical Implementation of Quantum Walks; Springer: Berlin/Heidelberg, Germany, 2014.
11. Innocenti, L.; Majury, H.; Giordani, T.; Spagnolo, N.; Sciarrino, F.; Paternostro, M.; Ferraro, A. Quantum state engineering using

one-dimensional discrete-time quantum walks. Phys. Rev. A 2017, 96, 062326. [CrossRef]
12. Giordani, T.; Polino, E.; Emiliani, S.; Suprano, A.; Innocenti, L.; Majury, H.; Marrucci, L.; Paternostro, M.; Ferraro, A.; Spagnolo,

N.; et al. Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett. 2019, 122, 020503.
[CrossRef] [PubMed]
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