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Abstract: Vision-based localization techniques and detection technologies are key algorithms for the
localization and navigation of unmanned vehicles. Especially in scenarios where GPS signals are
missing, Simultaneous Localization and Mapping (SLAM) techniques that rely on vision, inertial
navigation system (INS) and other sensors have important applications. Among them, vision
combined with the IMU SLAM system has the advantage of realistic scale, which is lacking in
monocular vision and computational power compared to multi-visual vision, so it is suitable for
application in an unmanned vehicle system. In this paper, we propose a fusion localization algorithm
that combines a visual-inertial SLAM system and map road information, processing road information
in a map under structured roads, and detecting lane lines and locating its local position by a monocular
camera, applying a strategy of position prediction and update for map-SLAM fusion localization. It
solves the problem of accumulating errors in a pure SLAM system without loopback and provides
accurate global-local positioning results for unmanned vehicle positioning and navigation.

Keywords: unmanned vehicle; SLAM; visual INS fusion; map localization

1. Introduction

In the positioning requirements of unmanned driving, the global positioning system
based on GPS and differential GPS has the characteristics of high efficiency and accuracy.
However, in tunnels, heavily blocked roads, urban canyons and other roads, GPS signals
are severely affected and cannot complete the positioning work. At this time, SLAM
technology has important application value [1,2]. Compared with other sensors, vision
technology can better combine perceptual information and play a major role in unmanned
vehicle applications. Vision sensors can detect lane lines [3,4], road signs [5,6] and other
information required for vehicle driving through deep learning and other technologies.
Under structured roads, good detection results can be achieved for unmanned driving
needs, through accurate local positioning methods, such as lane keeping [7,8], navigable
area navigation [9], etc. However, this local navigation method still needs SLAM and
other methods to supplement and judge the positioning results due to the instability of
detection. The visual SLAM system mainly includes two forms: monocular [10–13] and
multi-eye [14]. Multi-eye vision requires complex calculations and a large amount of
matching point information. Monocular vision is simple and stable, but it lacks the true
scale. The SLAM system [15,16] combined with a monocular camera and IMU has better
adaptability, and it can provide short-term stable positioning results in scenarios where
GPS is missing. However, in the application of unmanned vehicles, the positioning result
error will continue to increase due to accumulated errors and IMU divergence, and the
trajectory of unmanned vehicles can rarely be corrected by loopback [17].

To address the problem of accumulating errors in SLAM for unmanned vehicles, we
introduce map-prior information for SLAM repositioning. The accumulated visual errors
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and IMU integration lead to increasing SLAM localization errors, while the single move-
ment of an unmanned vehicle rarely passes through repeated positions and cannot be
corrected by traditional loopback. We adopt a maximum a posteriori probability approach
to represent its own position through a probability distribution; use the localization result
output of SLAM as the position update incentive; use the map midway width, lane angle
and road position information as a priori; and adopt a prediction-update model to calculate
the probability distribution of vehicle position through the recognized lane line perception
information. It is worth noting that, different from the general map trajectory mapping [18]
which compares a certain segment of motion results with map information, the seman-
tic SLAM [19,20] method increases the positioning accuracy by adding the inter-frame
connection of semantic information. The algorithm flow is shown in Figure 1.

Figure 1. Algorithm flow diagram.

2. Structured Representation of Lane Lines and Map Information
2.1. Lane Line Detection and Positioning

To combine the detected lane information with the lane information in the map, it
is necessary to structure the lane lines and the map information separately. In this paper,
lane line detection is performed by [3], and the split-shuffle-bottleneck [21] mechanism is
introduced to improve the detection speed. At the same time, a fixed-parameter perspective
transformation matrix is used instead of the adaptive H-Net [22], which further improves
the speed and accuracy.

The obtained lane line detection result is a point set on the image plane. By projecting
the point set to 3D homogeneous coordinates (x, y, 1), a straight line is fitted to obtain the
lane line l1l2..ln, and the normal vector d between the lane line. The center is calculated,
and the direction can be judged by the relative position of the exit lane line and the vehicle.
The left and right lane lines lle f tlright are selected by the two nearest neighbors.

To be able to combine with the data in the map, some key information corresponding
to the two needs to be obtained. We make the road plane assumption, which is that the
points of the lane line lle f tlright are in this plane. It means that the road is assumed to be a
plane, or the vehicle. The short driving area is a flat surface, and the car runs smoothly on
this road surface without leaning forward or backward at a large angle.

Suppose that in the camera coordinate system, the road plane equation planeA is:

Ax + By + Cz + D = 0 (1)
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According to the road plane assumption, when the vehicle is running smoothly, the
relative position relationship between the camera and the road plane will not change, so
the plane parameter ABCD can be obtained by calibration.

fx · XC
ZC

+ u0 = u
fy · YC

ZC
+ v0 = v

A · XC + B ·YC + C · ZC + D = 0

(2)

Among them, fx, fy, u0, v0 represent the pixel focal length and center offset in the
camera internal parameters, and s represents the position scale of the monocular camera.
The equations u, v and the camera internal parameters are all known, so only four sets of
points are needed. XC, YC, ZCXC, YC, ZC can calculate the plane parameters, that is, the
plane parameter results can be obtained by calibrating the known points a priori. After
the plane equation is known, to obtain the true three-dimensional image lane line point
P0 = [XC, YC, ZC]

T , the description of P0 observed by the camera is:

p0 = s · K · P0 (3)

K =

 fx 0 u0
0 fy v0
0 0 1

 (4)

p0 = [u, v, 1]T (5)

Simplify to obtain camera constraints:{
fx · XC

ZC
+ u0 = u

fy · YC
ZC

+ v0 = v
(6)

Therefore, using the equation again, we can solve the true value of P0 = [XC, YC, ZC]
T ,

and finally obtain the positioning result of each point of the lane line, so as to calculate the
equation of lle f tlright in the camera coordinate system:

l :
{

AX + BY + CZ + D = 0
A1X + B1Y + C1Z + D1 = 0

}
(7)

Among them, the two planes are, respectively, denoted as the road surface plane
planeA and the plane perpendicular to the road surface planeB, which are obtained by
the lane line 3D point coordinates P0 = [XC, YC, ZC]

T . Therefore, the relative position
relationship between the lane line and the vehicle can be calculated, including the absolute
distance dlane = d(planeB, (0, 0, 0)) of the vehicle from the left and right lane lines, and the
projection angle of the lane line:

θlane = arcsin
(

dlane
d((0, 0, 0), PO)

)
(8)

PO =

{
A1X + B1Y + C1Z + D1 = 0
l0 = k∗(0, 0, 1)

}
(9)

2.2. Map Information Processing

Usually, the latitude and longitude of a road centerline, the width of the road, and
the slope of the road can be obtained on the map, but this result is not easy to use directly,
so this article first processes the data by straight curve fitting. Use the outlier elimination
strategy based on RAndom SAmple Consensus(RANSAC) [23] to represent the longitude
and latitude of the lane centerline to fit the representation, fit the two lane lines through
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the lane centerline and the road width, and calculate the structured representation of the
two-lane lines, respectively.

As show in Figures 2 and 3.This paper adds road width information d based on road
information, obtains the lane line information after translation, translates the distance
between the lane and the lane line to the left and right, and obtains the left lane line lle f t
and the right lane line lright, as well as performs the position-preserving sequence KD-Tree,
which is used for storage and is more convenient for a subsequent search.

Figure 2. Representing map information that is difficult to use directly through directed graphs.

Figure 3. Schematic diagram of lane virtual candidate points and feature matching.

3. Fusion of Lane Location Information and SLAM Positioning Algorithm

The above-mentioned lane line detection and representation are sufficient to enable
unmanned vehicles to complete lane keeping and steering functions, but it is still impossible
to determine the specific global position of the lane where the unmanned vehicle is located.
Therefore, the global consistent positioning method of SLAM needs to be considered.
This paper uses a SLAM system that combines vision and inertial navigation. Based
on the algorithm [15], IMU and monocular camera are used to complete the front-end
output process of SLAM. Different from the indoor SLAM algorithm, it is difficult to have
enough loop information during the driving process of the unmanned vehicle. Therefore,
combining the timely position information which is provided by the SLAM and the map
information is an important way to create an artificial loop. In this paper, by correlating the
detected lane and position information, a prediction-update model is used to realize the
fusion of SLAM positioning information and vehicle map lane position.

At each moment of fusion positioning, the result of the above local positioning dlane is
used to obtain the virtual trajectory of the vehicle parallel to the lanes of the map. Each
point stored in the directed graph of the map is translated to this virtual trajectory in the
same way. After the line localization result is updated, this operation performs the same
processing on the virtual trajectory and the map point.
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In the rest of this section, the map point mentioned refers to the point information
stored in the directed graph on the map, and the candidate point refers to the map point
where the vehicle has a greater probability of being at this position. The candidate points
are on the virtual track obtained after each update of the distance from the lane line. The
core of this method lies in the update of candidate points. Probability is used to update the
candidate points and realize the positioning function.

3.1. Initialization of Starting Point Position

The result of SLAM output is the position in the body coordinate system, and the road
information stored on the map is the global latitude and longitude. Therefore, first obtain
the latitude and longitude coordinates and heading angle at the moment through manual
positioning and location recognition at the starting point. The SLAM output is converted
to latitude and longitude coordinates.

First, take the current position as the center point, and take the nearest K points in the
map stored in the directed graph along the current yaw angle θ a candidate points for the
vehicle’s possible poses. Each time a new candidate point is obtained, the probability of the
vehicle at K candidate points on the map will be calculated, and the candidate point with
the highest probability will be output as the vehicle position. At the initial moment, it is
assumed that the probability of the vehicle at each candidate point of the map obeys the
Gaussian distribution and satisfies the following formula.

PXn = λ ∗ exp
(
− 1

2 ∗ XT ∗Q∗X
)

X = {x− x0, y− y0}
λ = 1

2π |Q|
− 1

2

K
∑

n=1
PXn = 1

(10)

Pxn represents the probability that the vehicle position is at the current candidate
point n, Q represents the covariance matrix, which is set to the identity matrix at the initial
moment; and X is the state variable at this time. At the initial moment, it only contains
the position (x, y) in the world coordinate system; (x0, y0) is the map position obtained by
initial positioning, that is, the center point of the Gaussian distribution; and the dimension
of X is 2. At the same time, in order to avoid the influence of extreme conditions, after each
probability calculation is completed, the probability of K points is normalized.

3.2. Location Prediction Based on SLAM Information

As shown in Figure 4. Firstly, dlane is still obtained through the local positioning
method of the lane line. The map candidate points are translated to the current vehicle posi-
tion to generate a virtual trajectory, and a batch of new map candidate points are obtained.
Taking the motion information from SLAM as the predicted excitation Xk+1 = Xk + (δx, δy),
(δx, δy) is the representation of the SLAM position change in the world coordinate system.
After obtaining the changes combined with the SLAM positioning information, the position
is updated on the basis of the K map candidate point positions obtained after the last
calculation. For each candidate point, with the updated position Xk+1 = Xk + (δx, δy) as
the center, select K points according to the nearest neighbor principle, and calculate the
probability of the updated position of the vehicle at each candidate point.

Pk+1
Xkn = Pk+1

Xkn + Pk
Xkn ∗ λ ∗ exp

(
− 1

2 Xk+1
T ∗Q∗Xk+1

)
Xk+1 = {x− xk+1, y− yk+1}

K
∑

n=1
Pk+1

Xkn = 1

(11)

Pk+1
Xkn represents the probability that the vehicle is at position n at time k + 1. For each

candidate point at time k, K new candidate points are obtained and normalized. Through
the prediction of K candidate points, K2 probability updates can be generated, and Kn new
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candidate points K < Kn < K2 can be obtained. Through K calculations, the probability of
the vehicle at each new candidate point is accumulated and normalized. Each candidate
point has direction and position information in the representation of the directed graph,
and can be established by constraining dlane by the position of the lane line, the angle θlane
between the observed lane projection, the vehicle coordinate system and the map point
contact, and update the probability of these K2 results as observations.

Figure 4. Probabilistic update diagram.

3.3. Location Probability Update Based on Lane Line Observation

As shown in Figure 5. This link needs to select the K points with the highest probability
among the predicted candidate points. Since the lane of the map has been discretized by
these points, first find the only corresponding lane line point mapn in the tangent direction
of the vehicle attitude. This point is in the lane line stored in the original directed graph,
representing the projection of the vehicle’s position on the lane line map point at this time.
Observation is carried out at each candidate point, and the observed value is the distance
dlane, the angle of the lane line θlane and the position of the vehicle body, which is obtained
by the local positioning method of the lane line.

Figure 5. Recalculation of positioning information combined with map information.

The points in the map save the position information (x, y) and tangential angle infor-
mation θkn of each point, which can be combined with dlane and angle θlane. According
to the current position of the vehicle, the distance to the map point in the direction of

the tangential lane line can be obtained dkn =
√
(xk −mapnx)

2 +
(
yk −mapny

)2, mapn
represents the currently calculated map candidate point. θlane represents the angle between
the vehicle and the lane line. Set the current yaw angle of the vehicle as that which is output
by the SLAM system and converted into world coordinates in the initialization process. At
this time, the calculated lane angle is θmapn = θlane + θk. It is worth noting that the lane
line detection section above has fitted the lane line to the lane line closest to the current
vehicle, so the probability of the vehicle at the current candidate point can be described by
the probabilistic equation of the above parameters.



Appl. Sci. 2022, 12, 8670 7 of 16

Pk+1
Xk+1

n = Pλk+1
Xkn ∗ λ ∗ exp

(
− 1

2 YT ∗ D∗Y
)

Y =
{

x− xk+1, y− yk+1, dkn − dlane , θkn − θmapn
}

K
∑

n=1
Pk+1

Xk+1
= 1

λ =
(

1
2π

)2
|D|−1/2

(12)

Pk+1
Xk+1

n represents the probability of the latest position candidate point obtained by

the vehicle after the above prediction, which is a correct update of Pk+1
Xk

n . The observations
Y used to describe the vehicle at this candidate point include the latitude and longitude
position (x, y), the map distance point from the vehicle to the lane line, and the current.
The error of the local positioning result (dkn − dlane), as well as the error of the angle
(θkn − θmapn) stored by the candidate point and the current observation angle, are a total
of four-dimensional variables. The matrix D represents the covariance matrix. This paper
assumes that each variable is distributed independently. D is a diagonal matrix with a
dimension of 4 × 4, and the four diagonal corners (dx, dy, dθ , dl) are, respectively, from the
upper left to the lower right corner. (dx, dy) is the position variance, dθ is the angle variance
with In radians and dl represents the error of the current local positioning. Due to abnormal
conditions such as detection failure, a robust kernel function h(x) is added to prevent the
unstable influence caused by the wrong local positioning, and it is eliminated when the
error is too large. Finally, all the candidate point probabilities are updated.

D =

∣∣∣∣∣∣∣∣
dx, 0, 0, 0
0, dy, 0, 0
0, 0, dθ , 0
0, 0, 0, dl

∣∣∣∣∣∣∣∣ (13)

In this paper, only one lane line is used as the observation. In the experiment, the
accuracy improvement produced by the use of multiple lane lines is very small, and at the
same time, it generates a lot of problems, so that the data association difficult to determine.
Therefore, the above operation only performs the observation update of one lane line. This
paper takes the nearest left end lane line as an example. After the probability update is
obtained, the K points with the highest probability are selected from the predicted candidate
points Kn as the current new candidate points and normalized.

3.4. Result Processing and Output

After each observation update, the value with the highest probability Kmax x = max
n

(
Pk+1

Xk+1n

)
is output as the current vehicle position relocation result. At the same time, according to the
position Kmax x and direction angle of Kmax θ, calculate the position of the current point and the
original lane line point in the map, so as to obtain the updated local positioning result dlane. Take
the latest result obtained as the latest value and repeat the above steps to update the position.

The above results probabilistically process the position of the vehicle on the map.
However, there are still some special problems that cause the system to fail to run, or make
the convergence speed too slow:

a. There are not enough candidate points, or the probability value of the candidate
points is too small.

When the system moves in a straight line for a long time, because the accumulated
error is already large, the selected points are often limited to a certain range, resulting in
the inability to update the position. The solution is that when the probability of a candidate
point is too small, delete this point and let D′ = 2 ∗ D, Q = 2 ∗Q expand the value of the
covariance matrix to facilitate the selection of more points next time.

b. Lack of significant optimal points.
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If there is no significant optimal point Pxmax > 0.3&&Pxmax > ∑
xinK

Px, the probability

difference of each candidate point is small at this time, and it is easy to fall into the local
optimal value and cannot move forward. In places with obvious detours (intersections
exceeding 90 degrees), the change of angle information is too obvious. Two candidate
points with very different positions are likely to have similar probabilities. Therefore, at this
time, it is necessary to randomly select candidate points, so that the predicted candidate
points can be dispersed into different possibilities as much as possible, and the convergence
speed can be faster. After initialization, it generally only takes 10 iterations to converge,
and the accuracy meets the needs of unmanned navigation.

c. The local positioning result of the lane line is invalid.
When lane line detection fails or false detection occurs, in order to maintain the

stability of the system, the SLAM output result is used to calculate the current estimated
value, so as to obtain the distance between the current position and the lane line in the map
and generate the trajectory of the candidate points. At the same time, in the subsequent
probability calculation link, this error is always 0, which does not affect the positioning
result. The position update effect can still be achieved through the angle, position and
other information. When the detection information is restored, the positioning function
continues to be realized. Robustness is improved.

Finally, the algorithm obtains the current optimal positioning result. It is worth noting
that this method can not only have a relocation effect on the global position, but also
increase the positioning accuracy. At the same time, the results obtained for the local
positioning of the lane lines can also have an optimization effect. Different from the results
obtained directly from the local positioning of the lane lines detection, this paper calculates
the local positioning by calculating the distance between the final output point with the
maximum probability and the original lane line in the map. As a result, with the continuous
information output by SLAM, the robust kernel function can ensure the normal operation
of the system in the case of lane line detection failure or detection error. At the same time,
the local positioning results are coherent and the accuracy is improved.

The algorithm proposed in this paper is essentially a mapping search for two trajecto-
ries, but different from the previous trajectory relocation algorithm, this paper applies the
prediction model and successfully solves the real-time problem. It has great advantages
when there is a small displacement or the position itself does not change significantly,
especially when the convergence speed is greatly improved, which is suitable for real-time
unmanned vehicle positioning.

It is worth noting that the algorithm proposed in this paper needs to adjust the
parameters adaptively in different applications. The SLAM system used in this paper has a
release frequency of 20 Hz, and the update frequency is equal to the release frequency of
the SLAM system. There are points stored in the directed graph in the map. The interval is
selected as 5 cm, and this value is the resolution of the positioning longitudinal error at
different speeds and update frequencies. The value of K and the initial covariance matrix
need to be adjusted. If the value of K is too large, the amount of calculation will increase. If
the value of K is too small, it is easy to be limited to a specific area when updating, and
the prediction incentive is not enough to break the local optimum. Similarly, the selection
of the covariance matrix also affects the positioning results. In this paper, the value of K
is selected as 10, and in the covariance matrix, (dx, dy) is set to 1, dθ is set to 0.2, and dl is
set to 2. With a selection interval of 5 cm, each update can affect about 20 map points, and
the calculation speed is 5 ms. When the movement speed is significantly reduced or the
publishing frequency is greatly increased, the K value needs to be adjusted. This paper
provides an empirical conclusion. When the number of map points that can be affected by
each update is about twice the value of K, the positioning effect is improved.

4. Experimental Verification

The platform was modified from the Junipai A70E electric vehicle, and the body was
loaded with sensors such as IMU, GNSS and a monocular camera. The IMU sensor adopts
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MEMS products from Xsens, and the GNSS receiver adopts Huace P3 series products, and
adopts the centimeter-level positioning service of Thousand Seek. Further, unmanned
experiments were carried out on the Qingshuihe campus of the University of Electronic
Science and Technology of China and the Longchi Tunnel. As shown in Table 1.

Table 1. Experimental platform hardware.

Hardware Name Hardware Configuration Features

GNSS positioning terminal CTI P3, centimeter-level
positioning accuracy

Cognitive map creation for
CRRC’s satellite positioning

Camera LI-USB30-AR023ZWDR as a visual sensing device
(monocular)

Vehicle main control unit
Industrial control workstation

with graphics card, model
2080Ti

Supports multi-threaded
running of code

In-vehicle peripherals Monitor, etc. Man–machine interface

In the experiment, the monocular camera + IMU sensor installed on the roof was used
to complete the SLAM system. The body has sensors such as GNSS [24], IMU, and a camera.
The GNSS dual-antenna device applied in the paper is used for true value positioning and
orientation in unmanned driving experiments. Due to the dual antennas used, only the
yaw angle and pitch angle of the vehicle can be calculated during orientation, but the roll
angle cannot be calculated. Considering that the change of the roll angle of the vehicle body
is small, it can be ignored in the actual application process. Most of the poses collected by
GNSS represent the current position of the vehicle, so the GNSS antenna is required to be
installed as parallel to the vehicle as possible. Figures 6 and 7 below shows the relative
positional relationship between the sensors fixed on the roof.

Figure 6. (Top left–bottom right) Experimental equipment, sensor layout, campus scene, Longchi
tunnel scene.

Figure 7. (Top left–bottom right) Experimental equipment, sensor layout, campus scene, Longchi
tunnel scene.
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To evaluate the algorithm performance, an experimental analysis was performed.
The work of map structuring can be stored in the map by the data collection vehicle and
processed and obtained. It can also be completed by querying and interpolating the latitude
and longitude on the Baidu map. Due to the basic deviation of the network map, the map
data can be collected at the location with GNSS alignment.

The experimental data are that the data acquisition vehicle runs in the campus envi-
ronment and the lane line area in the Longchi tunnel environment. This collects images
and GNSS data. In order to judge the accuracy and performance of the algorithm, the true
value data of the lane line position are needed. In this paper, the true value data of the lane
line position were collected by a special trajectory acquisition vehicle. After the data were
collected, the image data were used as the input of the algorithm, and the data collected by
GNSS were used as the real value to evaluate the performance index of the algorithm. In
the tunnel of the Longchi scene, there is a lack of real positioning value. This paper used
the processed latitude and longitude interpolation results in the map as the real value, and
fused the output positioning results and map data for trajectory error calculation.

4.1. Experiment Results of Lane Line Positioning

In this paper, the monocular camera was used to calculate the relative position of the
left and right lane lines, and the lane line positioning was determined. The true value was
obtained by the data acquisition vehicle. The monocular camera positioning results of the
lane line itself are as follows.

The error of distance D has no obvious change with the number of frames, and the
overall error is relatively stable. According to a statistical analysis of all the error data, as
shown in the right of Figure 8 above, the error distribution conforms to a skewed normal
distribution, and most of the error distribution is within 0.3 m. The reliability of the vehicle
position assumption used in this paper is generally stable.

Figure 8. Distance D positioning error. (left): the change of error with the number of frames;
(right): the distribution of distance error.

4.2. Campus Scene Localization Experiment Results

This experiment was carried out in the campus area. The real map lane value was
obtained by the data acquisition car driving along the lane, and it can be considered that
there is no map lane information error. GNSS was used as the true value of the data to
calculate the original SLAM method, the SLAM algorithm with relocation information, and
the positioning results of lane line positioning at this time, and to compare them with the
true value of GNSS. The positioning results are as follows.

As shown in Figure 9, the two lines represent the true value of GNSS and the result
obtained by the original SLAM algorithm. Here, the algorithm adopts the VINS-Mono
algorithm, and the positioning result is displayed on the map after the coordinate system
transformation. The true value of the map is displayed. It can clearly be seen from Figure 9
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that the effect of the algorithm in this paper is better than the original SLAM method in
practical application, and its positioning results basically coincide with the true value. It
has a great influence, so the experiment is divided into two motion states of straight line
and non-pure straight line.

Figure 9. On-campus location results.

When the lane is not a pure straight road, that is, the road has a radian, the Q matrix in
the equation can be updated to obtain an accurate estimate of the position, and the vehicle
trajectory and the road trajectory can be fused by adjusting the coefficient. The results of
the positioning experiment and the schematic diagram are shown in Figure 10.

Figure 10. Detour test absolute positioning error.

In detours, the divergence of SLAM positioning results is better limited, the cumulative
error is eliminated, and the positioning results of <1 m are obtained in gentle detours, and
the effect is good.

As shown in Figure 11, In the straight-line experiment, since the lane line position-
ing information does not change greatly, the state quantity of the positioning cannot be
corrected by observation, and the fusion positioning result at this time is expressed as
the output lag of SLAM. The method proposed in this paper relies on the effective map
information. When the pure linear motion has a lack of effective observation, the error
cannot be corrected.

Figure 11. Absolute positioning error of straight road test.
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However, in pure linear motion, although the error cannot be corrected by map
information, the lateral positioning accuracy can still meet the needs of vehicle navigation.
The results of lateral local positioning information are shown in Figure 12.

Figure 12. Lateral localization error.

As shown in Figure 12, the local positioning error does not exceed 0.3 m in most cases.
When moving in a straight line, the lane can be cruised through local positioning. When
encountering a detour, due to the fast-converging observation method set in the previous
article, it can quickly converge to the location where it is located.

To summarize, the algorithm proposed in this paper has a good positioning effect
on non-pure straight roads, and the positioning accuracy is greatly improved, while in
pure straight line motion, the algorithm accuracy is less improved, but the results of lateral
local positioning meet the requirements of unmanned driving. As shown in Table 2, the
numerical analysis is as follows:

Table 2. Error comparison.

Local Average
Positioning Error/m

Local Maximum
Positioning Error/m

Global Average
Positioning Error/m

Original SLAM algorithm 1.3 2.1 5.94
Lane line localization algorithm 0.25 0.44 None

Combined with map SLAM
relocation algorithm 0.16 0.36 1.35

As shown in the table above, in the data experiment of detours, the localization al-
gorithm after integrating map information achieved good results, the global positioning
accuracy improved by more than 70%, and the local positioning was also significantly im-
proved, which is more suitable for behavior scenarios involving unmanned positioning use.

4.3. Experiments Results in Closed Loop Path

As shown in Figure 13, The data set was collected at the south gate of the University of
Electronic Science and Technology for the location experiment. The data were collected us-
ing the same experimental platform as in the previous section. The platform was equipped
with GNSS terminals, cameras and other equipment to collect the dataset in data collection
vehicle mode to obtain image data and GNSS position data during vehicle operation.

Compared to the original slam algorithm, our algorithm error is greatly improved,
and the lane line positioning algorithm is able to constrain the lateral position of the vehicle
relative to the lane line with good accuracy, eliminating most of the vehicle lateral position
error. As shown in Table 3.
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Figure 13. Experiments results in closed loop path.

Table 3. Error comparison.

Absolute Position
Error Median/m

Relative Angular
Error ◦/100 m

Global Average
Positioning Error/m

Original SLAM
algorithm 3.2 0.34 3.45

Our algorithm 0.61 0.36 0.63

4.4. Longchi Tunnel Scene Location Experiment Results

The method proposed in this paper can still achieve good positioning results in tunnels
without GNSS. A 1 km unmanned tunnel experiment was carried out in Longchi Tunnel,
Dujiangyan City, Sichuan Province. The tunnel is well-lit and the lane lines are clear. In the
tunnel scene, the unmanned vehicle has completed the navigation function, and its driving
trajectory is as follows Figure 14:

Figure 14. Tunnel without GNSS positioning trajectory.

In the experiment, since there is no GNSS true value in the tunnel, the above error
calculation cannot be performed. In this paper, the comparison between the driving
trajectory and the trajectory of the tunnel itself was used for calculation. The specific
method adopts the assumption of uniform speed to calculate the distance between the
driving trajectory point and the road trajectory point.

It can be seen from Figure 15 above that the positioning results are more accurate in
the radian part of the tunnel. Due to the uniform speed assumption model, the results
have a certain gap with the real results, but it can still clearly reflect the positioning of the
method in this paper under certain changes in road observations. The effect is improved.
The angle change in the second half of the tunnel is small, the observation and correction



Appl. Sci. 2022, 12, 8670 14 of 16

effect of the map is small, and the accumulated error is difficult to eliminate. After driving
600 m, the error reached m level, but the lateral local positioning results are still relatively
stable. The distance between the driving trajectory and the road trajectory is calculated in
the direction as the lateral positioning error.

Figure 15. Tunnel positioning trajectory error.

As shown in Figure 16, the lateral error positioning errors are all less than 0.35 m,
and the initial positioning error is the error of the lane line positioning itself. Through the
recalculation of the fusion positioning results, the positioning accuracy has been greatly
improved and can be stabilized around 15 cm, which is sufficient. The unmanned vehicle
completes the positioning and navigation in the fixed tunnel.

Figure 16. Tunnel positioning transverse tangent error.

It is worth noting that since there is no true value in the tunnel itself, the above two
calculation methods are an approximate analysis, and the error between the true value and
the positioning result is theoretically close to this method. Since the vehicle trajectory is
smooth, the tunnel angle changes less, and the distance between the tangential directions
and the actual point is less.

Through the above analysis, there are no GNSS scenarios such as tunnels. After
the fusion of map lane information and the SLAM positioning method, the positioning
accuracy has been greatly improved, and it has a good effect in global and local positioning,
as well as better stability. The algorithm proposed in this paper can effectively complete the
navigation under local positioning. Compared with the SLAM algorithm itself, the global
positioning accuracy is greatly improved, which has great advantages for actual navigation.

This paper gives a summary of the following rules:

1. When the method in this paper moves in a pure straight line, the effect of the fusion
positioning is the worst, which is basically only the lag of the SLAM output result.
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2. The fusion of the method in this paper can effectively suppress the divergence of
positioning errors and ensure the positioning requirements of unmanned vehicles.
The lateral positioning results are always stable within 20 cm, which is sufficient for
unmanned navigation in the local coordinate system.

3. Due to the continuity of the observation equation, the radius of curvature is small,
but the position error with frequent changes is the smallest, which can be below the
meter level.

5. Summary and Outlook

In this paper, by integrating SLAM positioning and map information, combined
with the local stability and non-divergence of lane line positioning, and the globality and
continuity of SLAM, a prior map of lane lines based on directed graphs is established to
solve the problem of unmanned vehicle positioning. There is a lack of correlation between
local positioning and global positioning, and the positioning results are not robust enough,
especially in the case of GNSS failure, providing good local positioning information to
ensure the realization of the navigation function. While preventing the divergence of global
information, the positioning application of unmanned vehicles have a certain contribution.
At the same time, the positioning method described in this paper can be applied to more
scenes, such as semantic map information, the image information of known positioning, etc.
By establishing observation equations and judging and adjusting one’s own position, the
accuracy of positioning can be increased further. The method proposed in this paper has
practical application significance in universal map construction and localization. However,
it is highly dependent on the observability of road information, and the fusion effect is
limited when the road is a pure linear motion, which needs further research.

Driverless positioning technology is developing rapidly, and more sensors and algo-
rithms are being proposed. Sensors such as millimeter wave radar, ultrasonic radar and
infrared are all important in driverless positioning technology. SLAM systems are one of
the important methods of multi-source sensor fusion, and we believe that the combined
application of deep learning technology and SLAM will be an important method for future
driverless capability.
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