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Abstract: In the world of structural design, in most cases, there is a need to control the shape of struc-
tural elements and—at the same time—the performance that each one can achieve. With the evolution
of structural analysis tools, nowadays it is possible not only to have an immediate investigation of the
structure’s performance, but also to search for the best shape by imposing geometric constraints. The
aim of this paper is to present an innovative methodology called the performative structural design
optimization (PSDO) method, based on the use of algorithm-aided design (AAD). The proposed
approach deals with an emptied voided beam; starting from the parameterization of a large-span
beam, the search method for the most performing shape is accomplished by multi-objective evolu-
tionary algorithms (MOEAs). The obtained results are characterized by a double optimization: the
structure achieved by the hypervolume estimation algorithm for multi-objective optimization (HypE
Reduction) (OCTOPUS) represents the starting shape for the application of form-finding, giving so
the possibility to obtain different feasible solutions from a single study and to choose the best one in
terms of structural behavior.

Keywords: parametric design; PSDO method; visual programming; computational geometry; structural
optimization; form-finding; hypervolume indicator; multi-objective optimization; conceptual design

1. Introduction

Searching for the “best solution” is a crucial point of many, maybe all, human activities
that can be roughly summarized as “do more with less”. Within all the possible formal
descriptions dealing with the decision-making, a quite useful one is to delineate it as
finding the best solution in certain circumstances to achieve a particular goal from multiple
alternatives [1].

Different disciplines are intrinsically questioned and involved in the design phases in
the architecture field [2] so furnishing useful parameters for a correct design.

Together with other parameters, each discipline contributes to designing spaces,
shapes, and structures; one of the main questions is the search for alternatives, that is, the
exploration of alternatives for solving problems discovered at each design stage. However,
as there is a limit in the ability to gather information, only some alternatives are feasible:
(i) alternative evaluations, which means predicting the outcome of each search alternative,
to which comparison and evaluation follow. However, due to the limitation in evaluation
capacity, it is impossible to fully predict and evaluate all results; (ii) alternative selection:
after anticipating the results of each alternative, by comparison, and evaluation, it consists
in selecting the relatively best alternative that satisfies a certain objective.

For these reasons, a critical step for an optimal design is to execute a reliable “initial”
solution that summarizes all the design criteria to be executed up to the final phase.

One of the most critical phases in construction design—commonly called “Concep-
tual Design”—is the first step of architectural design, in which the bases for obtaining
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the final product are pronounced. In this preliminary phase, the decision of the perfor-
mative response of the designed structure is intrinsically instilled which, in most cases,
strictly depends on the shape—combined with the material properties—that we attribute
to structural elements.

In this field, visual programming (VP) is attracting particular interest for many ar-
chitecture and civil engineering applications. VP languages represent an alternative to
traditional text-based programming approaches and consist of graphical methods based
on the use of blocks, also called nodes [3]. The block input fields contain the problem
parameters, while the output fields provide their results. Grasshopper for Rhinoceros
3D, Dynamo for Autodesk Revit, Allplan Visual Scripting for Nemetschek Allplan, and
Marionette for Vectorworks are the most common VP tools [4].

VP scripts are mainly adopted to automatize parametric geometry modeling [5] but
can also be implemented for other engineering tasks, such as for energy and thermal
analyses in buildings [6,7].

Merged with an optimization algorithm [8,9], they create an automated design tool
and generative design, in which a user selects the constraints and ranges of involved
parameters, while the algorithm optimally adjusts the values. Within this framework,
some researchers have recently advanced the use of VP methodologies for solving volume,
weight, and cost minimization problems. For instance, Aydın and Ayvaz [10] adopted a
VP approach to minimize the total cost of prestressed concrete beams by adjusting their
shape, prestressing, and arrangement. Another application of VP was proposed by Sardone
et al. [11], in such a case to minimize the volume of variable cross-section beams through
the use of the Gh-Octopus solver, in the Grasshopper environment. The VP technique was
also implemented by Lee [12] for finding the optimal shape of arch structures, by using the
plug-in Karamba3D in the Grasshopper environment and the plug-in NM-opti.

In this scientific contribution, a VP algorithm has been implemented to create a new
preliminary design methodology, by exploiting the latest architectural and structural design
technologies [13].

The presented approach adopts the following tools: (i) Rhinoceros 3D—software re-
sponsible for visualizing the structural element; (ii) Grasshopper—utilized for the parame-
terization of geometries; (iii) Karamba3D—plug-in developed to retrieve the results of the Fi-
nite Element Analysis (FEA); (iv) Octopus—Hypervolume Estimation Algorithm for Multi-
Objective Optimization [14]; (v) Kangaroo—useful for the application of form-finding.

The aim of the method is to speed up the calculation process through the search for
form—which today is also closely linked to aesthetic study in the architectural field—and
structural performance. To achieve a performative structure, computational optimization
techniques have become a necessity during the conceptual design phase. In the following
subsections, the benefits of pre-optimization are explored by introducing the performa-
tive structural design optimization (PSDO) approach. The case study describes a central
structural design case, that is a horizontal beam defined in a rectangular domain that is
“emptied” and “voided” to reduce its weight/volume without excessive loss of stiffness
and strength. The chosen case study represents one of the most common problems in
structural engineering, also treated in a continuous and discrete configuration.

1.1. Environmental and Economic Advantages: The Need for Structural Optimization

Due to its availability, durability, and safety, concrete has become the dominant
building material around the world. However, high demand needs to be mitigated to save
costs and preserve the environment from natural resource depletion and CO2 emissions in
the concrete manufacturing process [15]. On a world scale, according to the latest available
data, cement production is close to two billion tons per year, and, by 2050, demand will
grow, reaching four times more than in 1990. Furthermore, cement production is closely
linked to demand for steel; in 2016, Asia and Oceania alone required 1000 million tons
of steel [16]. These data, translated in terms of environmental impact, mean producing
disastrous consequences on the environment.
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The reduction in the production of building material aims at preserving the environ-
ment and at reducing the cost of construction itself. However, each structural element, to
be optimized, should not show structural adequacy defects. For example, spandrel beams
and bridges’ exterior girders are designed to withstand the combination of bending, shear,
and torsion stresses that are more dangerous than any other stress. When a solid reinforced
concrete beam is subjected to combined moments and bending moments prevail over
torsional moments (M/T ≥ 1.7), the beam can be stronger than its pure bending strength or
pure torsion strength. So, increasing the torsional moment can improve the stiffness [17].

Compared to a solid beam, a voided reinforced concrete beam could appear struc-
turally less performing, especially with regard to bending moment. A solid structure could
seem preferable to ensure adequate resistance to the fragility phenomena due to its concrete
nature. In this framework, this contribution aims at demonstrating how a performative
double-step optimization process (PSDO) could reduce the amount of cement and provide
adequate strength, especially in the context of flexural behavior investigation.

1.2. Voided Arch-Shaped Box Girder

The conceptual inspiration of this case study is the search for shape from Robert
Maillart, in the field of bridge design. Maillart brought a revolution in the world of
construction by introducing the idea of voided beams for main girders, obtained thanks to
his structural intuition without any automatic analysis support. In more detail, from 1900,
Maillart designed his first bridge in the village of Zuoz, a 30 m single-span lowered arch
bridge. The bridge became the precursor of modernity, being the first reinforced concrete
box girder bridge in history (Figure 1a). The idea was born from the desire to combine
the aesthetic elegance of the arch with a shapeless and ductile material as reinforced
concrete. The load-bearing capacity of the bridge did not rely entirely on the arch but
required abutments and slabs, and for this reason, a box girder was created and used for the
construction. However, the bridge became a source of discussion in 1903, when dangerous
cracks appeared in the sidewalls connected with the abutments. Although the phenomenon
was called not dangerous by Maillart itself (mainly due to shrinkage and thermal effects),
this event made him lose the patent for the Box Girder. To solve the problems due to creep
effects and to reduce the cost of construction, Maillart took up the elegance and geometry
of Zuoz Bridge, increasing the span size (from 30.0 m to 51.25 m) and the height of the arch
at mid-span (about 5.7 m above the ground). The improvement started from those parts
where he had more problems in the previous project: Maillart began a study to remove
structural parts and material, creating the Tanavasa bridge, an extraordinarily light and
performative structure with fewer costs. The bridge was built in one year using formwork
(mold) for concrete, and it cost only CHF 28,000 [18]. Furthermore, the shape of the voids
(Figure 1b) represented a solution to ensure a modern aesthetic as well as the discontinuity
provided a sufficient structural strength.
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involved materials were not deteriorated, so confirming that the collapse was exclusively
caused by the landslide effects [19].

In this framework, the aim of the proposed study is to analyze voided arch-shaped
concrete beams, focusing on the effects of geometry on structural efficiency (and reducing
material waste). Their structural behavior is investigated by the PSDO method.

1.3. Merging MOOPs and Form Finding for a Performative Concrete Shell Structure

The elegant complexity of structural and architectural shapes obtained through the
form-finding method has become a broad prerogative for designers who try to merge
structural stability with the compositive beauty of the architectural design. Thanks to addi-
tive manufacturing connected to 3D printing—which has become part of the construction
industry—nowadays, free-form shape structures are allowed in the actual construction.
Free-form shells, through proper design, allow us to obtain high-performance structures
with maximum material savings, leading to projects characterized by wide spans thanks to
their weight-to-height ratio and high rigidity. Furthermore, shell structures are spatially
curved structures that can be defined as “form resistant structures” [20]. By introducing
steel and concrete into 3D printing, the opportunity to define structures with complex
geometries—with the possibility of exploring new shapes by exploiting free form shells—
is increased.

A structure obtained through form-finding can be differently designed according to
the needs given by the specific project: a membrane can react purely to compression or
purely to tensile stresses, depending on the forces applied in the design phase. The very
low bending gives the advantages derived from the use of membrane within the structure.
However, for concrete shells, in particular, bending can cause tension that accumulates in
extreme fibers, leading to cracking. Furthermore, the material nonlinearity, in combination
with the wrong geometry adopted for the structure, can cause failures giving the shell the
characteristics of an “imperfection-sensitive structure” [21].

Shells represent a great opportunity to produce innovative and sustainable architec-
tures allowing the minimum weight of building elements. However, since shells are—by
definition—sensitive to imperfections, it is clear how certain criteria regarding architectural
shape must be respected. Therefore, a numerical model assisted by a two-phase optimiza-
tion algorithm has been implemented: the result of shape optimization is directly connected
with the solver adopted for the form-finding in order to have doubly performing results,
reducing the calculation times, and providing high accuracy in the optimization process
thanks to the FEA.

This work aims at proposing a method to design—debating the challenges/advantages
in designing—a thin concrete shell structure (50.0 m × 10.0 m) and at investigating the effi-
ciency of a thin continuous shell proposed as a large-span beam. The adopted methodology
is based on: (i) 3D modeling in Rhinoceros 3D; (ii) finite element modeling in Gh-Karamba
3D; (iii) shape optimization in Gh-Octopus, based on hypervolume estimation algorithm
for multi-objective optimization problems (MOOPs); (iv) a double-step optimization con-
necting Octopus results with Gh-Kangaroo, by which the last optimization, based on
form-finding method, will be performed.

2. Introduction to Performative Structural Design Optimization Method

In this paper, the PSDO method is approached to find the best shape of structural ele-
ments and simultaneously ensure structural safety and best performances. PSDO consists
of an iterative method based on performative computational architecture (PCA) [22,23],
structural performance evaluation, and optimization.

Specifically, the presented methodology is composed of the following steps (Figure 2):
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Figure 2. Tools workflow.

Step 1: visualization of the structural element by the software Rhinoceros 3D;
Step 2: parameterization of geometries through the VP software Grasshopper;
Step 3: retrieval of the results of the FEA by the plug-in Karamba3D;
Step 4: Multi-Objective Optimization by the hypervolume estimation algorithm

Octopus [14].
Step 5: import and evaluation of the optimized geometry with the application of

form-finding by the plug-in Kangaroo.
More precisely, the computational geometry methodology allows for the generation of

geometric models through the parameterization of curves, successively analyzed by a FEA.
A third step, which emerged from the FEA results, is represented by the assessment of
structural performances. The best performance must be able to respond to objectives (or pre-
established constraints) and ensure feasibility, by including the load and resistance factor
design (LRFD) and the serviceability limit state (SLS). The optimization phase considers
metaheuristic algorithms to discover optimal design solutions within a systemic research
process, checking the static and dynamic feasibility. The final phase defines the nearly
optimal architectural and engineering solution.

2.1. Computational Design Using Grasshopper

The proposed methodology starts from a solid beam geometry (Figure 3) whose
dimensions are defined as follows: L (span-length) = 50 m; he (depth) = 10 m; b (shell
cross-section) = 0.35 m.
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The just-described parameters represent the constant dimensions of the starting geom-
etry implemented in Grasshopper [24] (Figure 3).

The considered shape is described by means of a set of physical parameters:

{pi}i=1,··· ,N (1)

including the optimization variables. In this case, the solver can act by emptying the solid
beam, in the respect of certain parameters that, for the test case, also represent geometrical
constraints and reflect the preliminary creative idea on the basis of which the conceptual
design develops.

The first emptying function is retrieved starting from the general circumference equa-
tion, centered with respect to the z-axis:

x2 + y2 + βz + c = 0 (2)

It is worth noting that, for the bottom profile of the beam, a circumference arc shape,
that is a constant curvature outline, is preferred, at the aim to simplify the construction
stage, also with reference to a possible prefabrication system, and to reduce costs.

The arc described by Equation (2) can be parameterized by imposing its passage
through three points (Figure 4), named P1, P2, P3, characterized by the following coordinates:

P1 = (−L, 0)

P2 = (0, hm′)

P3 = (L, 0)

where hm′ represents the value of the emptying function:

hm′ ∈ [0, he − δ] (3)

where he is the initial beam height and δ ∼= he/10 a fixed minimum value of the depth.
The beam section depth function is defined as:

hm = he − hm′ (4)

that, by substituting the emptying function hm′ with Equation (2) and assuming β > 0 and
c < 0, becomes:

hm = he −
(

x2 + y2 + |β|z− |c|
)

(5)

So, the emptying function hm′ is expressed as:

x2 + y2 + |β|z− |c| (6)

and represents a first geometrical constraint.
Starting from the curve in Equation (6), a second curve is defined, passing through the

points P1′ , P2′ , P3′ and representing the basis to create the second geometrical constraint in
the optimization problem, that is the insertion of voids in the beam (Figure 5):

(x2 + y2 + |β|z− |c|) ∈ [P1′ , P2′ , P3′ ] (7)

where:

P1′ =

(
−L,

he

2

)
⇒ he

2
(const.) (8)

P2′ =

(
0,

hm

2

)
⇒ hm

2
=

he − hm′

2
(9)
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P3′ =

(
L,

he

2

)
⇒ he

2
(const.) (10)
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tion (7) and the y-axis is replaced by the z-axis. 

With reference to the ellipse, it is imposed that: a = horizontal semi-axis; 2a = horizon-
tal axis; b = vertical semi-axis; 2b = vertical axis. 

So, it is possible to recognize the major axis by comparing the terms 𝑎𝑎2 and 𝑏𝑏2 as 
follows: 

 𝑎𝑎2 ≥ 𝑏𝑏2⇒ 𝑃𝑃𝐹𝐹1����� + 𝑃𝑃𝐹𝐹2����� = 2𝑎𝑎   (14) 

𝑎𝑎2 < 𝑏𝑏2 ⇒ 𝑃𝑃𝐹𝐹1������ + 𝑃𝑃𝐹𝐹2����� = 2𝑏𝑏 (15) 

Within this configuration, the circumference shape is included by setting: 

𝑎𝑎2 = 𝑏𝑏2⇒ 𝑥𝑥2 + 𝑦𝑦2 + 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝑐𝑐 = 0 (16) 

In this way, three possible solutions regarding the shape of voids are obtained: ellip-
ses with a major horizontal axis (Equation (14)), ellipses with a major vertical axis (Equa-
tion (15)) and circumferences (Equation (16)). The shape of voids belongs to the physical 
parameters set in Equation (1). 

Equation (14) is strictly dependent on the position of point P2 (and on the parameter 
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Figure 5. Shifted curve (Equation (8)).

In fact, with the aim to achieve both a bigger number of voids to introduce in the beam
and more flexibility in their shape, so as to allow a better distribution of stresses, the ellipse
shape is selected, under the hypothesis that all the centers of the ellipses are placed on
the curve described by Equation (7). Moreover, in order to simplify the problem from a
computational point of view, the condition of symmetry is set.
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The ellipse equation is so considered:

PF1 + PF2 = 2a (11)

that can be rewritten as:√
(x− x1)

2 + (y− y1)
2 +

√
(x− x2)

2 + (y− y2)
2 = 2a (12)

and that, in parametric form, becomes:
x = a cos t
y = b sin t
0 ≤ t < 2π

(13)

In the case under examination, the x-axis is replaced by the curve described in
Equation (7) and the y-axis is replaced by the z-axis.

With reference to the ellipse, it is imposed that: a = horizontal semi-axis; 2a = horizontal
axis; b = vertical semi-axis; 2b = vertical axis.

So, it is possible to recognize the major axis by comparing the terms a2 and b2 as follows:

a2 ≥ b2 ⇒ PF1 + PF2 = 2a (14)

a2 < b2 ⇒ PF1 + PF2 = 2b (15)

Within this configuration, the circumference shape is included by setting:

a2 = b2 ⇒ x2 + y2 + αx + βz + c = 0 (16)

In this way, three possible solutions regarding the shape of voids are obtained:
ellipses with a major horizontal axis (Equation (14)), ellipses with a major vertical axis
(Equation (15)) and circumferences (Equation (16)). The shape of voids belongs to the
physical parameters set in Equation (1).

Equation (14) is strictly dependent on the position of point P2 (and on the parameter
hm′ (Equation (3)). As the height of point P2 increases, the ellipse (or circumference) must
maintain a size to ensure a sufficient thickness between the perimeters of the void and of
the beam, so providing a suitable rigidity and strength to the structural component.

The first void is fixed on the external edge (Figure 6a,b) with the center placed in P1′

(Equation 8). In this case, the domain of parameter b is set as follows:

b1 ∈
[

0.5 he

2
;

0.8 he

2

]
(17)
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In order to determine the domain of parameter a for the first void, it is necessary to
trace the tangency point between the void and the initial curve described in Equation (6)
(passing through the points P1, P2, P3). The domain of a is defined by imposing a sufficient
distance between the perimeter of the void and that of the beam (Figure 7). By expressing
the parameter a as a function of the radius (d − n), d being the distance between P1′ and the
just introduced tangency point, it is imposed that:

a1 = (d− n); n ∈ [nmin; nmax] (18)
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The following relation between the parameters a, b, and hm′ can so be derived:

hm′ ∈ [0, he − δ] ⇒ a2 < b2 ⇒ PF1 + PF2 = 2b (19)

hm′ ∈ [0, 0] ⇒ a2 > b2 ⇒ PF1 + PF2 = 2a

By using the PlaneTrimCurve component (Pufferfish-Grasshopper plug-in), it is possible
to trim the curve described in Equation (14), along the z-axis, obtaining the first definitive
parametric void at the beam extremity (Figure 8).
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In order to create equidistant voids on the remaining development of the beam, it is
necessary to divide the entire length of the beam into n-parts of n-equal distance (Figure 9);
the start and end-points of the length division thus represent the centers C of the beam
voids, designed on the circumference arc passing through the points P1′ , P2′ , P3′ .
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The configuration of voids depends on the parameter hm′ (Equation (3)); as the value
of hm′ decreases, the size of the first half-void increases. To prevent overlaps between the
perimeters of the voids, it is necessary to shift the center of the second void:

x2′ =
L
nd

+
hm′ , max − hm

2
(20)

where nd represents an arbitrary coefficient depending on the chosen number of voids.
Similarly to the parameter a1, also the domain of a2 must be defined in order to ensure

an adequate distance s between the voids (Figure 10):

(a2 − s) ∈ [0.5a1; a1] (21)
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Figure 10. Void N.2.

The last parameter to be defined is the amplitude of b2 belonging to the second void,
as follows:

b2 ∈ [0.1 a2 ; a2] (22)

The third void of the structure is retrieved as the second one completing the possibili-
ties of circular voids if the chosen final solution is a starting box with three circular voids
(Figure 11).

In the examined case, the use of inclined uprights could provide a better distribution
of stresses. Therefore, if the optimal solution contemplates ellipses, it is assumed that
they can rotate around their center, counterclockwise, by an angle in the range of 0◦–45◦

(if an 6= bn) (Figure 12).
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Figure 12. Rotated voids.

As shown in Figure 12, there is still material between the third void and the mid-span
of the beam, that could be removed to obtain a lighter structure; by imposing the function
as a Boolean test:

i f (hm′ > 2/5he, y, 0) (23)

additional voids can be introduced if the parameter hm′ is larger than 2/5 he; in the case
under examination, the number of voids can reach a maximum value equal to 3 + 3
(additional voids depending on Equation (23)) (Figure 13).
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Figure 13. Boolean test in visual script to create additional voids if hm′ is larger than 4 m
(Equation (14)).

The horizontal radius ai and the corresponding vertical radius bi of successive voids
are iteratively obtained by adopting a similar procedure. Joining the geometries in a
single component by the JoinCurves tool, the geometric pattern of the examined problem is
achieved (Figure 14), governed almost entirely by the parameter hm′ (Equation (3)).
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The transition from the geometrical model to the structural one is achieved by the
MeshBrep tool (Karamba3d plug-in for Grasshopper) that allows switching from a ge-
ometric mesh to a finite element model (FEM), through a triangulation of parametric
bidimensional elements.

2.2. Finite Element Analysis

In order to proceed with the FEA, starting from the retrieved model, it is necessary to
specify the material and the cross-section dimensions. The MeshtoShell component allows
for the retrieval of a shell model from given meshes as input and, at the same time, to define
the cross-section of shell elements through the CrossSection component and the material
by the MatSelect component. The cross-section is given by a ShellConstant, which allows
setting the shell height and material with a constant cross-section. The selected material is
concrete belonging to C45/55 class.

Since a more considerable thickness of the cross-section leads to a greater strength
of the structural element, the problem concerning the cross-section is more controver-
sial. Although the shape represents the main feature in the optimization problem (from
both aesthetic and structural points of view), tensile stresses are herein minimized, so
excluding the minimization of bending moments that would imply fewer thicknesses and
costs. Moreover, in order to guarantee a concrete area able to accommodate the minimum
reinforcement, a minimum thickness equal to 35 mm is introduced for the cross-section.

Constraints and loads represent the last two FEM input data.
As to constraints, at the two extremities of the beam, the points below are assumed

clamped—considering them connected to the foundations—while a hinged roller constraint
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is imposed on the points above, thus accounting for all possible longitudinal translations
due to rheological and thermal effects (Figure 15).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 22 
 

The transition from the geometrical model to the structural one is achieved by the 
MeshBrep tool (Karamba3d plug-in for Grasshopper) that allows switching from a geo-
metric mesh to a finite element model (FEM), through a triangulation of parametric bidi-
mensional elements. 

2.2. Finite Element Analysis 
In order to proceed with the FEA, starting from the retrieved model, it is necessary 

to specify the material and the cross-section dimensions. The MeshtoShell component al-
lows for the retrieval of a shell model from given meshes as input and, at the same time, 
to define the cross-section of shell elements through the CrossSection component and the 
material by the MatSelect component. The cross-section is given by a ShellConstant, which 
allows setting the shell height and material with a constant cross-section. The selected 
material is concrete belonging to C45/55 class. 

Since a more considerable thickness of the cross-section leads to a greater strength of 
the structural element, the problem concerning the cross-section is more controversial. 
Although the shape represents the main feature in the optimization problem (from both 
aesthetic and structural points of view), tensile stresses are herein minimized, so exclud-
ing the minimization of bending moments that would imply fewer thicknesses and costs. 
Moreover, in order to guarantee a concrete area able to accommodate the minimum rein-
forcement, a minimum thickness equal to 35 mm is introduced for the cross-section. 

Constraints and loads represent the last two FEM input data. 
As to constraints, at the two extremities of the beam, the points below are assumed 

clamped—considering them connected to the foundations—while a hinged roller con-
straint is imposed on the points above, thus accounting for all possible longitudinal trans-
lations due to rheological and thermal effects (Figure 15). 

 

 
Figure 15. Supports implementation in visual scripting. 
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Figure 15. Supports implementation in visual scripting.

Due to the nature of the problem, in this preliminary study, the structure is subject just
to its self-weight by adopting the Load command (Gravity).

Thus, after performing a linear static analysis of the FEM, the AssembleModel and
Analyse components allow us to extract the values related to the mass and the displacements
of the model. Furthermore, two different solutions are evaluated: the solid beam and the
voided case with hm′ ∈ [0, 0].

Similarly, the shell principal stresses, described as Sig1-Val and Sig2-Val, can be ob-
tained from the ShellVecResults components. The results are summarized in Table 1 and
Figure 16.

Table 1. FEA Results.

Test Case Displacement
(cm)

Mass
(Kg)

Sig1-Val
[Tensile Stress]

(kN/cm2)

Sig2-Val
[Compressive Stress]

(kN/cm2)

Solid beam 0.33 437,500 0 to 1.119294 −1.033997 to 0

hm′ ∈ [0, 0] 1.13 191,044 0 to 1.429453 −1.922351 to 0
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According to the Mohr circle model, the highest tensile stress Sig1-Val results equal
to about 1.43 kN/cm2, while compressive stresses reach a maximum value equal to −1.92
kN/cm2 (Figure 16).
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By disassembling the structural model, it is possible to retrieve the complete list of
the mechanical characteristics of all the shell elements. So, after associating different colors
to each element depending on the tension sign, a visual graph distribution of tensile and
compressive stresses can be obtained in Rhinoceros 3D ambient (Figure 17). Figure 17 also
provides an enlargement of the FEM mesh, showing its resolution, set to 0.150 m.
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3. The Multi-Objective Optimization Problem

The optimal shape that minimizes both mass and tensile stresses of the voided beam
is herein searched for. So, a MOOP is solved in order to find the best solution.

Moreover, it is imposed that tensile stresses do not exceed the concrete cracking limit,
given by (Eurocode 2): fctm = 0.3 f 2/3

ck .
Therefore, the optimization problem can be formulated as follows:
Find the:

min
{pi}∈ Pad

J1, J2max(P1, . . . , P9) (24)

By imposing the constraint
J2max ≤ fctm (25)

where Pad is a set of admissible parameters and J1, J2max represent the mass and the
maximum tensile stress to be minimized, respectively [25].

Depending on the parameters included in Equation (15), the shape variation allows
a possible solution set included in the Pareto optimal front. In the optimization process,
the solver is able to find the best shape and dimensions of the voids to allow a more
homogeneous distribution of stresses within the structure.

Optimization Results—Octopus Solver (HypE Reduction)

The Pareto optimal front in MOOPs represents a set of solutions that are non-dominated
while being the best of all possible solutions. It means that a single solution cannot be
simultaneously superior to all the other ones concerning all objectives. As a single goal
improves in MOOP, another will get worse. Therefore, each solution of the Pareto set
includes at least one objective that is inferior to another solution in that Pareto set, although
both are superior to others in the rest of the search space [26]. This condition implies the
necessity to define which is the best among all the feasible conditions.
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In the case under examination, the Octopus solver adopts the search algorithm SPEA-2
to reach the convergence to the best global solution. SPEA2 uses a regular population
and an archive. Starting with an initial population and an empty archive, the following
steps are performed per iteration. First, all non-dominated population members are copied
to the archive; any dominated individuals or duplicates are removed from the archive
during this update operation. If the size of the updated archive exceeds a predefined
limit, further archive members are deleted by a clustering technique that preserves the
characteristics of the non-dominated front. Afterward, suitable fitness values are assigned
to both archive and population members. The next step represents the mating selection
phase where individuals from the union of population and archive are selected by means
of binary tournaments. Finally, after recombination and mutation, the old population is
replaced by the resulting offspring population [27].

After 250 generations, the solver selected a set of solutions, as shown the Figure 18.
Three possible configurations are considered, in which the first solution (Test 1) shows
the smallest values of tensile stresses among all feasible solutions, the third solution
(Test 3) is the solution with the most negligible mass, and the second solution (Test 2)
is characterized by mid-values with respect to the two edge solutions. The results after
optimization (Figure 19), compared with the FEA of the solid beam, are summarized in
Table 2. Considering the solid beam as a comparative test case, Table 3 summarizes the
percentage variations of the chosen solutions.
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Table 2. Optimization results.

Test Case Displacement
(cm)

Mass
(Kg)

Sig1-Valmax
[Tensile Stressmax]

(kN/cm2)

Solid beam 0.33 437,500 1.119294

Test 1 0.36 123,932.7 0.23137

Test 2 0.51 86,963.8 0.283788

Test 3 0.56 84,206.1 0.336129

Table 3. Percentage variation comparison.

Test Case Displacement (%) Mass (%) Sig1-Valmax [Tensile Stressmax] (%)

Test 1 +9.1 −71 −97.9

Test 2 +54 −80.1 −74.6

Test 3 +69.7 −80.8 −70

By observing, it emerges that the enhancement of one objective function corresponds
to a worsening of the other. The following graph (Figure 20) shows the trend of the
objective functions: it is worth noting that as the mass increases, the maximum tensile
stress decreases.

Considering that concrete is characterized by good behavior in compression but a bad
one in traction, for the purposes of this study, the most performing solution is given by Test
Case 1. In fact, lower tensile stresses mean lower reinforcement, thus obtaining a double
advantage: saving on concrete material and on steel reinforcement, which are economic
and environmental benefits.
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4. Form-Finding Using Kangaroo Engine

In this section, among the three solutions selected from Octopus results, the one
closer to the main goals of the optimization is subjected to form-finding. Thus, Test Case
1, characterized by the lowest values of tensile stresses, is chosen for form-finding. The
workflow of the last optimization process is summarized in Figure 21.

The Kangaroo solver adopts a new approach to form-finding, called the dynamic
equilibrium method. It arrives at a static solution by using dynamic equilibrium equations.
The structural element is decomposed in a particle-spring system, made up of particles and
springs [28]. The particles are dimensionless points in space where all mass is concentrated
and correspond to the mesh components. The springs connect particles to one another and
are modeled as straight linear elastic bars. Typically, the mass of the particles represents
the self-weight of the structural form. Once the form-finding process is initiated, the initial
shape of the particle spring network is not in equilibrium and the forces begin to impact
the particles. These forces are generated by the displacements of the springs from their rest
length and the forces applied to the particles. Thus, the particles move through space until
the forces acting on them are in equilibrium. At this point, the system essentially converges
to a stable configuration.

So, the Kangaroo solver is a “Physical Laboratory” that iteratively moves the points to
obtain the lowest sum of energies acting on all the points of the system. The length goal
acts as a spring, following Hooke’s law.

F = Kx (26)

which states that the force (F) needed to extend or compress a spring by a certain distance
(x), linearly scales with respect to that distance, k being a constant factor characteristic of
the spring (i.e., its stiffness), and x being small compared to the total possible deformation
of the spring. The energy is zero at its rest length (length factor = 1) but increases if the
spring is stretched or compressed.
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Different goals can be achieved by applying the form-finding method, such as defining
energies on the basis of the geometric relations between the set of points they act on. Some
properties (length, angle, pressure) are based on physical elastic behavior so that their
strength can be precisely related to standard material properties and units. Other goals
are purely geometric or physically based, such as the Hinge goal for shell bending, able
to model physical behavior (only) qualitatively. This method can work as a geometric
constraint solver when the goals do not conflict by making all the energies zero. However,
in some cases, such as finding the deflection of a hanging cable, the length and load goals
cannot be simultaneously satisfied—since one resists the other—so the solver finds the
configuration with the least total potential energy. Nevertheless, this strategy is able to lead
to numerically accurate elastic deformation models if the strengths are correctly set.

By using Kangaroo, tasks such as constraint solving, structural deformation modeling,
and dynamic animation are all addressed by an energy minimization approach. The
Kangaroo algorithm used to perform energy minimization can be seen as a form of dynamic
relaxation (DR)—developed by Alistair Scott Day in 1974 [29]. The DR method consists
in achieving equilibrium by combining all the forces acting on each point and repeatedly
moving all the points in small steps until the force’s balance is reached, and the movement
stops. In the typical engineering applications of dynamic relaxation, the desired output is
represented by the static equilibrium configuration, so that damping and mass values are
changed to obtain stability and convergence rather than actual physical values. Kangaroo
(Version2), based on DR, combines projections onto the zero-energy state of each goal [30].
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Kangaroo Solver Results

In this section, the strategy of form-finding by Kangaroo Engine is applied to the case
study herein analyzed. The elongation of the springs of the particle-spring system, as above
described, is directly managed by fixing the line length into the EdgeLengths component, so
setting the minimum length when compressed. After choosing the range 0.7/1.0 (real size)
to regulate the elongation of the springs, it is necessary to impose suitable constraints to
reproduce boundary conditions. By setting the AnchorPoint component, it is possible to fix
the points in the x-z plane that overlap with the supporting points in the FEM. Finally, the
solver is launched, reaching the convergence and so obtaining the solution described in
Figure 22.
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Connecting Karamba 3D (FEA) with Kangaroo Solver, the results summarized in
Table 4 are retrieved.

Table 4. FEA results Kangaroo solver solution.

Test Case Displacement (cm) Mass (kg) Sig1-Valmax [Tensile Stressmax] (kN/cm2)

Kangaroo results 0.59 93,973.8 0.143538

Due to the form-finding process, the mass is drastically reduced—from 123,932.7 kg to
93,973.8 kg—with a percentage variation equal to about −24.2%. Together with the mass
reduction, an overall improvement in structural performance is obtained. In fact, by the
Kangaroo solver, also a significant decrease in the maximum tensile stress Sig1-Valmax, up to
about −39%, is achieved, with respect to the first step of the shape optimization. Moreover,
by increasing the discretization of the entire mesh, the condition of total compression of the
arc is reached (Figure 23).

The obtained solution can be considered optimal since, in a theoretical way, reinforce-
ment is not necessary, and the risk of cracking is almost rare. So, if some percentage of
reinforcement is anyway included according to code prescriptions, this solution allows
reducing both its amount and concrete class, with consequent advantages in terms of costs
and environmental impact. These benefits add up to the aesthetical ones, achieved thanks
to the combination of shape-optimization and form-finding methods.

It is important to remark that, together with design and material costs, construction
ones also have to be accounted for and affect the overall final cost of the structure; never-
theless, the adoption of constant curvature shapes, as the ones herein obtained by the final
optimization through Kangaroo Solver, can be convenient from an economic point of view.
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5. Conclusions

In this paper, a new strategy for the preliminary optimization of a shell element was
presented and tested using innovative tools that allow combining computational design
with generative algorithms.

The main aim of the study was to understand the structural behavior of a new shape
of the beam, an emptied voided beam, and to investigate the potentialities of this particular
configuration, by minimizing both volume and tensile stresses.

By adopting the PSDO method, it is possible to reduce the time and complexity of
calculation compared to more traditional methods, which often require the development
of derived functions. Furthermore, by VP, accurate analyses can be implemented for the
optimization of pre-processing and post-processing structural elements without necessarily
resorting to complicated programming techniques (such as C++, C#, Phyton, etc.). The
method also allows the integration, in the analysis, of functions and codes external to the
Grasshopper environment, without elaborating too many complex models.

The proposed methodology can be summarized by the following steps: (i) preliminary
analytical study to set the geometrical shape of the beam and of the voids; (ii) implementa-
tion of the geometrical model in Grasshopper; (iii) elaboration of a FEM by the Karamba3d
plug-in; (iv) resolution of a MOOP by Octopus solver (HypE Reduction) and achievement
of a Pareto optimal front of solutions; (v) selection of the solution closer to the main goals
of the conceptual design and implementation of form-finding by Kangaroo Engine in order
to further optimize the beam.

More precisely, by a double-step optimization (steps iv and v), it was possible to reduce
the amount of material up to 80% compared to the initial solution of the solid beam, creating
the possibility of pre-designing in a sustainable way with lower costs. Simultaneously,
also a significant reduction in tensile stresses was obtained in the shell element (−87.2%),
leading to a decrease in the number of reinforcements and again of costs. These goals
were reached under continuous control of the structural shape, thanks to the geometric
constraints imposed in the preliminary geometry calculation phase.

The above results prove the efficacy of the proposed approach, based on direct com-
munication between the geometry, modeled by a FEA, and the optimization problem.
Finally, the presented method can be particularly useful in a preliminary design stage, to
comprehend if the initial creative intuition of a construction shape also corresponds to
good structural behavior, and to decide if it can undergo the successive, more detailed,
design steps.
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