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Abstract: The aerospace electromagnetic relay (AEMR) is a key electronic component in aerospace
and weaponry systems. It usually lacks sufficient test data to conduct an effective storage reliability
assessment at its early development stage. Thus, this paper introduces the theory of belief reliability,
a new theory in the field of reliability engineering. Under its theoretical framework, firstly, through
the analysis of the storage degradation mechanism of AEMR, the performance degradation charac-
terization parameters are selected to build a storage degradation model. Then, the failure criterion
conditions of AEMR are analyzed, and the degradation characterization parameters are used as the
‘smaller the better’ performance parameters to build a margin equation. Then, the margin equation
is combined with the storage degradation model, and the uncertainties of the model parameters
are quantified to complete the belief reliability model of AEMR. Finally, a certain AEMR is used as
the object for validation. In solving the belief reliability model, the manufacturing information of
the product, the degradation simulation data, and the test data are fully utilized to solve the model
parameters by utilizing the uncertainty maximum likelihood estimation (UMLE) method. The results
show that the method can obtain more accurate assessment results with small test data samples, and
the MAE is reduced, compared to only simulation data, by 29.3%. By analyzing the uncertainty of the
model parameters, it is found that the main sensitive factor affecting the storage reliability of batch
aerospace relays is the initial release time. It was also found that the accuracy of the calculations could
be significantly improved by considering the uncertainty of the threshold values when calculating.

Keywords: aerospace electromagnetic relay; storage reliability; belief reliability; uncertainty theory

1. Introduction

At the beginning of the last century, the concept of reliability emerged with the devel-
opment of the modern industry [1]. Before the emergence of this concept, the probability
theory was widely applied to solve problems in engineering practice. Therefore, the relia-
bility discipline has been closely integrated with probability theory since its birth and has
developed to solve many practical issues in the field of reliability engineering. Probability
theory describes the probability of something occurring by its frequency. It is known, from
Bernoulli’s law of large numbers, that frequency can be equal to probability as long as there
are enough trials of independent events. Thus, the traditional probabilistic approach cannot
effectively solve the reliability engineering problem when the number of tests is small or
the sample size is insufficient [2,3]. Limited by the fact that it only uses objective data to
cognize events, in order to use human experience and knowledge effectively, different
evaluation methods using subjective cognition, such as Bayesian theory, evidence theory,
and fuzzy set theory, have been developed [4]. Although such methods have achieved
good results in some fields, with the development of modern industry, today’s reliability
engineering still exists with some issues: 1. Products tend to be complex; 2. Enterprises are
highly competitive, greatly compressing the reliability test cycle of products, resulting in a
reduced test sample size and difficulty obtaining adequate data; 3. Uncertainties cannot be
ignored but cannot be effectively measured.
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Therefore, modern reliability engineering urgently needs a new mathematical theory
to solve the new problems arising from the development. In 2007, the uncertainty theory
was proposed by Liu [5,6], forming a scientific and self-consistent mathematical axiom
system with a set of innovative and convenient algorithms, providing a new method to
solve the problem of small samples and uncertainty. Furthermore, in response to the issues
faced by modern reliability engineering, Kang [7–9] created the theory of belief reliability by
combining traditional probability theory, uncertainty theory, and reliability science. Since it
was proposed, many scholars have researched the theory’s application, and many success-
ful cases have been produced successively. For example, Zu [10] modeled and estimated
the uncertainty of fatigue life with small sample fatigue test data based on uncertainty
theory. Li [11] developed a fatigue crack extension reliable life model based on uncertainty
theory and belief reliability theory. It concluded, through analysis, that uncertainty theory
could get more stable reliability evaluation results when considering epistemic uncertainty,
and it found that material dispersion significantly affects fatigue life. Zhang [12] et al.
proposed a belief reliability modeling method for the creep-fatigue of radiators, based on
uncertainty theory for the tube-and-belt radiator of automobile engine, and gave improve-
ment suggestions by analyzing the uncertainty of model parameters. Li [13] et al. proposed
a belief reliability modeling method, based on assembly accuracy of spaceborne synthetic
aperture radar (SAR), when facing the practical engineering problem of how to improve
the service performance of SAR. By analyzing the multi-source uncertainty, theoretical
guidance is provided to carry out the mechanism assembly, which effectively enhances
the assembly accuracy and efficiency and enhances performance. Yu [14] et al. proposed a
gear reliability modeling method based on belief reliability, which further improved the
accuracy of the evaluation results by considering both inherent uncertainty and cognitive
uncertainty. Chen [15] et al. proposed a belief reliability modeling and analysis method for
harmonic gear transmission efficiency and discovered the main factors affecting transmis-
sion efficiency and reliability by analyzing and quantifying multiple sources of uncertainty.
Kang [16] et al. proposed a function-oriented design and optimization method of belief
reliability based on performance margin. They proved that the uncertainty analysis results
of the belief reliability theory could guide product design by applying it in the design
phase of torsion spring electrical connectors. The above research results show that the
belief reliability theory has good applicability for evaluating different products. It can give
valid evaluation results for small sample test data, and considering uncertainty can give
guidance suggestions for product improvement.

AEMRs are widely used in vital positions in aerospace and weaponry systems due
to their high reliability, long life, and solid on–off performance. They are mainly used to
undertake the system power supply, distribution, and timing logic control. Therefore, once
one fails, it will undoubtedly produce a devastating blow to the whole system [17]. At the
same time, because AEMRs are the least reliable of the many military electronics compo-
nents, it is reasonable to assume that the reliability of AEMRs determines the reliability of
the aerospace and weapon system, based on the Bucket theory. However, similar to missiles,
torpedoes and other long-storage weapons and equipment, from production to use, often
go through a storage period of up to ten years [18]. During the storage process, even in a
relatively stable environment, external stresses inevitably affect the AEMRs, resulting in
internal degradation and eventual failure [19]. Thus, the storage reliability of aerospace
relays is of great importance for effective weapon systems and even national security.
Therefore, it is necessary to study AEMRs’ storage reliability assessment technology.

With the development of manufacturing process technology, electronic devices are
becoming more and more reliable. AEMRs are no exception, and even if storage accelerated
life testing is used for them, it is difficult to achieve effective evaluation in the short term.
Especially for products in the early stages of development, the time, labor, and material
costs associated with multiple rounds of design modifications and large batch reliability
testing of the related products are incalculable. Therefore, for the design phase of AEMR, it
is not friendly to use traditional methods for reliability assessment. Ye [20] and Wang [21]
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modeled the performance degradation of sensitive parameters, such as suction time and
contact resistance, starting from the degradation mechanism, which laid the foundation for
the storage reliability assessment work. However, the “one-sample-one-assessment” model
is unsuitable for generalization, and the calculation is very tedious when facing the reliabil-
ity assessment of batch AEMRs. Therefore, a stochastic process-based approach [22,23] to
storage reliability assessment was further proposed. Assuming that the model parameters
obey a normal-gamma distribution to reflect the individual differences between batches, a
storage reliability assessment model for batch AEMRs is established. However, the storage
reliability of batch AEMRs is not only affected by individual heterogeneity but also by
uncertainty, due to unclear knowledge of the degradation process and the inherent uncer-
tainty of the product itself. Therefore, measuring the multiple sources of uncertainty, in the
development stage of AEMRs, will play an important role in the modeling.

As seen above, with the development of modern industry, the problems faced in the
field of reliability engineering tend to become more complex, with many influencing factors
of uncertainty. The proposed belief reliability theory provides new solutions to problems
in the reliability discipline field. Some scholars have combined theory and practice, and
through some exploratory attempts, they have shown good application effects on some
products with high-reliability requirements. By modeling and evaluating products based
on belief reliability theory, on the one hand, effective evaluation results can be obtained with
small sample test data. On the other hand, the influence of multiple sources of uncertainty
can be analyzed to give a practical impetus to the product optimization work. In the case
of AEMR, the subject of this paper, the problem of small samples of test data and the
failure of existing models to quantify multiple sources of uncertainty is also present in the
development phase.

Therefore, this paper introduces a new theory of belief reliability and gives a new
storage reliability assessment method for AEMR. It establishes a belief reliability assessment
model by considering multiple sources of uncertainty from the degradation mechanism. In
the practical case, analyzing the influence of the uncertainty of model parameters provides
the suggestion for AEMR’s design and evaluation.

2. Related Theoretical Foundation and Modeling Framework

This section will provide an introduction to the theory underlying the work in this
paper, which includes uncertainty theory [6], important definitions and theorems of belief
reliability theory, and belief reliability modeling framework.

2.1. Uncertainty Theory

Definition 1. Uncertainty measure: Let Γ be a nonempty set, L be a σ-algebra over Γ, and the
element Λ in L be called an event. Uncertainty measure M is a set function from L to [0, 1] satisfying
the following axioms.

Axiom 1. (Normality axiom): for the universal set Γ, M{Γ} = 1.

Axiom 2. (Duality axiom): M{Λ}+ M{Λc} = 1, for any event Λ, where Λc is the complementary
set of Λ.

Axiom 3. (Subadditivity axiom): For a countable sequence of events Λ1, Λ2, · · ·

M{
∞
∪

i=1
Λi} ≤

∞

∑
i=1

M{Λi} (1)

Axiom 4. (Product axiom): For a column of uncertain space {Γk, Lk, Mk}, k = 1, 2, · · ·

M{
∞

∏
i=1

Λk} = min∞
k=1Mk{Λk} (2)
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where Λk is an arbitrary event chosen from Lk, k = 1, 2, · · · .

Definition 2. Uncertainty variable: let ξ be a function from an indeterminate space {Γ, L, M} to a
set R of real numbers if for any Borel set B, the set {ξ ∈ B} = {Γ ∈ Γ|ξ(Γ) ∈ B} is an event, so
ξ is said uncertain variable.

Definition 3. Uncertainty distribution: let ξ be an uncertain variable, then the function Φ(x) =
M{ξ ≤ x} is called uncertain distribution.

Definition 4. Inverse Uncertainty distribution: let ξ denote an uncertain variable with a regular
uncertainty distribution Φ(x), then the inverse function Φ−1(α) of Φ(x) will ride the inverse
uncertainty distribution of ξ.

The uncertainty algorithm is as follows: let ξ1, ξ2, · · · , ξn be a column of independent
canonical uncertain variables, and its uncertainty distribution is Φ1, Φ2, · · · , Φn. If the
function f (x1, x2, · · · , xn) is monotonically increasing with respect to x1, x2, · · · , xn, and
strictly monotonically decreasing with respect to xm+1, xm+2, · · · , xn, then the uncertainty
distribution of the uncertain variable f (ξ1, ξ2, · · · , ξn) is the following equation:

Φ−1(α) = f−1(Φ−1
1 (α), Φ−1

2 (α), · · · ,
Φ−1

m (α), Φ−1
m+1(1− α), · · · , Φ−1

n (1− α))
(3)

2.2. Belief Reliability Theory

The theory of belief reliability follows the three most basic principles of reliability sci-
ence: Margin reliability principle, Degenerate eternity principle, Uncertainty principle [24].
These three principles can be expressed by the following three equations:

1. Margin equation: E = G(P, Pth).
2. Degradation equation: P = F(X, Y, t, T).
3. Measurement equation: R(t) = µ(E > 0).

The margin equation, which represents the amount of the object performance al-
lowance and the failure criterion, corresponds to the allowance reliability principle among
them. The allowance is essentially the distance from the performance characteristic P to
the performance threshold Pth. If the margin is greater than 0, the product is reliable. The
performance of the object F and the system of intrinsic properties X, extrinsic properties Y,
and physical time t occur irreversibly along the degradation time vector T, according to the
degradation equation, which also corresponds to the principle of degradation eternity. The
degradation equation describes the degradation law of product determinism. The metric
equation describes the quantification of uncertainties in the allowance equation and relates
to the uncertainty principle, providing the product reliability in accordance. As a result, it
is possible to assume that the reliability is derived by quantifying the uncertainty using the
law of certainty.

2.3. Belief Reliability Modeling Framework

Firstly, the degradation mechanism of AEMR is analyzed, and the release time is
extracted as the critical performance degradation characterization parameter for the stress
relaxation of reeds. Second, the storage degradation model of AEMR is established based
on the degradation eternity principle. Then, based on the margin reliability principle, the
margin model is established by combining the performance degradation threshold and
combining the margin model with the AEMR’s model of storage degradation to establish
the margin degradation model. Finally, the uncertainty analysis is carried out from the
perspectives of inherent conditions and the cognitive influence of the margin model. The
uncertainty is quantified based on uncertainty theory to establish a belief reliability model
describing the storage degradation of AEMR. The whole framework is shown in Figure 1.
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3. Storage Degradation Belief Reliability Model for AEMR

In this section, a reliability model to evaluate the storage degradation of AEMR based
on the belief reliability and uncertainty theory will be developed, mainly including the
analysis of the storage degradation mechanism of AEMR, the modeling process based on
the belief reliability theory, the uncertainty characterization of parameters based on the
uncertainty theory, and the method to obtain the distribution parameters.

3.1. Analysis of the Storage Degradation Mechanism of Aerospace Relays

During long-term storage, the internal reeds, coils, bobbins, enameled wires, and
magnetic materials of AEMR can degrade to a certain degree, affecting their movement and
contact characteristics. The relay will fail when the movement or contact characteristics
are outside the allowable range. However, for the AEMR in storage, the leading cause of
failure is the stress relaxation of the reeds, which reduces the reaction force and affects
the reaction force characteristics, increasing the release time during operation and, finally,
leading to contact failure.

As the reed is sealed in the internal component of the relay, it is not easy to open and
test the stress relaxation state of the reed in the actual storage environment. Therefore, this
paper obtains the relationship between the two by conducting finite element simulation
to verify the effect of reed reaction force variation on release time. The result is shown
in Figure 2.
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The simulation results show an approximately linear relationship between the external
performance parameter (release time Pr) and the underlying performance parameter (reed
initial force Fini) within a certain range of reed reaction force reduction. Therefore, this
paper uses Equation (4) to express the relationship between the two:

Pr = k · Fini + c (4)

where k, c are model coefficients related to the design and manufacturing process, which
characterize the variability between individual relays of the same batch.

From the above analysis, it is clear that the stress relaxation occurring in the internal
reed during the storage period of the AEMR is the fundamental reason for the reduction in
the reaction force. Therefore, in this paper, the initial force is used as the characterization
parameter of the mechanical reaction force, and the Larson–Miller coefficient is used to
describe the storage degradation process of the reed under the joint action of temperature
stress (Kelvin) and time (hours), and the corresponding physical model of failure is obtained
as shown:

Fini(t,T)
Fini(0)

= a ·Θ + b
= a · T(ln t + C) + b

(5)

where Fini(t, T) is the reed initial force value at temperature stress T stored up to moment
t; Fini(0) is the reed initial force value at moment 0; a, b is the model coefficient, which
characterizes the effect of temperature and time on the treatment of the storage degradation
process; Θ is the Larson–Miller coefficient, expressed as T(ln t + C); C is a constant, usually
taken as 20.

Consider the following reasons: first, the ambient temperature of the AEMR is more
stable during storage; second, the subsequent need to quantify the impact of the initial
distribution of the performance parameters at the moment of 0 on the reliability of this paper
requires replacing ln t in Θ with ln(t + 1). Therefore, Equation (5) is further simplified as:

Fini(t)
Fini(0)

= a′ · ln(t + 1) + b (6)

Then, the storage degradation model of the relay release time is obtained by substitut-
ing Equation (6) into Equation (4), as follows:

Pr(t) = k · Fini(t) + c
= k · Fini(0) · [a′ · ln(t + 1) + b)] + c
= [Pr(0)− c] · [a′ · ln(t + 1) + b)] + c

(7)

where Pr(t) is the release time value from storage at constant temperature stress T to
moment t; Pr(0) is the initial release time value at moment 0.

Based on the meaning of Pr(0) and {a′, b, c} in Equation (9), it is clear that Pr(0) is a
fixed value for a specific relay sample, but due to individual differences between samples,
Pr(0) is a random effect factor in the model that characterizes the storage degradation
process of a batch of relays. c, a model factor related to individual relay differences, is also
a random effect factor. The model coefficients a′ and b are determined by the reed material,
storage conditions, and stress relaxation mechanism.

3.2. Reliability Function

Based on the above analysis of the storage degradation mechanism of the relay, the
release time is selected as the performance degradation parameter. In the following, the
performance parameters will be classified into three categories according to the qualified
form of the failure threshold Pth on the performance parameter P:

Smaller-the-better performance parameter: the product fails when and only when
P ≥ Pth.
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Larger-the-better performance parameter: the product fails when and only when
P ≤ Pth.

Nominal-the-type performance parameter: the product fails when and only when
P ≥ Pth.L or P ≤ Pth.U .

Therefore, the margin equation, constructed as follows, is shown:

G(P, Pth) =


Pth−P

Pth
, smaller the better

P−Pth
Pth

, larger the better

min
(

Pth,U−P
Pth,U

, P−Pth,L
Pth,L

)
, nominal the better

(8)

Based on the failure mechanism of a relay during storage, it is generally believed that
a contact failure will occur when the stress relaxation-induced release time increases to a
certain threshold value. Therefore, the growth of the release time to a certain threshold
value can be used as a judgment condition for relay storage failure, and the release time
Pr(t) is used as the expected small performance parameter to construct the margin equation,
where ω is the failure threshold value.

G =
ω− Pr(t)

ω
(9)

It is considered reliable when the margin G ≥ 0, so the reliability equation can be
established as:

R(t) = M( Pr(t)−ω
ω ≤ 0)

= M( [Pr(0)−c]·[a′ ·ln(t+1)+b)]+c−ω
ω ≤ 0)

= M([Pr(0)− c] · [a′ · ln(t + 1) + b)] + c−ω ≤ 0)

(10)

3.3. Uncertainty Representation of Parameters

Usually, belief reliability modeling requires quantifying the uncertainty of its model
parameters, so the possible uncertainty of the parameters of the following equation needs
to be further discussed after obtaining Equation (11).

[Pr(0)− c] · [a′ · ln(t + 1) + b)] + c−ω ≤ 0 (11)

There are two possible parameter uncertainty cases: aleatory and epistemic uncertainty.
The essence of aleatory uncertainty is the inherent uncertainty of the object world, which
can also be called random uncertainty. Cognitive uncertainty is caused by the limitation
of the objective laws, due to the limited cognitive ability of humans. The parameters in
Equation (11) have aleatory uncertainty and epistemic uncertainty due to the dispersion
of materials, the volatility of working conditions and environment, and the incomplete-
ness of cognition. Therefore, the parameters in Equation (11) are classified according to
their uncertainties.

From the above, Pr(0) and c are the randomly influenced parameters in the degra-
dation model, which are, in essence, the random uncertainties caused by dimensional
tolerances, assembly errors, etc. Therefore, the uncertainty types of Pr(0) and c are aleatory
uncertainties. For model parameters, a′ and b, the reed material and storage conditions are
usually relatively fixed in the same batch of stored AEMRs. Therefore, the randomness of
a′ and b is mainly due to insufficient knowledge of the objective change law of the stress
relaxation mechanism, so its uncertainty type is epistemic uncertainty.

Both of the above uncertainties can be quantitatively characterized by uncertainty
distributions, which are considered to obey the normal uncertainty distribution. An
uncertain variable ξ is called normal if it has a normal uncertainty distribution
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Φ(x) =
(

1 +
(

π(e− x)√
3d

))−1

, x ∈ R (12)

denoted by N(e, d) where e and d are real numbers with d > 0 [6]. The normal uncertainty
distribution is shown in Figure 3.
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Further, when considering the uncertainty of all parameters, Equation (10) can be
expressed, according to Theorem 1 (Operator’s Rule), as:

R(t) = M([Pr(0)− c] · [a′ · ln(t + 1) + b)] + c−ω ≤ 0)
= α|{ [Φ−1

Pr(0)
(α)−Φ−1

c (α)][Φ−1
a′ (α) · ln(t + 1) + Φ−1

b (α)] + Φ−1
c (α)−Φ−1

ω (1− α)} (13)

where the inverse uncertainty distribution of the uncertain normal distribution is:

Φ−1(α) = e +
√

3d
π

ln
α

1− α
(14)

3.4. Aquired Method of Distribution Parameters

In practical engineering, for storage reliability assessment of batch AEMRs, traditional
methods are often based on probabilistic statistics requiring large test data samples. It is
not friendly for products in the early design stage because it often requires multiple rounds
of modification and optimization. Therefore, If we want to achieve effective evaluation by
large sample data, it will undoubtedly increase the time and development cost. It is difficult
to keep the timeliness of product launches in the fierce competition with peers. However,
in the belief reliability theory, by considering the uncertainty distribution of parameters, it
could estimate uncertain parameters by virtue of a small amount of test data to realize the
work of storage reliability assessment. When the parameters obey the normal uncertainty
distribution, the parameter estimation can be performed using the UMLE. According to
axiom 4 of the uncertainty theory, the likelihood function in the UMLE method is the
derivative of the uncertain distribution function taken as minor, which is different from the
probability density function product in probability theory. Thus, for a sample satisfying the
uncertain normal distribution N(e, d), the UMLE function is

L = ∧m
i=1Φ′(xi

∣∣e, d), i = 1, 2, · · · , m (15)

where the symbol ∧ is taken to mean small, and the specific expression for Φ′(xi|e, d) is
shown below.

Φ′(xi|e, d) =
π√
3d

exp
(

π(e−xi)√
3d

)
(

1 + exp
(

π(e−xi)√
3d

))2 (16)
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Belief reliability theory also provides solutions for situations where test and measure-
ment data are unavailable. The unknown parameters can be determined by drawing on
previous engineering experience in the development of similar products, as well as by
expert designation. However, it is difficult to reflect the heterogeneity of existing specific
products by the approach using previous engineering experience, while the approach using
expert experience is slightly subjective, and it is difficult to ensure the objectivity of the
assessment. Therefore, in this paper, we hope to use the manufacturing information of
the product to realize the transformation of the initial distribution of process data and
performance parameters, based on the functional relationship between the structural char-
acteristics of the relay and the underlying performance parameters. At the same time, with
the help of finite element simulation and the circuit simulation technology of relays, the
virtual test of storage degradation of batch products is realized by conducting a multi-
physical field simulation to obtain a sufficient amount of degradation simulation data. The
data obtained will be more realistic and objective by combining the actual manufacturing
information of the product and will apply to the case of multiple revisions at the beginning
of the product design.

4. Case Study

The AEMR is small but has both electromagnetic and mechanical mechanisms, so its
overall structure is complex, which also determines its failure mechanism. Therefore, the
storage degradation test, using multiple stresses, can best reflect the actual degradation state
of the AEMR. However, conducting a multi-stress storage degradation test will increase the
difficulty of the test. At the same time, when multiple degradation mechanisms are coupled,
the degradation trend of the collected data may not be obvious, resulting in the loss of
value of the data and even some other unexpected consequences. In fact, the environment
of AEMR is relatively stable during storage. Only the temperature, as continuous stress, is
affecting the storage state of AEMR and accelerating the process of physical and chemical
changes [17].

Therefore, in this section, the temperature was chosen as the accelerating stress for
certain types of AEMR, and it carried out the constant stress accelerated storage degradation
test. It is used to obtain degradation data to verify the validity of the storage reliability
assessment method proposed in this paper. A total of 10 AEMRs, with a coil voltage of
28V, were used for the test. The specific procedure of the test is, first, to place the AEMRs
with no load in the incubator, as shown in Figure 4 and set the temperature to 170 degrees
Celsius for an accelerated storage degradation test. Then, take them out every 20 h, place
them back to room temperature, and use the developed time parameter test system to
measure them. When the measurement frequency reaches 200, they will not be measured
but placed in the constant incubator until the AEMRs fail. The degradation data obtained
from the test are shown in Figure 5.
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4.1. Distribution and the Curve of Reliability

Usually, the expert experience can be used to specify or use historical data of similar
products to solve the model parameter distribution. However, this makes it difficult to
ensure the objectivity of the final evaluation results and is not applicable when facing
different products. Therefore, we hope to effectively use the relevant manufacturing
information of the product and transform it into the basis for solving the model parameters
in this paper.

First, based on the AEMR’s design and manufacturing process data, an approximate
calculation model of release time versus initial reed force is constructed.{

Pr = f (∆Θ)
Fini = f ′(∆Θ)

(17)

where ∆Θ =
{

∆Θ1, ∆Θ2, · · · , ∆Θj
}

denotes the variation of j design or the manufacturing
process data that determine Pr or Fini.

Then, according to the range of parameter fluctuations allowed in the relay manu-
facturing process, random sampling is carried out to obtain j sets of ∆Θ, and they are
substituted into Equation (17) for calculation. It results in j sets of Fini that can be used
to determine the Pr(0) distribution parameters. Based on the j sets of ∆Θ, further batch
AEMR’s virtual samples are generated, and its storage degradation simulation is carried
out to obtain the data, as shown in Figure 6.
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Finally, the obtained data are used for UMLE to acquire the distribution of the model
parameters. Table 1 shows the statistics of the manufacturing process data situation, and
Table 2 shows the parameter distribution.
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Table 1. Statistics on the actual measurement of manufacturing process data.

Serial Number Measuring Components Measured Parameters

1 pedestal

outline dimension

2 bracket
3 armature, armature shaft
4 putter & glass Ball
5 yoke
6 contact spring mount angle piece
7 moving and static reeds
8 moving and static contact
9 magnetic isolation gasket
10 coil and core
11 electromagnetic system components mounting dimension
12 contact spring system components

Table 2. Distribution of model parameters.

Parameter e d Acquired Method

Pr(0)/µs 882.6 65.1 Manufacture
information

c 487.2 77.1
Simulation dataa′ 1.5 × 10−1 6 × 10−2

b 7.5 × 10−1 3.5 × 10−1

For products at the early stage of development, it is difficult to go with the method
of obtaining data by conducting a large number of sample storage degradation tests, for
reliability assessment, with the help of mathematical and statistical methods. However,
this problem can be circumvented based on belief reliability theory, so in this paper, only
five sets of AEMR failure data are used to solve the failure threshold distribution parameters
by UML estimation. Table 3 shows the small sample failure data. The distribution result of
the contact failure threshold of AEMR was obtained as: ω ∼ N(1718.2, 104.8).

Table 3. Small sample failure threshold.

Parameter
Sample Number

1 2 3 4 5

ω/µs 1613.4 1747.8 1680.1 1895.4 2057.8

After all the uncertainty distribution parameters of the degradation model param-
eters are obtained, the storage reliability curve of the batch of AEMRs can be solved
according to the reliability function, and the curve in Figure 7 shows the reliability life
t0.9 = 691.6 h, t0.8 = 7896.1 h. From the trend of the curve, it can be seen that the product’s
reliability decreases at the fastest rate in the early stage and gradually levels off in the
middle and late stages, which also coincides with the law of stress relaxation.

In order to further verify the effectiveness and accuracy of the method, the performance
degradation modeling, based on the stochastic process, is carried out in this paper. The
reliability evaluation is carried out using experimental (M1) and simulation (M2) data,
respectively. The contrast of M1, M2, and M3 is shown in Figure 8. By comparison with
M1, it can be seen that the error of curve M3 is smaller than that of M2. However, the trend
of curve M3 decreases faster in the early stage, mainly because the degradation modeling
only considers the factor of stress relaxation and ignores the influence of coupling with
other influencing factors on the degradation process. The main reasons for the deviations
in the results, based on the simulation data, may be errors in the approximate modeling
process, the fact that the simulation was carried out with only a single consideration of
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reed degradation, and that the simulation does not reflect the real storage environment.
In the following, to illustrate the accuracy of the proposed method, mean absolute error
(MAE) is evaluated as a quantitative index. The MAEs between M3 and M1 and between
M2 and M1 were calculated to be 0.029 and 0.041, respectively, which showed that, in
the process of storage reliability assessment modeling, by considering the uncertainty of
multiple parameters and fusing the product manufacturing process information with the
batch product degradation simulation data, the assessment error was reduced by 29.3%
compared with the method based on simulation data only. The effectiveness and accuracy
of the proposed method are demonstrated. In the next section, the impact of different
parameter uncertainties on the batch storage reliability will be quantified.
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4.2. Influence of Parameter Uncertainty

Since many uncertainties influence the product degradation process, the relationship
between parameter uncertainty and batch storage reliability can be quantified to guide
subsequent product optimization. Therefore, this section will analyze the impact on storage
reliability by considering the magnitude of uncertainty of different parameters. Relays are
usually made of consistent materials and the storage environment is relatively stable, so the
uncertainty effects of model parameters a′ and b are not analyzed, and their distribution
is kept fixed. Instead, parameters Pr(0), c, and ω affect the batch product reliability
assessment and are considered separately.

Firstly, the influence of the uncertainty of parameter Pr(0) on the batch product is
considered, and the distribution parameters d of Pr(0) are empirically made equal to
21.7, 13.1, and 8.1, respectively, while the other parameters keep the initial distribution
unchanged. The evaluation results are shown in Figure 9. When d is equal to 21.7, 13.1,
and 8.1, the MAEs between it and the reliability curves based on the test data are 0.081,
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0.098, and 0.109, respectively. This can be seen from the figure that the prediction accuracy
gradually decreases as the uncertainty decreases. The main reason is that the uncertainty
of the parameters decreases, which makes the distribution of Pr(0) unable to cover the
batch products, thus decreasing the accuracy of the evaluation results. However, from
the perspective of improving the AEMR’s reliability, the uncertainty of Pr(0) is smaller,
which means the consistency of the initial state of the batch product will be better, and
the distribution of Pr(0) is mainly related to the assembly error and the manufacturing
process data. If we want to improve the storage reliability of the batch product, we have
to modify and optimize the assembly process, the assembly technology and the external
characteristics of the product so that the reliability of the batch products can be effective.
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The model parameter c mainly reflects the individual differences of the same batch of
relay products. This part was assessed by fixing the distribution of other parameters and
changing the distribution parameter d of c to 25.7, 15.4, and 9.6, respectively, for reliability
assessment. The assessment results are shown in Figure 10a. According to the observation
curve in the figure, on the one hand, it can be seen that the uncertainty of parameter
c is reduced to a certain degree. Then it will not further expand with the uncertainty
reduction on the assessment results. On the other hand, it can be seen that the assessment
results, obtained by reducing the uncertainty of the parameter c, aggravate the reliability
degradation in the early rapid degradation stage, which dramatically affects the calculation
accuracy of the reliability assessment work performed in the early stage of product life. The
most important thing for a product is the accuracy of the pre-life prediction, thus showing
that the influence of the uncertainty of parameter c cannot be ignored.
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For the product failure threshold ω, when evaluating the same batch of products of
a given model, the engineer usually gives a fixed value for calculation. However, in the
actual product production process, due to the different distribution of the initial state of
the product, heterogeneity will arise between batches of products, and thus, the failure
threshold will vary from product to product. Therefore, considering the uncertainty of the
failure threshold in the evaluation process is expected to improve the calculation accuracy.
Since the uncertainty of the failure threshold has been considered in the modeling above,
in this part, ω is taken as a fixed value, and then, the reliability is calculated. The results
are shown in Figure 10b, from which it can be seen that the uncertainty of the parameter ω
has not been considered, resulting in a large deviation of the reliability evaluation result,
and its MAE is 0.091, a 207% increase compared to the MAE between M3 and M1. It can
be seen that considering the influence of the uncertainty of the failure threshold, in the
process of a storage reliability assessment of batch products, can reflect the influence of the
heterogeneity of batch products, so more accurate assessment results can be obtained.

5. Conclusions

In this paper, we proposed a new method of storage reliability for AEMR based on
belief reliability theory. Under the framework of the theory of assured reliability, the method
firstly establishes a margin degradation model to describe the relationship between the
underlying parameters and the performance degradation characterization parameters by
analyzing the AEMR storage degradation failure mechanism. Then, based on uncertainty
theory, uncertainties such as product initial state dispersion, individual heterogeneity, and
cognitive incompleteness are quantified to construct the belief reliability model. Finally,
in the process of the storage reliability solution, multiple sources of information, such as
manufacturing process data, degradation simulation data, and test failure data of AEMR,
are used to estimate the model parameters to make the assessment results more objective.

A case study was used to verify the validity and applicability of the method, and the
following conclusions were reached.

1. With the full use of multiple sources of information, a more accurate result can be
obtained by using only five sets of failure data samples for the assessment, significantly
reducing the assessment cost. The accuracy of the results is improved, and the
MAE is reduced by 29.3% when compared to the evaluation method using only
simulation data.

2. By measuring the influence of uncertainties in different model parameters, it was
clarified, on the one hand, that the main sensitive factor affecting the storage re-liability
of batches is the initial release time, which provides a direction for optimization in
the product design phase. On the other hand, the importance of the uncertainty
of the failure threshold, for the accuracy of the storage reliability assessment, is
pointed out. When the threshold’s uncertainty is considered, the assessment results
are more accurate.

As mentioned above, the method proposed in this paper offers a new solution to the
problem that AEMRs in the design phase cannot carry out a valid reliability assessment
without sufficient degradation data. It can also provide a clear direction for product
optimization based on uncertainty analysis. It is also a potential reference for the reliability
assessment of other electrical products of the same type.
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