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Abstract: CubeSat requirements in terms of size, weight, and power restrict the possibility of having
redundant systems. Consequently, telemetry data are the primary way to verify the status of the satel-
lites in operation. The monitoring and interpretation of telemetry parameters relies on the operator’s
experience. Therefore, telemetry data analysis is less reliable, considering the data’s complexity. This
paper presents a Machine Learning (ML) approach to detecting anomalies in solar panel systems.
The main challenge inherited from CubeSat is its capability to perform onboard inference of the ML
model. Nowadays, several simple yet powerful ML algorithms for performing anomaly detection
are available. This study investigates five ML algorithm candidates, considering classification score,
execution time, model size, and power consumption in a constrained computational environment.
The pre-processing stage introduces the windowed averaging technique besides standardization
and principal component analysis. Furthermore, the paper features the background, bus system,
and initial operational data of BIRDS-4, a constellation made of three 1U CubeSats released from the
International Space Station in March 2021, with a ML model proposal for future satellite missions.

Keywords: anomaly detection; BIRDS project; CubeSat; machine learning; electrical power system

1. Introduction

The development of small satellites by non-space-faring nations is significantly driven
by the availability of low-cost launch and commercial off-the-shelf (COTS) components. A
clear example is the Joint Global Multi-National Birds or BIRDS program, a multinational
small satellite research and educational program led by the Kyushu Institute of Technology
(Kyutech) in Japan [1]. The BIRDS program allows non-space-faring nations to design,
integrate, build, test, launch, and operate their respective first satellites.

BIRDS-4 is the fourth iteration of the BIRDS program (previously BIRDS-1, 2, and 3).
It is a constellation of three CubeSats: GuaraniSat-1, Maya-2, and Tsuru, deployed into
orbit on 14 March 2021 [2]. The satellites use the BIRDS standardized bus, an open-source
initiative by Kyutech designed for educational CubeSat projects inherited from the previous
generation [3].

The BIRDS program follows the approach of a Lean Satellite concept [3]. The concept
relies on utilizing commercially available yet non-space-proven components to obtain effec-
tive and efficient development [4]. On the other hand, the mass and size limitations usually
indicate only a few or no redundant systems available [5]. The intermittent and short-term
communication window limits the data transmission capability, potentially affecting the
housekeeping-data-monitoring analysis. Furthermore, the CubeSat system’s limitations
generally include power generation, telemetry bandwidth, computational power, and
memory [6].

The BIRDS team uses conventional threshold values to perform telemetry analysis for
the satellite’s health monitoring. However, considering the available bandwidth and large
volumes of data collected onboard the satellite, it is impossible to download all the data
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during the operational phase. In addition, data monitoring requires a team with sufficient
knowledge and experience due to the complex variations in telemetry patterns.

According to the BIRDS-3 telemetry data, two satellites revealed power generation loss
in one of their panels. The team could not immediately detect the symptoms within 29 (on
Raavana) and 72 (on Uguisu) days after being deployed into orbit. Recently, the BIRDS-4
team discovered a critical issue related to the electrical power subsystem of GuaraniSat-1 [2].
The satellite stopped transmitting after three days of operation. Subsequent analysis of
the continuous wave (CW) beacon data showed a lower charging capacity than its sister
satellite, Tsuru, confirming no power generation on two solar panels. Therefore, there is an
urgent need to develop solutions to mitigate the issue from any possible technical approach.
One of the possible approaches would be utilizing Machine Learning (ML), considering the
substantial amount of data collected by the BIRDS team.

The analysis for related research comes from these three main aspects: pre-processing
techniques, proximity-based algorithms, and linear models. As a representative case, the
work presented by Wu J. et al. [7] used Long Short-Term Memory (LSTM) and Ensembled
One-Class Support Vector Machines to perform anomaly detection. Multiple One-Class
Support Vector Machines were used to obtain high-precision and high-recall outputs.
The method was evaluated using the telemetry data of the SMAP (Soil Moisture Active
Passive) satellite and MSL (Mars Science Laboratory). Jin W. et al. [8] proposed a cluster-
based anomaly threshold determination method in another paper. Experiments were
conducted on satellite telemetry data, showing that the proposed method outperformed
the autoencoders.

Probabilistic clustering approaches, such as the work presented by Yairi T. et al. [9],
are also intensely interesting. In this work, the authors proposed a data-driven health
monitoring and anomaly detection method for artificial satellites based on probabilistic
dimensionality reduction and clustering. The proposed method was experimentally applied
to Japan Aerospace Exploration Agency (JAXA) housekeeping data of Small Demonstration
Satellite 4 (SDS-4) and validated over two years.

Finally, different ML-based approaches have also received considerable attention for
anomaly detection. For example, techniques based on Principal Component Analysis
(PCA), such as the technique presented by Zamry N. et al. [10], have been used to improve
efficiency by reducing the computational complexity and improving memory utilization
overhead while maintaining high accuracy. The works presented by Pan D. et al. [11],
Peng Y. et al. [12], and Li J. et al. [13] also used PCA for feature extraction and fault detection
in telemetry data. The k-nearest neighbor (kNN), Recurrent Neural Networks (RNN),
autoencoder, and One-Class Support Vector Machine (OC-SVM) have also been studied
with spacecraft (Suzaku) electrical power system data [14].

The term “anomaly” refers to any point or value within the dataset that produces
patterns of oddity, novelty, fault, deviation, or exceptions. Hence, the activity of identifying
anomalies from normal data is known as anomaly detection.

This paper presents a comparative study of different ML techniques to detect anoma-
lies in CubeSat telemetry data, considering system limitations such as computational
power, memory footprint, and communication window. The approach considers both
pre-processing methods and ML models. We applied the process to a solar panel’s dataset
generated by BIRDS-3 (NepaliSat, Raavana, Uguisu) and BIRDS-4 (Tsuru) satellites. It is
important to note that this is the first utilization of such data. In summary, the contributions
of this work are as follows:

- Analysis of the novel solar panel dataset collected from four CubeSats.
- Analysis of five different ML models based on their classification scores, execution

times, model sizes, and power consumption.
- The proposal of ML model candidates for solar panel anomaly detection on Cube-

Sat systems.

The contributions of this work to the research community are the findings showing
that specific ML models, i.e., linear models, are most suitable for solar panel anomaly de-
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tection onboard CubeSats, given the lack of attitude control and constrained computational
capability of future satellite projects. The rest of the paper is organized in the following
way: Section 2 introduces the satellite system and the dataset. Section 3 describes the
methods utilized. Section 4 provides the results obtained. Section 5 presents analysis and
discussion regarding the results of the experiments on ML modelling and future works.
Finally, Section 6 summarizes the outcome of the research and proposes the best model to
detect the anomalies within the dataset.

2. Materials
2.1. BIRDS Satellite System

The satellites of the BIRDS-3 and BIRDS-4 constellations are based on the 1U CubeSat
standard. The external dimensions are (114.5 × 107.8 × 104) mm, and they have an average
mass of 1.3 kg. The bus system consists of the front access board (FAB), the electrical power
system (EPS), the onboard computer (OBC), the communication board (COM), and the rear
access board (RAB). All printed circuit boards (PCBs) are connected to a backplane board
via 50-pin connectors. Figure 1 shows the bus system configuration.
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The RAB is used for programming and monitoring each mission’s microcontrollers.
The FAB is used for programming and monitoring the Main PIC, FAB PIC, RESET PIC, and
COM PIC microcontrollers. The details of the satellite system can be found in the BIRDS
Open-Source Repository [15].

In BIRDS-3, two available mission boards are utilized to space-qualify a low-powered
long range (LoRa) modulation module, which has massive potential for future S&F missions.
This mission is called a LoRa Demonstration Mission (LDM) [16].

On the other hand, the BIRDS-4 constellation uses the mission boards for the nine
satellite missions. The satellite structure was renewed by taking the BIRDS structure as
a base to satisfy the requirements of the HNT mission [2,17]. The downlink frequency is
437.375 MHz, whereas APRS-DP and store-and-forward missions use the VHF band.

Through the uplink signal sent by the ground station, the satellite receives, processes,
and downlinks telemetry and mission data back to the ground station. The satellites use
dipole antennas for communication. The antennas are deployed 30 min after satellite
deployment. The uplink is performed through the BIRDS Ground Station Network, which
has 13 participating countries worldwide, except in Europe and North America.

Both constellations share the same EPS design and components. Solar panels placed
on five sides of the CubeSat (+X, +Y, +Z, −X, −Z) are responsible for power generation.
The solar panel consisting of two cells connected in series is shown in Figure 2.
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The specific solar cell (AZURESPACE 3G30A) has an ideal maximum power generation
of 1.2 W. The BIRDS BUS uses Linear Technology Corporation’s LTC3119 as the Battery
Charge Regulator (BCR), due to its ability to control the maximum power point of solar
cells. The energy generated is stored in six rechargeable Eneloop NiMH batteries with a
capacity of 1900 mAh per battery arranged in a 3-series 2-parallel configuration. The total
power generation per orbit is 2600 mWh, and the total power available to the satellite load
is 1600 mWh. The power system has two 3.3 V lines, one 5 V line, and two unregulated
lines. All of the EPS’s vital components are illustrated in Figure 3.
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2.2. Dataset Overview

The dataset contains solar panel data of Tsuru satellite (from March 2021 to November
2021). It includes 16,704 temperature, current, and voltage data points from the satellite
panels. Additionally, the dataset consists of 8439 samples from Nepalisat, Raavana, and
Uguisu Satellites (from June 2019 to October 2020). Please refer to TSURU.xlsx, NEPAL-
ISAT.xlsx, RAAVANA.xlsx and UGUISU.xlsx in Supplementary Materials section. The
satellites use the sensors described in Table 1.
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Table 1. Descriptions of solar panel sensors.

Sensor Variable Unit Data Size

LMP8640 Current mA 8 bits
AD7490 Voltage mV 12 bits
LMT84 Temperature ◦C 12 bits

The BIRDS team operators periodically execute the High Sampling Sensors Data
Collection Mission (HSSC) to obtain the data during one orbit. Subsequently, the team
downloads housekeeping data to the ground station. The sampling rate is 10 s for the Tsuru
satellite and 5 s for Nepalisat, Raavana, and Uguisu Satellites.

2.3. Data Exploration and Pre-Processing

Before detecting outliers in the data, it is essential to understand how the satellite’s
orbit and attitude affect the panel’s voltage, current, and temperature. The BIRDS-4
constellation was deployed into orbit from the ISS (altitude 400 km, inclination: 51.6◦,
duration: 92.6 min). Since no attitude control is applied, the satellites are in free rotation
at approximately 3 ◦/s on each axis. Therefore, the panel condition is affected by two
factors: the beta angle that determines the eclipse and sunlight periods and the attitude
perturbation of the satellite. In Figure 4a, at a low beta angle we can observe significant
temperature changes (~48 ◦C) due to the transition of the satellite from eclipse to sunlight,
and a slight temperature variance (~4 ◦C) due to the satellite’s rotation on its axes. In
Figure 4b, at a high beta angle, we observe temperature variation (~30 ◦C) only due to the
satellite’s rotation.
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Figure 4. One orbit +Y panel power generation and temperature: (a) beta angle 15◦; (b) beta angle 70◦.

In addition, at a low beta angle, the power requirement from the satellite is high
right after the eclipse period, so the power generation is high. However, at a high beta
angle, since the satellite does not experience an eclipse throughout the orbit, the power
requirement is less and so the generation is also less. The generated power of each panel
shows large fluctuations due to the satellite’s attitude (i.e., rotation), which causes different
sides of the satellite to face the sun at different instants.

2.4. Dataset Correlation

We can find a correlation among the solar panel’s parameters by analyzing the teleme-
try data. Figure 5a shows the correlation between the voltage and the temperature of the
+Y panel when it faces the sun for approximately 90 s at varying angles while rotating.
Figure 5b shows the correlation between the current and the temperature of the same panel
for the same time window. A slight delay can be observed in the current graph compared
to the voltage graph. Significant current only flows for approximately 40 s because of a
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specific potential difference required in the circuit between the panel output and the input
of the DC/DC converter for the current to start flowing.
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Due to the photovoltaic characteristic of the solar cell, the voltage and current readings
are more sensitive to the change in light intensity. However, for the temperature reading,
due to the heat transfer from the solar cell to the temperature sensor located behind the
panel, a delay is observed for the change in temperature as compared to instant change in
voltage and current during the transition from eclipse to sunlight. Hence, the satellite’s
temperature readings were not utilized in this study due to the low correlations of the trend
with the current and voltage samples. From here on, the dataset comprised ten dimensions
of current and voltage telemetry data from each panel.

3. Methods
3.1. Anomaly Definition

This section presents is a critical step in the dataset’s preparation to define anomalies.
The process determines the scope of anomalies investigated in the study. The definition of
anomalous and normal data is based on the analysis results of the operational satellite team.
The analysis generally depends on the satellite engineering model, on-orbit condition,
and several previous tests before launch. Moreover, the definition is a reference for the
subsequent process of dataset labeling. Labeling is a manual process of classifying the data
points as normal (label: 0) or anomalous (label: 1). According to the telemetry data analysis,
two types of anomalies are happening in the solar panel system of BIRDS satellites: solar
panel failure (more than one cell) and solar cell failure, which are described in detail in the
following subsections.

The anomalous points are marked in red, and the regular points are in black. The
data point is marked as an anomaly if it relates to the conditions of a solar panel or solar
cell failure.

3.1.1. Type 1: Solar Panel Failure

Solar panel failure (or type 1) specifies an anomalous condition wherein the voltage
sensor reads a value below an expected threshold of 1200 mV on one or more panels
at any given observation time. The expected lowest values of the sensor readings for a
non-illuminated solar panel must be within 1200 to 1500 mV. The numbers refer to the
residual voltage generated by the panel system’s Analog to Digital Converter (ADC) circuit.
Any data below the threshold indicate a bad voltage condition for a panel of two solar
cells connected in series. The team specified those expected values from the operational
telemetry data of the BIRDS-3 satellite (Raavana). Thus, the dataset is labeled with the
following condition:

Vi(t) < 1200 mV, (1)
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with Vi(t) being the values of voltage sensor readings at samples of t and for i panel.
Correspondingly, Figure 6 presents the voltage and current sensor readings in both normal
(black) and anomalous (red) sections for type 1 anomalies by applying (1). It covers
approximately 2.5 orbital periods. Type 1 anomalies in the dataset contaminate 8.59% of
the total sample.
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3.1.2. Type 2: Solar Cell Failure

Solar cell failure (or type 2) characterizes the anomaly of a compromised cell in a
panel (of any panels). This specific failure is only noticeable during the illumination period.
Based on the actual telemetry data of the BIRDS-3 satellite (Uguisu), the voltage sensor
reading shows consecutive values (at least three samples) within 2000 to 3000 mV with
no expected electrical current reading (<50 mA). Analytically, one solar cell in the Uguisu
satellite is subject to an anomaly condition. However, this particular condition can happen
instantly in the transition period of entering and exiting the eclipse. Therefore, the labeling
method considers the previous and the following data points in a sequence. We define such
anomaly as

2000 mV ≤ Vi(t− 1, t, t + 1) ≤ 3000 mV ∧ Ii(t) < 50 mA , (2)

with Vi(t) and Ii(t) represent the value of voltage and current sensor readings in a sample
of t and for panel i, respectively. Accordingly, Figure 7 depicts the voltage and current
sensor readings in both normal (black) and anomalous (red) sections for type 2 anomaly by
applying (2). It covers approximately 2.5 orbital periods. Type 2 anomalies in the dataset
contaminate 7.22% of the samples within the dataset.
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3.2. Pre-Processing Techniques

Pre-processing techniques attempt to extract and enhance specific features (e.g., pat-
terns, structure, trends) within the dataset sample. In the non-sequential analysis, the model
expects this stage to increase the variance between classes in the dataset. Hence, the output
forms distinctive features among classes. Implicitly, it allows the ML models to distinguish
the samples. The process begins with data pre-processing using windowed averaging,
standardization, and Principal Component Analysis. All three techniques were applied to
the input samples that were the output of the dataset preparation phase. The analysis used
two telemetry data, namely, current and voltage. Figure 8 shows the initial data distribution
patterns for the voltage parameter before applying the pre-processing techniques. The
figure indicates the different sample distributions of the anomalous and normal data classes.
Through visual observation, we can clearly distinguish the two categories. However, it is
difficult to identify the anomaly class if the analysis is based on simple thresholding. It can
be seen that the anomalous patterns are located in the center of the vertical axis. However,
the problem with simple thresholding is that the process may incorrectly categorize a
sample in the transition state as an anomaly, especially a type 2 anomaly. Thus, a data
pre-processing step is crucial to extract the anomalous patterns so that the ML model has
distinguishable input samples.
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3.2.1. Windowed Averaging

We propose a unique statistical method to enhance local or temporary (specific interval)
trends within the dataset’s parameters. Despite its utilization for non-sequential analysis,
the technique introduces sequential information from the local trend intervals. It calculates
an average value (average window, Xa,k) for a particular interval (window size, a) in data
points. Then, it replaces all values within the specific estimated window. Applying those
processes for the rest of the data points creates isolated window size groups for the entire
dataset. We define the required iteration (b) for any given number (n) of data points as

b =
⌈n

a

⌉
, (3)

and formulate the average window calculation as

Xa,k =


∑ak

i Xi
a , k < b

∑ak
i Xi

n−a(b−1) , k = b
, (4)

with k representing the iteration index of a specific data point and X a variable of interest
within the dataset. For each iteration, we define the beginning of variable index i as

i = a(k− 1) + 1 . (5)

The results of feature extraction by windowed averaging cause rapid fluctuations in
data changes to be isolated for a specific interval. Figure 9 illustrates how the windowed
averaging process results in a voltage dataset from an anomaly-contaminated panel by
applying (3)–(5). We decided on the value of 50 as an optimal value of the window interval
for the windowed averaging technique.
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3.2.2. Standardization

Z-score standardization or standardization is a method to standardize a set of data
based on its global mean distance relative to all samples to balance the analysis. It begins
with computing the global mean value for each parameter in the dataset. Then, it replaces
all initial values with the differences between the global mean and the initial values. In this
study, we simplified the dataset distribution according to Z-score to balance the analysis
based on the global mean value of the dataset. It was applied directly after the windowed
averaging technique. We used the standardization implemented by the sklearn library [18].
The method was implemented based on the z-score calculation [19].

3.2.3. Principal Component Analysis

Principal Component Analysis, or PCA, is the most common dimensionality reduc-
tion technique [20]. PCA discovers the directions of the highest variance from higher-
dimensional data and projects them onto a lower-dimensional subspace without losing
much information. In practice, this method can reduce the number of parameters fed into
the ML model without sacrificing necessary details. The lowest-dimensional projection
of the PCA is known as the Principal Component (PC). Therefore, the first PC, or PC1,
represents the axis consisting of the highest-variance projection. In contrast, the follow-
ing PCs (PC2, PC3, and so forth) are the axis directions perpendicular to all previous
PCs. We implemented PCA using the sklearn library, following the procedure in previous
research [18,21].

We applied the PCA technique to the whole dataset after windowed averaging and
standardization. It reduced the ten dimensions of the original dataset into two dimensions.
Subsequently, the PCA-transformed data were fed into the ML modelling process.

3.3. Model Candidates

We utilized ML algorithms or models capable of classifying values in an instance
without considering trends or values from the previous measurement. The implemented
code for all ML models is publicly available from sklearn and PyOD library [18,22]. In this
work, the models originated from two categories: proximity-based algorithms and linear
models. Typically, proximity-based algorithms classify data by computing the distances
between samples to compare each sample’s relative distance to its surroundings (e.g.,
local outlier factor, cluster-based local outlier factor, and k-nearest neighbor). On the
other hand, the linear models learn to formulate a mathematical function to create class-
based boundaries within the dataset (e.g., Linear Discriminant Analysis and One-Class
Support Vector Machine). The section focuses on brief descriptions of the investigated
models without going in-depth into the models’ technical details. Moreover, we intended
to discover the best of the two ML categories for future CubeSat system implementation.

3.3.1. Proximity-Based Algorithms

Proximity-based algorithms use proximity or distance in hyperspace to classify each
data point. It estimates the distance of one data point relative to its surroundings. Thus,
the proximate sample number of surroundings is crucial for the result.

A. Local Outlier Factor

Local Outlier Factor (LOF) is one of the first famous local anomaly detection algo-
rithms [23]. The LOF is essentially a ratio of local densities. It examines the local density of
any sample in relation to its neighbor. Local means it depends on the object’s isolation in
its surroundings. It considers a significantly lower density than others as an outlier [24].

B. Cluster-Based Local Outlier Factor

Cluster-Based Local Outlier Factor (CBLOF) adopts a clustering algorithm (e.g., k-
Means) to determine the area density in the dataset. Afterwards, it performs a density
estimation for each cluster. The size of the cluster and the distance to the nearest large
cluster define the anomaly score [25].
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C. K-Nearest Neighbor

K-nearest neighbor (kNN), in the context of anomaly detection, is an algorithm that
measures the distance of a data point to its kth nearest neighbor as the anomaly score [26].
We used this approach to measure the density of a dataset probability distribution. The
value of the anomaly score depends on the dataset, the number of dimensions, and its
normalization. As a result, it is challenging to select an appropriate value for the near-
est neighbor.

3.3.2. Linear Model

The ensuing algorithm learns a decision function from the dataset to create a boundary
for each class. It generates a formula to create a function to predict unknown values. The
linear model offers a relatively quick training phase and is straightforward to interpret [20].

A. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a classifier with a linear decision function to set
the boundary for each class [27]. It creates a function from the conditional densities of the
labelled dataset using Bayes’ rule. LDA assumes the dataset has a Gaussian distribution
and each parameter has the same variance. The algorithm estimates the mean and variance
of the dataset for each class.

B. One-Class Support Vector Machine

The One-Class Support Vector Machine (OC-SVM) is an ML algorithm intended to
detect a novelty, i.e., a rare event. OC-SVM does not model any probability distribution
from the dataset. It learns to find a function for the high- and low-density regions in the
dataset based on max-margin methods. A lower density region implies a rare event, or a
novelty, within the dataset [28].

3.4. Experimental Setup

We performed experiments based on a computer simulation to investigate the per-
formances of the ML algorithm candidates. The simulation followed the methodology
illustrated in Figure 10.
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First, we explored variables within the dataset for their correlations, characteristics,
and anomaly types. Then, we manually categorized each observation point according to the
anomaly definition for evaluation purposes. We applied some pre-processing techniques to
the entire dataset using the following steps. By this point, we expected the data formed a
distinct pattern or region density for each class. Afterwards, we randomly split the dataset
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into a training set (70%) and a test set (30%) to prepare for the ML modelling stage. The ML
model learned from the training set to generate a decision function. The training stage also
introduced optimization, or tuning, for some variables within the ML model. Finally, we
validated the optimum ML model with the test set and evaluated its performance.

3.4.1. Environment and System

We performed simulations for its experimental investigation by utilizing a Jupyter
Notebook (6.3.0) environment running Python (3.8.8) on Windows 11 [29,30]. A personal
computer used to run the simulation was equipped with an Intel Core i7 8565U processor
and 16 GB of memory. In addition, we also investigated the models’ performances in the
constrained computational environment, i.e., Raspberry Pi 2 Model B. The Raspberry Pi
runs Raspbian OS with Python (3.9.2) on a Broadcom BCM2863 SoC (900-MHz quad-core
ARM Cortex-A7 CPU 1 GB RAM). We selected this particular device as it has less computa-
tional capabilities than the planned future system implementing a CubeSat (Raspberry Pi
CM3+) onboard. Raspberry Pi CM3+’s in-orbit performance has been proven in a recent
operational satellite project (KITSUNE). It is an acceptable system representation to demon-
strate the feasibility of model deployment. Finally, the simulation libraries were utilized as
follows: pre-processing, ML modelling, evaluation, and plotting (sklearn, PyOD, pickle,
NumPy, pandas, SciPy, matplotlib, scikitplot, and seaborn) [18,23,30–36].

3.4.2. Simulation Parameters

According to the anomaly definition, the dataset has 8.59% type 1 and 7.22% type 2
anomalies. In total, the anomalous data across the dataset is 15.78%. Figure 11 depicts
the labelled data according to the definition. Hence, it implies that the available dataset is
imbalanced, with the majority consisting of normal class conditions.
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We implemented WA techniques in the pre-processing stage using the rolling and
replace function in the pandas DataFrame library. The standardization was performed
via the StandardScaler() function, available from the sklearn library. Next, the simulation
implemented principal component analysis through a function provided by sklearn. Table 2
describes all necessary values for the simulation. Although we did not systematically tune
the parameters, we determined the best values from an informal search for each algorithm.
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Table 2. Simulation parameters.

Algorithm Optimized Parameters Trials Best Value

Windowed Averaging window size 10–300 50
PyOD Models outlier fraction 0.05–0.2 0.16

kNN neighbors 10–300 255
LOF neighbors 10–350 280

4. Results

This section presents the evaluation and results regarding the experimental methodol-
ogy. The pre-processing techniques were applied to emphasize any distinct pattern from
each class. Figure 12 shows the labelled dataset after the pre-processing stage.

Appl. Sci. 2022, 12, 8634 13 of 17 
 

the StandardScaler() function, available from the sklearn library. Next, the simulation im-
plemented principal component analysis through a function provided by sklearn. Table 2 
describes all necessary values for the simulation. Although we did not systematically tune 
the parameters, we determined the best values from an informal search for each algo-
rithm. 

Table 2. Simulation parameters. 

Algorithm 
Optimized Param-

eters 
Trials Best Value 

Windowed Averaging window size 10–300 50 
PyOD Models outlier fraction 0.05–0.2 0.16 

kNN neighbors 10–300 255 
LOF neighbors 10–350 280 

4. Results 
This section presents the evaluation and results regarding the experimental method-

ology. The pre-processing techniques were applied to emphasize any distinct pattern from 
each class. Figure 12 shows the labelled dataset after the pre-processing stage. 

 
Figure 12. The first two principal component plots after pre-processing. 

It provides a much more separable pattern between classes than the dataset plotted 
in Figure 11. The dataset forms a unique but linearly distinguishable pattern favoring the 
linear models over proximity-based models. Subsequently, the ML data were split and 
fed into the ML modelling phase. The rest of the section explains the evaluation of the ML 
models’ performances. 

4.1. Performance Evaluation 
The performance evaluation of the ML model candidates was based on classification 

score, inference time, model size, and power consumption. The measurement for each 
performance parameter was taken for an average of 10 iterations. This approach was per-
formed to ensure that any external factors would not influence the consistency of the re-
sults. 

This work evaluated a performance using F-score metrics from the classification re-
port. F-score or F-measure represents the harmonic mean of the precision and recall scores 
from the predicted label to the actual label [37]. Precision is the number of true positives 
(𝑡𝑡𝑡𝑡) divided by the total number of positive classifications, including false positives (𝑓𝑓𝑡𝑡). 

Figure 12. The first two principal component plots after pre-processing.

It provides a much more separable pattern between classes than the dataset plotted
in Figure 11. The dataset forms a unique but linearly distinguishable pattern favoring the
linear models over proximity-based models. Subsequently, the ML data were split and fed
into the ML modelling phase. The rest of the section explains the evaluation of the ML
models’ performances.

4.1. Performance Evaluation

The performance evaluation of the ML model candidates was based on classification
score, inference time, model size, and power consumption. The measurement for each
performance parameter was taken for an average of 10 iterations. This approach was
performed to ensure that any external factors would not influence the consistency of
the results.

This work evaluated a performance using F-score metrics from the classification report.
F-score or F-measure represents the harmonic mean of the precision and recall scores from
the predicted label to the actual label [37]. Precision is the number of true positives (tp)
divided by the total number of positive classifications, including false positives ( f p). Recall
is the number of true positives divided by the total number of positives, including false
negatives ( f n). In binary classification, recall is usually referred to as sensitivity. The F-score
(Fβ) is formulated as follows:

Fβ =
(

1 + β2
)
× Precision× Recall

(β2 × Precision) + Recall
, (6)
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or

Fβ =

(
1 + β2)tp

(1 + β2)tp + β2 f n + f p
. (7)

The F1-score (β = 1) is selected as the minimum number of false positives, and false
negatives are paramount for future onboard implementation. Further, the evaluation used
F-score metrics considering the binary classification and imbalance class problem on the
available dataset [38].

The inference time evaluation was measured directly by the standard package pro-
vided by the Jupyter Notebook. It measures the processing time of the CPU for specific
instructions. The pickle library estimated the model size from a converted python object
into a byte stream. Then, the power consumption was measured for the Raspberry Pi
experiment, which considered the pre-processing stage and model inference.

4.2. Analysis

Accordingly, we compare the five selected ML algorithms based on their classification
performances described in Table 3.

Table 3. F-score for each algorithm regarding the anomaly class.

Models Precision * Sensitivity * F1-Score *

LOF 0.26 ± 0.02 0.26 ± 0.03 0.26 ± 0.02
CB-LOF 0.64 ± 0.02 0.65 ± 0.02 0.64 ± 0.01

kNN 0.34 ± 0.01 0.34 ± 0.01 0.34 ± 0.01
LDA 0.97 ± 0.01 0.75 ± 0.01 0.85 ± 0.01

OC-SVM 0.83 ± 0.01 0.83 ± 0.02 0.83 ± 0.01
* Mean ± standard deviation. Maximum scores are bolded. The metrics range from 0 to 1.

The results suggest that the LDA algorithm performed best for performance evaluation.
It achieved the highest capability for anomaly detection concerning its F1-score. It is
also important to acknowledge that this algorithm is the simplest to implement without
advanced libraries. Although it showed the overall highest F1-score, there is a significant
disparity between the precision and the sensitivity. A higher precision score means the
model has low false-positive rates, whereas a higher sensitivity score means the model has
a low false-negative rates. Table 3 suggests that the precision score of LDA is proportionally
better than its sensitivity score, which means that the model might introduce more false
negatives compared to false positives. The OC-SVM reached second in anomaly detection.
It was slightly behind the LDA in the overall score but offered a better balance of the
precision and sensitivity scores.

Furthermore, this study investigated both linear models in a Raspberry Pi. It was
essential to confirm the model’s technical viability in this study for future implementation.
Table 4 shows the experimental result on the Raspberry Pi.

Table 4. The experimental results on Raspberry Pi.

Models Execution Time [s] * Model Size [kB] Power Consumption [mWh]

LDA 3.00 ± 0.17 40.17 4.288
OC-SVM 9.45 ± 0.39 15.25 9.342

* Mean ± standard deviation. Maximum scores are bolded.

The LDA performed faster than OC-SVM in overall execution time, caused by it
being a relatively more straightforward algorithm. This would influence the total power
consumption in general. Both models result in a nominal size for the Raspberry Pi in
terms of memory footprint. The OC-SVM offers a smaller size because it learns only
from the original data (unsupervised) instead of finding correlations from the actual
labels (supervised).
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5. Discussion

In this work, both linear models indicated better performance than proximity-based
algorithms, as expected. As for the proximity-based algorithms, the CB-LOF attained the
best results. It had a relatively good F1-score compared to the rest of the proximity group.
The performance differences can be explained by the characteristics of linear models that
create a boundary function between classes. In contrast, the proximity-based algorithms
use the mean value as a center point for a clustered class. In the dataset, the features within
each class prefer a specific boundary function rather than clustered classes. Therefore, our
dataset favors linear models.

The F1-score represents the ability of a specific algorithm to classify data points. The
score is influenced by how each model approaches the problem. On the other side of the
coin, the inference time is directly associated with the computational effort required by the
model. Algorithm improvement (e.g., simplified code) can accelerate the model inference
regarding the target system constraint or limitation. This improvement also directly impacts
power consumption, as the faster the inference, the less power consumed. Further, the
model size correlates with the number of training data used in the ML modelling. It varies
between the models, but the proximity-based algorithms require more memory to calculate
a specific number of neighboring or surrounding data.

In the future, we plan to extend the results of this study in two aspects: First is the
battery system analysis, another critical system included in the EPS. The scope of this
preliminary work was limited to the solar panel system only. Second, this study examined
the ML approach algorithm for semi-sequential types of data points. Therefore, it will be
essential to investigate another approach: full-time series analysis. Finally, from the results
of this study, we have favorable model candidates to be developed for analytical tools of
ground station telemetry data and onboard system model development.

Accordingly, the future system implementation will be developed simultaneously with
the CubeSat system. The model has to be adjusted with every satellite sensor calibration
process to determine any hyperparameter within the ML models or pre-processing tech-
niques which significantly influences the model’s sensitivity to the anomalies. Therefore,
the final embedded ML-based anomaly detection has the expected nominal operation in the
ground-tested flight model. Ultimately, it could provide critical information immediately
after the satellite’s deployment and early operation. For example, by having an onboard
autonomous anomaly detector, the CubeSat might be able to broadcast its initial condition
by CW beacon without the need for the operational team to perform a long traditional
analysis of the telemetry data, which potentially takes weeks after the deployment.

6. Conclusions

In this work, we analyzed a novel dataset of BIRDS CubeSats. We investigated
anomalies in the CubeSat solar panel system through an experimental ML study to compare
proximity-based algorithms and linear model algorithms using on-orbit fault data obtained
from four different CubeSats. Further, we introduced the windowed averaging method,
standardization, and PCA in the pre-processing stage. The evaluation results on F-score
metrics indicate that LDA and OC-SVM are the best models for detecting these particular
anomalies within the dataset. LDA and OC-SVM models were tested on Raspberry Pi to
confirm their technical viability for future onboard implementation. The results confirm
their feasibility for onboard applications and prove that LDA outperforms OC-SVM in
terms of execution time and power consumption.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/app12178634/s1. TSURU.xlsx: TSURU satellite dataset; NEPAL-
ISAT.xlsx: NEPALISAT satellite dataset; RAAVANA.xlsx: RAAVANA satellite dataset; UGUISU.xlsx:
UGUISU satellite dataset.

https://www.mdpi.com/article/10.3390/app12178634/s1
https://www.mdpi.com/article/10.3390/app12178634/s1
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