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Abstract: Video memorability prediction aims to quantify the credibility of being remembered
according to the video content, which provides significant value in advertising design, social media
recommendation, and other applications. However, the main attributes that affect the memorability
prediction have not been determined so that making the design of the prediction model more
challenging. Therefore, in this study, we analyze and experimentally verify how to select the
most impact factors to predict video memorability. Furthermore, we design a new framework,
Adaptive Multi-modal Ensemble Network, based on the chosen vital impact factors to predict video
memorability efficiently. Specifically, we first conduct three main impact factors that affect video
memorability, i.e., temporal 3D information, spatial information and semantics derived from video,
image and caption, respectively. Then, the Adaptive Multi-modal Ensemble Network integrates the
three individual base learners (i.e., ResNet3D, Deep Random Forest and Multi-Layer Perception) into
a weighted ensemble framework to score the video memorability. In addition, we also design an
adaptive learning strategy to update the weights based on the importance of memorability, which is
predicted by the base learners rather than assigning weights manually. Finally, the experiments on
the public VideoMem dataset demonstrate that the proposed method provides competitive results
and high efficiency for video memorability prediction.

Keywords: multi-modal; video memorability; ensemble learning

1. Introduction

Human memorability can be regarded as the criterion for judging whether the content
of multi-media can be remembered or not [1]. In current social media, humans are exposed
to continual and vast multi-media information, such as images, videos, audio and text.
Human memorability has different responses to different multi-media contents, some of
which are stuck in our memory while others are forgotten easily. For example, if the content
appeals to the observers, such as their favorite celebrities or shocking natural scenes, the
media information can be remembered easily. Therefore, research on media information
memorability can contribute to advertising, intelligent recommendation, and so many
other applications.

Media memorability aims to score the probability of being remembered according
to the media content. Intuitively, media memorability is affected by subjective factors,
but some studies have proved that memorability is the inherent attribute of media infor-
mation [2]. For example, Isola et al. [2] demonstrate that image memorability is a stable
intrinsic property. The image memorability (IM) score is defined as the percentage of correct
detection by different observers. Based on observation, many works focus on exploiting
the factors affecting image memorability and designing models for predicting image mem-
orability. More recently, the amount of videos on social media, such as Tik-Tok, Youtube,
etc., has been growing exponentially. Therefore, video memorability is nascent as a new re-
search field. Compared with images, videos are dynamic and contain temporal information.
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Therefore, the study of video memory is different from that of images. Kar et al. [3] began
to wonder what makes a video memorable and propose that the video frames can be used
to extract features for predicting video memorability. Similarly, the video memorability
(VM) score is defined as the percentage of correct detection by different observers.

However, the drawback of current research on video memorability is that the main
attributes affecting memorability prediction have not been determined, making the pre-
diction model’s design more challenging. This paper analyzes and experimentally verifies
the critical impact factors in video memorability and proposes a framework for efficiently
predicting video memorability. Firstly, visual and semantic factors play a decisive role in
video memorability prediction. The combination of vision and semantics has produced a
powerful effect on human memory. Secondly, multi-source feature fusion usually yields
better results than isolated modeling generally. However, merging multiple features of the
same information source adds complexity and causes heterogeneous errors [4]. Thirdly, it
has been studied that the memory interval affects the video memorability [5]. Thus, we
consider the memory interval by taking the memory after memorizing a few minutes as the
short-term memory and using the long-term memory to define the memory performance
after 24–72 h. Choosing different media information sources can predict the change in
video memorability from different angles. Finally, we choose temporal 3D information,
spatial information, and semantics derived from the three media information, including
videos, images and captions, respectively.

Considering the redundancy effect of feature fusion, we use different base individual
learners for each media information source to predict memorability scores. Concretely,
we train the Resnet3D network [6] model to predict video memorability scores. For the
selection of the spatial information, based on the previous experimental results [4], Local
Binary Patterns (LBP) [7] features are more favorable for predicting video memorability
scores than RGB [8] and High Osmolarity Glycerol (HOG) [9]. As for the text features,
the semantics are phrases or sentences sufficient to describe the video scene, and we
extract features from semantics as input to the semantic modal model. Then, we design a
new framework, the Adaptive Multi-modal Ensemble Network (AMEN), to predict video
memorability efficiently. Specifically, we integrate the memorability scores of different
models using the weighted method and then use the stochastic gradient descent algorithm
to obtain the best prediction results. In addition, the framework updates the weights of
each learner adaptively instead of assigning weights manually. In general, the ensemble
learning [10] appliance has a more vital generalization ability than the base learning
appliance. Compared with feature fusion, the weighted ensemble learning method can
fully guarantee the independent information of each mode and reduce the error and
redundancy caused by feature fusion. As mentioned above, people’s memory for a certain
video decreases with time, so we predict the video memorability scores for both short-
term and long-term memory, that is, how well humans remember a video a few hours
after watching it and how well humans remember the same video a few days later. Our
experiments are conducted in both short-term and long-term memory.

The main contributions of our method are summarized as follows:

• We analyze and experimentally verify how to select impact factors to predict video
memorability and conduct three main factors that affect video memorability, i.e., tem-
poral 3D information, spatial information and semantics derived from video, image
and caption, respectively.

• We propose a new adaptive multi-modal ensemble network (AMEN) for video memo-
rability according to the selected impact factors. It eliminates the error caused by the
heterogeneous gap via integrating the optimal base learners corresponding to each
media source instead of fusing the heterogeneous modalities directly.

• We design an adaptive learning strategy to update the weights based on the impor-
tance of memorability which is predicted by the base learners and contributes to
obtaining the best performance without any manual tuning.
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The rest of our paper is organized as follows. Related works about media memorability
are summarized in Section 2. Our method is described in Section 3. Experimental results
are presented in Section 4. The conclusion is made in Section 5.

2. Related Works

In this section, we summarize the previous works on media memorability and related
concepts of media memorability. The work of Isola et al. [2] led to a pioneering study
of media memorability. To measure image memorability, Isola et al. first proposed the
memorability score of each image by the memory game. Based on the visual memory
game, Isola et al. [2] proved that image memorability is the intrinsic property of each image
and showed that the image memorability score has sufficient consistency of each image
across various viewers by the consistency analysis. With the development of research on
image memorability, more researchers have devoted themselves to studying what makes
the image memorable and how to utilize machine learning algorithms to predict image
memorability scores. Isola et al. [11] further explored the fact that image features, attributes
and labels have a positive effect on the memorability of an image and use the support
vector regression algorithm to predict image memorability scores. Intrinsic and extrinsic
properties [12] that make media information memorable have been studied in recent
years. Moreover, objects, emotions, saliency, and aesthetics contribute to making an image
memorable [13–16]. It has to be mentioned that Dubey et al. [17] specifically discussed
what makes an object memorable. To better understand what makes an image forgettable
or memorable, Basavaraju et al. [14] were committed to studying the role of depth and
motion and showed that depth and motion are helpful. Although many properties have
been mined related to the memorability of the image, researchers only use traditional and
simple image features, such as Pixels, GIST [2,11,18], to predict image memorability. In
other words, much of the image information has not been mined and utilized.

Contrast to that, scholars attempted to extract deep features from deep learning
algorithms to predict image memorability with the deep learning algorithm becoming
extremely popular in the 2010s [19,20]. Khosla et al. [21] first used fine-tuned Hybrid
Convolutional Neural Networks (CNNs) [22] to extract deep features, and the performance
outperformed all other features at that time. Then, Zarezadeh et al. [23] used three common
convolutional networks types to derive deep features from predicting image memorability
and they drew a conclusion that deep features outperformed traditional features which
are universally used, such as the SIFT, SSIM, and HOG2×2. Due to the application of deep
learning, Squalli-Houssaini et al. [24] presented their computation model, which is based
on a deep learning frame to predict memorability scores while support vector regression is
used in previous studies. When predicting image memorability, several different datasets
and ground truth have been constructed by various scholars. Isola et al. [2] established
the Scene UNderstanding (SUN) memorability dataset and the Large-scale Memorability
(LaMem) dataset was built by Khosla et al. [21]. SUN memorability and the LaMem dataset
are also the most used in further research. The point of adaptive semi-supervised feature
selection [25] is to attempt to apply memorability. Akagunduz et al. [18] proposed the
concept of Visual Memory Schema (VMS) and built the VISCHEMA image set. Based on
these datasets, more research on image memorability will be carried out in the future.

As we have mentioned before, different media leave different impressions on people,
some of which can be remembered, while others are ignored. Getting inspired by the
memorability of the image, video memorability is studied gradually, and video memora-
bility scores are defined as the percentage of correct detection of each video by different
participants [3]. The research on image memorability can be said to be the cornerstone of
other media memorability research. In the paper by Goswami et al. [26], they contributed
to face memorability. WuLin Wang et al. [27] raised a video hashing method based on mem-
orability features. A system for memorability estimation was proposed by Han et al. [28],
which predicts the memorability scores of a video clip by learning from brain functional
magnetic resonance imaging (fMRI). Influenced by these studies, Kar et al. [3] began to
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wonder what makes a video memorable. Kar et al. [3] proposed that the video frames can
be used to extract features for predicting video memorability. Their studies have shown that
saliency, color, scene complexity, background simplicity, object occurrence, and object at-
tributes are related to the memorability scores. In the same year, Shekhar et al. [29] focused
on analyzing which fusing features could more accurately predict memorability scores.
However, in previous experiments measuring video memorability scores, the data volume
of the annotated dataset is insufficient. Cohendet et al. [5] constructed a large-scale dataset
named VideoMem, and the composition of VideoMem is 10,000 videos with corresponding
video memorability scores. It is worth noting that VideoMem includes short-term human
annotations and long-term annotations since the memory of people changed over time.
Cohendet et al. proved that video semantics information is beneficial for predicting video
memorability scores.

At the same time, Awad et al. [30] attempted to enrich the memorability annotations
of the dataset TRECVID 2019. They provided partial data with memorability annotations
to carry out the memorability prediction task in MediaEval 2020 [31]. A great many novel
ideas have been conceived at previous MediaEval conferences [32–36]. Such as MediaEval
2018, many researchers have put forward their ideas and carried out experiments to verify
them. Lryva et al. [37] used CNNs to extract video, text, and image features. Then,
features were fused to obtain a vector as global features to predict video memorability.
Lryva et al. [38] proposed a video memorability prediction framework based on late fusion
of text, visual and motion features. Kleinlein et al. [39] proved that text features are effective
in the representation of visual semantics required for the video memorability prediction
model. Ali et al. [40] propose a novel framework to fuse the text, visual and motion features
to predict video memorability. In recent years, with the development of ensemble learning
and cross-modal [41–45], studies on ensemble learning and multi-modal are applied in
various fields. Chen et al. [46] presented a Group Ensemble Network (GENet) and a
survey on ensemble learning [47] was expanded. Zhou et al. [10] proposed the method
of domain adaptive ensemble learning. These research studies also encourage scholars to
use ensemble learning methods to predict video memorability. Zhao et al. [48] proposed
the ensemble methods with text, image, audio, and video features that are extracted.
However, the method of the multi-modal approach to predict memorability also has some
problems. Simply speaking, the ensemble weight is not updated, and the size of the
dataset they used is small. In the paper by Azcona et al. [49], in MediaEval 2019, they used
ensemble transfer learning methods with semantics and their extract features to predict
media memorability scores. Specifically, each feature gets a relatively good result through
the base learner, then each base learner is integrated into a strong learner by weight or
others. Zhou et al. [50] introduce the knowledge about ensemble learning in detail and
provide the latest inspiration for the current research. In the latest study, Newman et al. [7]
analyze the influence of semantics and time decay for video memorability and construct a
multi-modal memorability dataset named Memento10k. Unlike VideoMem, Memento10k
includes the memorability annotations that occur delays ranging from several seconds to
ten minutes. They propose a SemanticMemNet that can predict video memorability at an
arbitrary delay.

With the enlightenment of the above academic research, we propose a new adaptive
multi-modal ensemble network (AMEN) for video memorability according to the selected
impact factors. It eliminates the error caused by the heterogeneous gap via integrating
the optimal base learners corresponding to each media source instead of fusing the het-
erogeneous modalities directly. In addition, we design an adaptive learning strategy to
update the weights based on the importance of memorability which is predicted by the base
learners and contributes to obtaining the best performance without any manual tuning.

3. Proposed Methods

Many studies [5,7,31,46,48] have proved that both vision and semantics play a key role
in video memorability prediction. However, there is no definite content about the selection
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of impact factors for video memorability. We take the video itself, the video key frame
and the corresponding captions of the video as video, image and text, respectively, and
mine the feature information contained in these three media information first. Next, the
features of each media information source and the individual learner required are analyzed
and selected to be put into the ensemble network. In Sections 3.1–3.3, we specifically
elaborate on the reason for selecting features and individual learners needed in the proposed
Adaptive Multi-model Ensemble Network (AMEN). Now, we briefly explain the symbols
needed for feature selection and video memorability scores calculation. Given a video
instance Vi = (vi, ii, ti), where vi is video feature, ii is image feature and ti is text feature.
The memorability score obtained from the video information source of video i is called
video-output, termed as Voi, and the score obtained from the image source is addressed
as image-output and defined as Ioi. Similarly, the score obtained from the text source is
called text-output, which is denoted as Toi. The final video memorability score for video i
obtained by our model is named video-memorability-output, which is referred to Vmoi
and n represents the number of samples.

3.1. Video Representation

ResNet [51] made a name for itself and influenced the direction of deep learning in
academia and industry. Research shows that the depth of the network is an essential factor
in achieving good results. However, the gradient dispersion/explosion becomes an obstacle
to the training of the deep network, leading to the failure of convergence. The ResNet
model provides better performance of the network to make up for this disadvantage, but
also becomes a relatively advanced network model. Considering the feature redundancy
and other problems brought by the direct use of the network to extract video features,
such as C3D features, we adopt the end-to-end Resnet3D model by feedback process to
directly predict the video memory score, which can achieve better prediction effect and
make full use of video information. The experimental results also prove our guess. Based
on this, we fine-tune the ResNet3D model [6] to use an end-to-end approach to predict
video memorability scores rather than extracting features directly for video features.

Based on previous studies, we chose the ResNet3D model with 34 residual blocks
and replaced the classification layer of the last layer with the full connection layers to
obtain the memorability scores. Compared with the ResNet3D model fine-tuned by
Cohendet et al. [5], we added two hidden layers and one output layer in the full con-
nection layer, with 100 neurons in the first hidden layer, ten neurons in the second hidden
layer and output in the output layer. In the training stage, the loss function was adjusted
from the L1 loss function to the MSE loss function, and the optimization algorithm was
adapted from the Adam algorithm to the SGD algorithm. Given a video instance Vi =
(vi, ii, ti), output values of the trained model were selected to obtain with the fine-tuned
ResNet3D model instead of extracting the feature vi directly. For example, let us define
γv as the parameter of the video branch, the learned video-output Voi of video i can be
represented as follows:

Voi = fv(vi, γv) (1)

where fv represents the function of video features vi, which is used to obtain the memora-
bility score of the video, and Vo ∈ Rn×1 = {Voi}n

i=1.

3.2. Text Representation

Firstly, for text data, stopwords were used to process some unnecessary words. Then,
we used the count-vectorizer method to extract text content as semantic features. For each
training text, it only considers the frequency of each word. Countvectorizer converts the
words in the text into a word frequency matrix, which uses the fit-transform function to
calculate the number of times each word appears. After converting words into vectors, we
used principal component analysis (PCA) to reduce dimension. PCA is a standard data
analysis method that is often used for dimensionality reduction of high-dimensional data
and can extract the main feature components of data. After PCA dimensionality reduction,
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the dimension of text features corresponding to each video is 500-dimensional. Considering
that the Random Forest (RF) algorithm has strong model generalization ability and fast
training speed and the multi-layer perceptron (MLP) can quickly regress high-dimensional
features into a memorability score, we compared and analyzed these two methods through
experiments to more accurately predict the memorability score of the base learner, and
then the final video memorability score is predicted more accurately. Finally, we used
Spearman’s correlation coefficient to judge the correlation. The experimental results show
that the multi-layer perceptron (MLP) can predict the memorability scores more efficiently
as an individual learner. The following results are described in Section 4.2.1.

Given a video instance Vi = (vi, ii, ti), transforms semantic information of video i into
500-dimensional vector features ti. Let us define γt as the parameter of the text branch, the
learned image-output Toi of video i can be represented as follows:

Toi = ft(ti, γi) (2)

where ft defines the function of text features ti, which is used to obtain the memorability
score of the semantic derived from the video i, and To ∈ Rn×1 = {Toi}n

i=1.

3.3. Image Representation

For the selection of image features, we referred to some valuable image memorability
literature, such as HOG, LBP, and RGB, which can be considered. Considering that the
image information source may cause a lot of feature redundancy after fusing multiple
features, or the size of the constituent feature vector is too large compared with the size of
the dataset [1]. After our previous experimental comparison [4], we finally chose the LBP
feature as the image feature of modeling. LBP is the abbreviation of Local Binary Pattern
(Local Binary Pattern) and an effective texture description operator, which measures and
extracts the local texture information of the image, which has obvious advantages such as
gray invariance and rotation invariance. To a certain extent, the problem of illumination
change is eliminated. In addition, it has the advantages of rotation invariance, low texture
feature dimension, and fast calculation speed.

After determining the image features, based on our previous method of predicting
video memorability [4], Random Forest (RF), Support Vector Regression (SVR), and fully
connected layer (MLP) were chosen as regression models to predict memorability scores.
Random Forest (RF) shows higher efficiency in predicting memorability scores using LBP
features than the other two methods. Given a video instance Vi = (vi, ii, ti), we used the
obtained LBP features ii. Let us define γt as the parameter of the text branch, the learned
image—output Ioi of video i can be represented as follows:

Ioi = fi(ii, γt) (3)

where fi denotes the function of text features ii, which is used to obtain the memorability
score of the image derived from the video i, and Io ∈ Rn×1 = {Ioi}n

i=1.

3.4. Weighted Ensemble

Ensemble learning is an algorithm that builds and combines multiple primary learners
to achieve a more robust learning capability. Most integration methods use the same basic
learning algorithm to produce homogeneous basic learners, that is, the same kind of learners
produce homogeneous integrations, but in this paper, we tried to use a variety of learning
algorithms to train different kinds of learners to produce heterogeneous integrations, and
these learners were called individual learners. The ensemble learning method improves
the generalization ability by combining a group of individual learners rather than choosing
the best one among them, so the combination method used is very important.

After consideration, we used the weighted method to combine the individual learners
of video, image, and text. The method is the most popular and primary combination
method, assuming a set of T individual learner h1, . . . , hT , where the output of the learner
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hi on example x is hi ∈ R. The task is to combine the output result of hi to obtain the final
prediction result on the actual value variable. The weighted method brings the combined
results by assigning different importance weights to the output results of each learner. The
weighted method obtains mixed results by giving different importance weights for the
output results of each learner. Specifically, it obtains the combined output H(x) in such a
way that

H(x) = ∑T
i=1 ωihi(x) (4)

where ωi represents the weight of hi, usually with the constraint ωi ≥ 0 and ∑T
i=1 ωi = 1.

After we obtained Voi, Toi and Ioi, as mentioned in Sections 3.1–3.3, we utilized the
weighted method to obtain the Vmoi. We assigned different initial weights to the outputs
of respective models such as ω1i, ω2i, ω3i for video i. The initial learned Vmoi′ of video i
can be expressed as follows:

Vmoi′ = ω1iVoi + ω2i Ioi + ω3iToi (5)

As described in Section 1, video memorability is the probability of being remembered
by people. That is to say, the final predicted video-memorability-output (Vmoi) is in the
range of [0, 1]. Therefore, the sigmoid function was used to control the prediction result
within range [0, 1]. The final video-memorability-output (Vmoi) is

Vmoi =
1

1 + e−Vmoi′
(6)

Based on the video-memorability-output (Vmoi) for each video i, we used short-term
memory and long-term memory as groundtruth. We optimized our model by minimizing
the mean square error (MSE) between the predicted value and the true value through the
stochastic gradient descent (SGD) algorithm, in which the loss function L can be calculated
as follows:

min
ω1i ,ω2i ,ω3i

L =
1
n∑n

i=1(Ygroudtruth_i − Vmoi)
2 (7)

where Ygroudtruth_i represents the groundtruth of short-term or long-term memorability
scores, the number of the sample is n, and Vmoi denotes the predicted video memorability
scores, which are video-memorability-outputs.

To prevent overfitting, L1 regularization and L2 regularization were added, and the
final loss function L was

min
ω1i ,ω2i ,ω3i

L =
1
n ∑n

i=1 (Ygroudtruth_i − Vmoi)
2 + λ1 ∑3

j=1

∥∥ωji
∥∥+ λ2 ∑3

j=1

∥∥ωji
∥∥

2 (8)

where λ is the regularization coefficient, ∑3
j=1
∥∥ωji

∥∥ is L1-norm and ∑3
j=1
∥∥ωji

∥∥
2 is L2-norm.

For n samples, the video-memorability-outputs (Vmo) is calculated represented as follows:

Vmo = ω1Vo+ ω2 Io+ ω3To (9)

where ω1 = (ω11, ω12 . . . , ω1n), ω2 = (ω21, ω22 . . . , ω2n), ω3 = (ω31, ω32 . . . , ω3n),
Vmo = (Vmo1, Vmo2 . . . , Vmon)

T , Imo = (Imo1, Imo2 . . . , Imon)
T and Tmo =

(Tmo1, Tmo2 . . . , Tmon)T .

3.5. Evaluation Indicator: Spearman’s Rank Correlation Coefficient

In this paper, Spearman’s rank correlation coefficient is used to calculate the correla-
tion between the video memorability scores predicted by our model and the real video
memorability scores. The closer the Spearman coefficient is to 1, the higher the correlation
between the predicted value and groundtruth. On the contrary, the closer the coefficient
is to −1, the lower the correlation. Indicators commonly used in statistics to measure the
correlation between two variables include Person correlation coefficient [52], Spearman’s
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rank correlation coefficient [53] and Kendall correlation coefficient [54]. Pearson’s correla-
tion coefficient applies to continuous data where there is a linear relationship between two
variables and the population of the two variables is normally distributed or near-normal
unimodal distribution. However, as can be seen from Figure 1, our data are not normally
distributed, whether short-term or long-term memory scores. Although Spearman’s rank
correlation coefficient and Kendall’s can be used for data with non-uniform distribution,
Kendall’s coefficient is more suitable for the multi-column rank correlation degree method.
Furthermore, Spearman’s rank correlation coefficient has less strict requirements on data
conditions than Pearson’s correlation coefficient. As long as the observed values of the two
variables are paired with rank assessment data, Spearman’s rank correlation coefficient can
be used to analyze the overall distribution patterns and sample sizes of the two variables.

Spearman’s correlation coefficient [53] is defined as the Pearson correlation coefficient
between rank variables. For sample size n, n original data are converted into rank data,
and the correlation coefficient ρ is

ρ =
∑n

i (Vmoi − Vmo)(Ygroudtruth_i − Y)√
∑n

i (Vmoi − Vmo)2
∑n

i (Ygroudtruth_i − Y)2
(10)

where Vmoi and Ygroudtruth_i are the predicted value and the groundtruth of video i,
Vmo and Y are the mean of Vmoi and Y . Original data is assigned a rank based on its
average descending position in the overall data. In practice, the links between variables are
irrelevant, so the ρ can be calculated in a simple step. The difference between the ranks of
the two variables observed, ρ is

ρ = 1− 6 ∑ di
2

n(n2 − 1)
(11)

di = rank(Vmoi)− rank(Ygroudtruth_i) (12)

where rank(Vmoi) and rank(Ygroudtruth_i) are the order in the list after rearranging the
original data Vmoi and Ygroudtruth_i in ascending order.

Figure 1. The Distribution of Short-term and Long-term Video Memorability Scores.

3.6. Framework Overview

As is shown in Figure 2, the AMEN framework adaptively integrates three individual
learners to predict the final video memorability score based on the selection of the key
features of the three media information sources and the corresponding individual learners.
Specifically, the fine-tuned ResNet3D model, RF, and MLP that have been fine-tuned for
the three information sources of video, image, and text are trained to obtain their respective
output values and then use the weighted method to update the weight of each output value
to obtain the final video memorability score.
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Figure 2. The overall framework of the proposed Adaptive Multi-model Ensemble Network (AMEN),
see Algorithm 1.

Algorithm 1: AMEN training process.

1 Data: Vo, Io, To← Video features, image features and text features
Result: Vmo← The video-memorability-outputs

2 while not converged do
3 Voi = fv(vi, γv)← Learning video features via Equation (1)
4 Toi = ft(ti, γt)← Learning text features via Equation (2)
5 Ioi = fi(ii, γi)← Learning image features via Equation (3)
6 Vmoi′ = ω1iVoi + ω2i Ioi + ω3iToi

7 Vmoi =
1

1+e−Vmoi′

8 min
ω1i ,ω2i ,ω3i

L = 1
n ∑n

i=1 (Ygroudtruth_i − Vmoi)
2 + λ1 ∑3

j=1
∥∥ωji

∥∥+ λ2 ∑3
j=1
∥∥ωji

∥∥
2

9 end

4. Experiments
4.1. Dataset

In 2019, Romain Cohendet et al. [5] introduced a new protocol to measure video
memorability scores and constructed a VideoMem dataset with short-term and long-term
memorability scores. In this paper, we adapt 8000 silent videos from the VideoMem dataset,
where each video contains a semantic shot for seven seconds. The types of videos are
colorful and include different scenes such as nature, people, animals, etc. Each video
corresponds to its own short-term and long-term memory scores, and the distribution of
short-term and long-term memorability scores are shown in Figure 1.

In the experiment to measure the video memorability score, participants were given a
series of videos, including target and non-target videos, which we call filler videos. The
role of the filler video is to provide the influence of the time interval and other memory
points. When the target video appeared, the participant clicked the space bar according to
whether he remembered and then asked the participant to measure whether he remembered
the target video again after 24–72 h. The experimental process is the same as shown in
the Figure 3.
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Figure 3. Experimental process of measuring video memory score.

In this paper, we divide the 8000 videos in a 3:1:1 ratio into the training set
(4800 videos), the validation set (1600 videos), and the test set (1600 videos) for train-
ing, evaluating, and testing three models with text, image and video as input, respectively.

4.2. Prediction Results Analysis
4.2.1. Selection of Individual Learners from Different Media Information Sources

Firstly, 4800 videos were used to pre-train the fine-tuned ResNet3D model to obtain
the memorability scores after the optimal model verification by using 1600 validation
videos. At the same time, we compared the results of directly extracting C3D features and
fine-tuning ResNet3D for short-term and long-term memorability scores. The comparative
effects of the experiment are shown in Table 1. It can be seen that compared with the
directly extracted C3D features, the fine-tuned ResNet3D model makes fuller use of the
video information source, which means that it can predict the memorability scores more
effectively. Moreover, the memorability scores obtained from the video information source
are used as the video inputs of the weighted model.

Table 1. Results in terms of Spearman’s rank correlation of video features.

Feature
ResNet3D C3D

Short-Term Long-Term Short-Term Long-Term

Video 0.331 0.147 0.291 0.132

Secondly, as mentioned in Section 3.2, after converting text information into vectors to
obtain text features, the text feature was used to predict video memorability scores. Next,
based on previous experiments and through the research of this paper, we determined
using the Random Forest (RF) algorithm and the full connection layer (MLP) method
for comparison. We took short-term memory and long-term memory as groundtruth
successively. That is to say, short-term memory scores and long-term memory scores were,
respectively, taken as the target scores. For the full-connection layer method, the input is a
500-dimensional text feature, a hidden layer with ten neurons. The activation function is
set as tanh, and the optimization algorithm is set as the L-BFGS algorithm.

Table 2 demonstrates that whether it is short-term or long-term memory, the MLP
method is more useful for us to make predictions for text information. Then, we used the
video memorability scores obtained by using the semantic information as the semantic
input of the weighted model.

Table 2. Results in terms of Spearman’s rank correlation of semantic feature.

Feature
RF MLP

Short-Term Long-Term Short-Term Long-Term

Semantics 0.297 0.110 0.384 0.136

Following by selecting LBP features, we considered which individual learner can use
LBP features to obtain the best prediction results. We chose Random Forest (RF), Support
Vector Regression (SVR), and fully connected layer (MLP) as regression models to predict
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memorability and used the Spearman coefficient to compare the results of the three models.
Table 3 proves that the random forest algorithm as a regression model is more suitable for
predicting the memorability scores of the image source.

Table 3. Results in terms of Spearman’s rank correlation of LBP feature across different learners.

Feature
RF MLP SVR

Short-Term Long-Term Short-Term Long-Term Short-Term Long-Term

LBP 0.242 0.068 0.179 0.066 0.115 0.040

4.2.2. Comparison of Experimental Results

In this section, Table 4, respectively, shows the prediction results obtained using only
video, image, or text sources. As mentioned in Section 3.4, video-memorability-outputs
(Vmo) is weighted by video-outputs (Vo), image-outputs (Io) and text-outputs (To). So
we attempt to weigh only the video source and the text source, and simultaneously weigh
the video source and the text source, and compare the memorability scores predicted by
the model after the weighting of the video, image, and text. (1) ResNet3D: Only the video
features are used for prediction. (2) LBP: Only the image features are used for prediction.
(3) Semantics: Make predictions just from text features. (4) ResNet3D+Semantics: The
fusion features of video and text are used for prediction. (5) ResNet3D+LBP: The fusion
features of video and image are used for prediction. (6) Semantic embedding model:
The state-of-the-art method for comparison. (7) AMEN: The proposed method makes
predictions by adaptively weighting text, image and video features. The experiments have
proved that weighting the three media information sources has a positive effect on the
prediction of the memory of the video. That is to say, the addition of image information
and text information has a positive effect on the prediction of short-term or long-term
memorability. Compared with the experimental results of the existing methods provided
by [5], the results in Table 5 show that our method improves the video memorability score
to a certain extent.

Meanwhile, to verify the effectiveness of the model, we draw the final Loss diagram.
As shown in Figure 4, the model we proposed converges both for short-term and long-term
memorability scores during training and validation.

Figure 4. The loss curves for training and validating short-term and long-term video memorability scores.
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Table 4. Results in terms of Spearman’s rank correlation of our model.

Model
Short-Term Long-Term

Validation Test Validation Test

ResNet3D 0.331 0.557 0.147 0.130
LBP 0.247 0.242 0.085 0.068

Semantics 0.383 0.384 0.159 0.136
ResNet3D+Semantics 0.718 0.573 0.251 0.126

ResNet3D+LBP 0.559 0.567 0.214 0.148
AMEN 0.829 0.604 0.923 0.259

Table 5. Comparisons with different methods in terms of Spearman’s rank correlation.

Model
Short-Term Long-Term

Validation Test Validation Test

MemNet [21] 0.397 0.385 0.195 0.168
Squalli [24] et al. 0.401 0.398 0.201 0.182

C3D [55] 0.319 0.322 0.175 0.154
HMP [56] 0.469 0.314 0.222 0.129

Semantic embedding model [5] 0.503 0.494 0.260 0.256
AMEN 0.829 0.604 0.923 0.259

5. Conclusions

In this work, we provided a new framework, the Adaptive Multi-modal Ensemble
Network (AMEN), to predict the video memorability scores. We identified three impact
factors that affect video memorability prediction, including temporal 3D information,
spatial information, and semantics information. AMEN integrated three individual learners
using the weighted method rather than feature fusion based on these three factors. In
addition, we updated the weight based on the importance of memorability, which is
predicted by each individual learner automatically rather than assigning weight manually.
Through training and testing, experimental results on the VideoMem dataset proved that
our method could better predict the video memorability scores. We understand that the
current research on multi-modal memorability is only the fusion of features. A large
number of features fusion will cause feature redundancy. Even though different researchers
have experimented on various factors, there is still no definite feature to guide the study of
video memorability. Therefore, the research on video memorability prediction will be more
challenging in the future.
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