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Abstract: The continuing increase in data processing power in modern devices and the availability
of a vast amount of data via the internet and the internet of things (sensors, monitoring systems,
financial records, health records, social media, etc.) enabled the accelerated development of machine
learning techniques. However, the collected data can be inconsistent, incomplete, and noisy, leading
to a decreased confidence in data analysis. The paper proposes a novel “judgmental” approach to
evaluating the measurement uncertainty of the machine learning model that implements the dropout
additive regression trees algorithm. The considered method uses the procedure for expressing the type
B measurement uncertainty and the maximal value of the empirical absolute loss function of the model.
It is related to the testing and monitoring of power equipment and determining partial discharge
location by the non-iterative, all-acoustic method. The example uses the dataset representing the
correlation of the mean distance of partial discharge and acoustic sensors and the temperature
coefficient of the sensitivity of the non-iterative algorithm. The dropout additive regression trees
algorithm achieved the best performance based on the highest coefficient of determination value.
Most of the model’s predictions (>97%) fell into the proposed standard measurement uncertainty
interval for both “seen” and “unseen” data.

Keywords: artificial intelligence; DART; machine learning; measurement uncertainty; ML.NET;
performance evaluation; reliability; testing and monitoring of power equipment; uncertainty analysis

1. Introduction

The latest development of information and communication technologies in daily life
enables more and more implementation of different devices and tools, their connectivity,
and automatization of the work. Some of the essential characteristics of these systems are
the generation of a large amount of data, various parameters’ monitoring and prediction,
and the possibility to mitigate resource usage. To achieve the best results, artificial intel-
ligence is used during the development of such platforms [1], but the evaluation of the
measurement uncertainty of the applied models is also required.

The permanent increase in data processing power in modern devices and the avail-
ability of a vast amount of data via the internet and the internet of things (IoT) enabled
the accelerated development of artificial intelligence (AI) methods. Given trends have
actualized issues of AI hardware and algorithms’ energy efficiency and the possibility
of optimal application of AI in real-time (autonomous cars, mobile phones, unmanned
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aerial vehicles, etc.). In addition to energy efficiency, current topics in the literature deal
with the possibility of sudden outages, wrong decisions, sabotage and fraud, and optimal
maintenance techniques for intelligent agents. In simpler terms, researchers are trying to
answer the increasingly frequently asked question: “To what extent can intelligent agents
be trusted?” There is no simple answer to this question because it involves the evaluation
of intelligent agents (AI methods) in terms of transparency, controllability, availability,
usability, resilience, reliability, accuracy, security, privacy, quality, etc. [2–12].

AI and machine learning (ML) techniques are used to analyze complex data and take
proper actions. In modern society, various sectors that play vital roles, such as smart grids,
intelligent transportation, cyber-security, and communication technologies, are supported
by big data analysis and the effective use of AI and ML techniques [13–16]. The data
collected from IoT (sensors, monitoring systems, financial records, health records, social
media, etc.) can be inconsistent, incomplete, and noisy, leading to a decreased confidence
in data analysis [17]. Controlling and quantifying ML models’ uncertainty improves data
analysis’s reliability. It also enhances the belief in the model’s decisions.

An ML model consists of knowledge about model structure and training dataset. In
the context of ML, the nature of uncertainty can be classified as epistemic (parameter uncer-
tainty) and aleatoric (data uncertainty) [17–20]. In the literature, uncertainty quantification
concepts relevant to ML are grouped as frequentist inference and Bayesian inference. Fre-
quentist inference deals with errors in parameters’ estimates. Bayesian inference is used in
traditional ML (Gaussian process regression (GPR), and GPR and physics-informed neural
networks) and deep learning (Bayesian neural network and Bayesian physics informed
neural network) [17,21]. These concepts primarily deal with model uncertainty [22–24]
(inverse propagation problem) over measurement uncertainty [25]. Recently, researchers
have had increased interest in quantifying the uncertainty related to ML models [26–28]. In
the systematic literature reviews of ML and deep learning applications in smart cities [11],
and the COVID-19 epidemic [12], the accuracy parameter received the most attention from
the reviewed articles (28.1% and 48.8%, respectively). The number of research publications
related to the topic has grown from around 7000 in 2011 to about 24,000 in 2020 [17].

The contributions of the research presented in the paper are:

• To address the abovementioned issues, a novel “judgmental” [21] approach to evaluat-
ing the measurement uncertainty of the ML model is proposed. The method is based
on the analogy of an ML model and an actual measurement device.

• It uses the procedure for expressing the type B measurement uncertainty [29] and
the maximal value of the empirical absolute loss function of the ML model. Since
expressing type B measurement uncertainty is based on the experience and judgment
of the measurer, the approach is referred to as “judgmental [21]”.

• The considered ML model is related to the testing and monitoring of power equipment,
i.e., determining the partial discharge (PD) location by the non-iterative, all-acoustic
method [30,31].

• The example uses the dataset representing the correlation of the mean distance of
partial discharge and acoustic emission (AE) sensors and the temperature coefficient
of sensitivity of the non-iterative algorithm [30].

• Based on the highest coefficient of determination value, the dropout additive regres-
sion trees algorithm (DART) achieved the best performance.

• The proposed estimation procedure is not limited to the presented example but can
also be used in all similar regression problems, including big data analysis.

• The proposed procedure is applicable even when the probability distribution of devia-
tion of predicted values from correct values is unknown.

This paper consists of the following sections: Introduction; Methods; Experimental
data, comparative analysis, and discussion; and Conclusion. The Methods section in-
troduces measurement uncertainty, empirical loss function, a description of the DART
algorithm, and the measurement uncertainty of the ML model. The following section
explains the reasons for conducting the experiments and presents experimental results with
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appropriate analysis. Finally, the Conclusion provides deductions drawn from the results
achieved in this study.

2. Methods

This section discusses measurement uncertainty, empirical loss function, description
of the selected DART algorithm, and the ML model’s measurement uncertainty.

2.1. Measurement Uncertainty

It is impossible to determine the exact value of the measured quantity because the
results of actual measurements contain a certain degree of uncertainty. Measurement error
is the difference between the measured value and the “true value.” “True value” means
a value measured by a reference standard, i.e., an available standard with the highest
level of accuracy. The disadvantage of the given approach (error theory) in the processing
and expressing measurement results is the absence of uniformity and the impossibility of
comparing the same types of measurements from different institutions (researchers). To
introduce standardization in the field of processing and expression of measurement results,
the leading institutions of the international metrology system published the first version of
the instructions for the expression of measurement uncertainty in 1993 [32].

When processing and expressing measurement results, it is necessary to determine
three quantities: measurement result, measurement uncertainty, and statistical certainty.
The measurement result is the mean value of repeated measurements (xs). Measurement
uncertainty (dispersion or scattering of measurement results) is expressed as an interval
around the mean value in which the actual value of the measured quantity is expected to
be found. The degree of statistical certainty (probability) is added to the given data.

The standard measurement uncertainty u is equal to the standard deviation s. Depend-
ing on the associated probability distribution, the statistical certainty corresponding to the
xs ± u interval is approximately 57.7% for the uniform distribution, 65% for the triangular
distribution, 68% for the normal distribution [33], etc.

The standard combined measurement uncertainty uc is calculated if several com-
ponents influence the measurement uncertainty. The extent to which the corresponding
components affect the combined measurement uncertainty can be expressed with sensitivity
coefficients [32]:

uc =

√(
∂y
∂x1

)2
ux1

2 +

(
∂y
∂x2

)2
ux2

2 + . . . +
(

∂y
∂xk

)2
uxk

2, (1)

ci =
∂y
∂xi

, i = 1 . . . k, (2)

uc =
√

c1
2ux1

2 + c22ux2
2 + . . . + ck

2uxk
2. (3)

The value ci is the sensitivity coefficient of the influential quantity xi. The given
coefficient expresses a measure of the influence of the corresponding component on the
combined measurement uncertainty.

The expanded measurement uncertainty U is the product of the standard measurement
uncertainty and the coverage factor (k). The coverage factor has values in the interval from√

3 to 3. The coverage factor depends on the associated distribution function and the target
statistical certainty (for example, for the normal distribution, a coverage factor of exactly
two corresponds to a statistical confidence of approximately 95%, a coverage factor of
2.56 corresponds to a statistical confidence of approximately 99%, and a coverage factor of
3 corresponds to a statistical confidence of approximately 99.7%) [32,33].

Based on the determination methodology, there are two basic types of measurement
uncertainty: type A and type B. The normal distribution is usually associated with type
A measurement uncertainty, while type B measurement uncertainty is related to various
distributions [32].
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Type B measurement uncertainty is determined by all methods other than the sta-
tistical analysis of repeated measurement results. Considering that the set of methods
for determining type B measurement uncertainty is not defined, the choice of procedures
depends on the requirements, knowledge, and experience of the measurer. The given
measurement uncertainty can also be specified in the case when the measurement was
performed only once.

Sources of information on type B measurement uncertainty can be data on the op-
erational measurement procedure, data on the measuring equipment (manufacturer’s
instructions, calibration certificates), knowledge about the influence of the environment
on the measurement process (temperature, humidity), knowledge about the impact of
disturbances (electromagnetic, mechanical), results of previous measurements, variability
of personnel performing the same type of measurement, etc. The standard measurement
uncertainty of type B, uB, is equal to the standard deviation due to the influence of the
quantity from which it originates. In most cases, due to the lack of data, the measurement
uncertainty of type B has an assumed uniform distribution [32–34].

In uniform distribution, the values of the measurement results belong to the lim-
ited interval (xs − a, xs + a). All values within the interval have an equal probability,
i.e., p(x) = 1/(2a), where a is the half-width of the distribution. The standard deviation
is s = a/

√
3, where approximately 57.7% of the measurement results are in the interval

(xs − s, xs + s) (Figure 1). The given distribution is applied when there is insufficient infor-
mation about the measurement instrument [33].
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The result of the measurement uncertainty calculation should be presented trans-
parently, i.e., in such a way as to show all the relevant facts related to the procedure of
determining the measurement uncertainty. The tabular representation of the given data
is called the measurement uncertainty budget. The data in the measurement uncertainty
budget are significant measurement quantities, their distribution functions with standard
measurement uncertainties, appropriate coverage factors, etc. [33].

2.2. Empirical Loss Function

Expressing utility in machine learning is standard using a loss function L. The loss
function is defined as the amount lost utility by predicting h(x) = ŷ when correct is the
answer f (x) = y [1]:

L(y, ŷ) = Utility(y)−Utility(ŷ). (4)
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In general, minor deviations are better than larger ones. The two functions that follow
the previously mentioned logic are the absolute value of the difference (L1 loss) and the
square of the difference (L2 loss) [1]:

L1(y, ŷ) = |y− ŷ|, L2(y, ŷ) = (y− ŷ)2. (5)

Theoretically, an agent can maximize its expected utility by choosing the hypothesis
that minimizes the expected loss of overall input–output pairs it considers. An agent can
estimate the generalization loss for a hypothesis h (to a loss function L) with an empirical
loss on a set E of N examples (average loss) [1]:

EmpLossL,E(h) =
1
N ∑

(x,y)∈E
L(y, ŷ). (6)

Instead of average loss, the maximal loss can be used [35]:

EmpLossL,E(h) = max
(x,y)∈E

L(y, ŷ). (7)

In the given cases, the estimated best hypothesis from the set of hypotheses H is the
one with the minimum empirical loss [1]:

ĥ∗ = arg min
h∈H

EmpLossL,E(h). (8)

Minimizing average loss is a more popular approach. In some situations, researchers
recommend minimizing maximal loss instead [35].

Empirical average loss with L2 function is usually called Mean Square Error (MSE) [36]:

MSE = EmpLossL2,E(h) =
1
N ∑

(x,y)∈E
(y− ŷ)2. (9)

If the MSE is observed as the variance of the function y, then the MSE represents the
variance of hypothesis h.

Another way of evaluating the generalization of the hypothesis mentioned in the
literature is quantifying the progress achieved by learning (h) to some trivial predictive
method that is available even without training. One such trivial approach is to take the
mean value of the output on some set of examples and use that value for prediction
(generalization). The given method is simple and does not consider the input value when
predicting in contrast to the hypothesis obtained by training [37].

The coefficient of determination, or R2, compares the mean squared errors of the
hypothesis h and the mean value of the output (variance) for the observed N examples [37]:

R2 = 1− MSE
var[y]

= 1−

N
∑

i=1
(y− ŷ)2

N
∑

i=1
(y− y)2

. (10)

2.3. DART Algorithm

Ensemble training algorithms achieve high accuracy for numerous machine learning
tasks. For ensembles to achieve better accuracy than the individual hypotheses from
which they are composed, the hypotheses should be with uncorrelated errors. While some
classes of ensemble training algorithms such as random forests independently add each
hypothesis to the set, algorithms using boosting such as AdaBoost and Multiple Additive
Regression Trees (MART) [38] incrementally add hypotheses. This technique increases the
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ensemble’s accuracy by reducing the sensitivity to specific features or cases that may exist
in individual hypotheses.

Boosting algorithms add hypotheses focused on improving the current set of hypothe-
ses, which is achieved by modifying the training problem between iterations. Although this
guarantees that the added hypothesis differs from the set, the new hypotheses usually focus
on a small subset of the problem and thus have no significant prediction of the original
problem. This increases the risk of adding hypotheses that fit too well to specific cases. It is
a well-known problem in boost training and in the MART algorithm that uses ensemble
training by boosting regression decision trees. In a given algorithm, trees added in later
iterations tend to affect the prediction of only a few hypotheses and make a negligible
contribution to the prediction of all remaining hypotheses. In turn, this can negatively
affect the algorithm’s performance on new data by increasing the capacity of the set without
significantly improving its training error. Additionally, this makes the set hypersensitive to
the contributions of a few initially added trees. This issue of posterior trees affecting the
prediction of only a tiny fraction of hypotheses is referred to as over-specialization.

The most common approach to combat over-specialization in the MART algorithm is
reduction. Here, the contribution of each new tree is reduced by a constant value called the
reduction factor. Downscaling helps to reduce the influence of the first trees; however, as
the size of the set increases, the problem of over-specialization reappears.

In the Dropout Additive Regression Trees (DART) algorithm [39], which is based on the
MART algorithm, a different approach is proposed to solve the issue of over-specialization.
This approach involves dropout, a technique proposed in the context of regularizing deep
neural networks. In neural networks, dropout is used to silence a random portion of the
neural connections during the training process. This method has significantly contributed
to the success of deep neural networks for many tasks, including, for example, object
classification in images.

The DART algorithm introduces a new way of using dropout for a set of decision trees:
complete tree silencing instead of feature silencing. In the available literature, evaluation results
of the DART algorithm on three different tasks, ranking, regression, and classification, using
publicly available large-scale datasets, show that DART outperforms MART and random forest
in each task by significant margins [39]. One of the reasons for the improved performance of
the DART algorithm is that it addresses the issue of over-specialization and results in a more
balanced contribution of all trees in the hypothesis set.

Another place where DART differs from MART is the addition of a new tree to the set
where DART performs the normalization step. To ensure that the impact of the omitted
trees and the newly added tree remains the same as the impact of the omitted trees before
adding the new tree to the set, the newly added tree is first scaled by 1/k and then together
with the omitted trees by k/k + 1. The number k represents the number of omitted trees in a
given iteration step of the algorithm.

The DART algorithm reduces the problem of over-specialization. Therefore, it can be
seen as regularization, where the number of omitted trees controls the degree of regulariza-
tion. If no tree is left out, DART is no different from the MART algorithm. If all trees are
omitted, DART is indistinguishable from a random forest. Therefore, the size of the omitted
set allows the DART algorithm to vary between an “aggressive” MART to a “conservative”
random forest.

2.4. Measurement Uncertainty of ML Model

In supervised learning, the training set consists of input–output pairs. The given
set can be viewed as if a corresponding output value was measured for each input value.
Generally speaking (without noise), one input corresponds to one output. The original
output values from the training set can be considered the exact values, while the values
obtained by the ML model are the measured values. Since only one output value is
measured for one input value, it is impossible to express the measurement uncertainty of
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type A. However, it is possible to express the measurement uncertainty of type B because
only one measurement is needed.

One of the common sources for determining type B measurement uncertainty is the
measurement instrument manufacturer’s instructions. It contains the maximum errors
determined by the manufacturer for specific ranges of the measured quantity. The analogy
with the ML model would be the maximal L1 loss on the training dataset (Figure 2).
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Assuming the uniform distribution, the standard type B measurement uncertainty of
the ML model is equal to standard deviation s:

u =
√

u2
A + u2

B = uB = s =
max
(x,y)∈E

L1(y, ŷ)
√

3
, (11)

with the degree of statistical certainty of 57.7%.
Additional sources of type B measurement uncertainty mentioned in Section 2.1

and analytically presented in [29] can also find an analogy with the ML model. For
example, uncertainty due to the measurement’s device indication (scale) reading by the
operator can be analogous to taking a lower number of significant digits or inadequate
rounding of predicted values by the ML model. The ML models are executed on appropriate
hardware that optionally observes the environment through actuators. The CPU calculation
uncertainty, the actuator measurement uncertainty, etc., can also be additional sources of
type B measurement uncertainty of the ML model. These additional sources were not
considered in the study.

3. Experimental Data, Comparative Analysis, and Discussion

The considered experiment is related to testing and monitoring of power equipment,
i.e., determining PD location in the mineral oil by the non-iterative, all-acoustic method.
The non-iterative algorithm gives a solution for a system of nonlinear equations describing
PD location. The algorithm has 19 parameters (16 inputs and 3 outputs), i.e., a relatively
sizeable nineteen-dimensional state space. The location of PD is determined indirectly.
All of the parameters, both input and output, can influence the combined measurement
uncertainty of the non-iterative algorithm [30].

The correlation between the two input parameters of the algorithm, the mean distance
of PD and AE sensors, and the temperature coefficient of sensitivity was observed in [30].
The correlation was expressed via the mean values of the parameters. Calculating the
mean value of the parameter does not consider the value on which it depends. The mean
values were calculated using the Monte Carlo (MC) method, which was time-consuming.
Additionally, not all possible values were generated through MC randomization.
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To overcome the mentioned shortcomings, supervised learning technique is proposed.
The dataset generated through MC randomization is used as a training dataset of a model
that can subsequently predict even the “unseen” data. The chosen metric for ranking the
models’ performance is R2. The R2 compares the model’s hypothesis variances and the
label’s mean value from the training dataset. In this way, the improvement over the existing
calculation of the mean value of the parameter can be directly evaluated.

The tradeoff of this approach is the appearance of additional uncertainty generated by
the ML model. The tradeoff can be made more acceptable by quantifying and controlling
the given uncertainty by the procedure proposed in Section 2.4.

3.1. Experimental Data and Comparative Analysis

As mentioned in the previous section, the training dataset has one input parameter
(feature) and one output parameter (label). The mean distance between PD and AE sensors
lsr is the predicted value, while the temperature coefficient of sensitivity cT is the feature.
The dataset originated from [30] and was generated using MC simulation. The number
of MC simulations was 10,000. In the simulations, a cube-shaped area filled with mineral
oil with a side length of 0.60 m was considered. The PD location was unchanged (0.05 m,
0.54 m, 0.14 m) while the sensors’ positions were randomized. The temperature coefficient
of sensitivity was calculated using maximum change in the result for detecting the location
of PD ∆gmax and mineral oil’s temperature change ∆T, cT = ∆gmax/∆T. The considered
data is for the mineral oil’s temperature range of 40 ◦C [30]. The dataset’s characteris-
tics are visualized in Figures 3 and 4, while its basic statistical properties are given in
Table 1. The dataset employed in this study can be retrieved from the following URL:
https://doi.org/10.6084/m9.figshare.20401953.v1 (accessed on 23 August 2022).
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Table 1. Basic statistical characteristics of the employed dataset.

Count 1799 1799

cT [m/◦C] lsr [m]
Average value 0.001691 0.2083

Standard deviation 0.001168 0.0580
Minimum 0.000213 0.1008

25% 0.000778 0.1594
50% 0.001450 0.2132
75% 0.002324 0.2516

Maximum 0.006055 0.3325

A free, open-source, cross-platform framework, ML.NET is used to train the ML model.
The ML.NET framework offers multiple machine learning algorithms. The framework
can iteratively train multiple algorithms and rank them according to the appropriate
performance metrics. A ranked list of the best training algorithms (top five) is suggested to
the user. Several different classes (trainers) are available for solving regression problems,
grouped into trainers for linear regression and binary logistic regression [40].

The development tool was Microsoft Visual Studio Community 2019. The training
time was 120 s on a 64-bit Windows 10 PC with an Intel Core i7-8750H processor and 16 GB
of RAM. The results of the training are presented in Figure 5.
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The trainers were ranked based on the value of R2. The FastTreeRegression trainer
that implements the DART algorithm (R2 = 0.7666) achieved the best result. The second
best was the FastForestRegression trainer that implements the random forest algorithm
(R2 = 0.7658). The predictions of the model that implements the DART algorithm are
presented in Figure 6.
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To calculate the measurement uncertainty of the model using the expression (11), it is
necessary to calculate the maximal L1 loss on the considered dataset. The ML.NET does
not include this metric in the output results, so it was calculated additionally. The maximal
L1 loss of the model on the considered dataset was 0.1078 m.

Assuming the discrete uniform distribution, the model’s standard type B measurement
uncertainty is uB = 0.06 m with a degree of statistical certainty of 57.7%. The number of
predictions that did not fall into the standard measurement uncertainty interval was 53, i.e.,
2.9%. Additionally, the expanded uncertainty was calculated. It used the coverage factor of√

3, UB ≈ 0.11 m, with the degree of statistical certainty of 100%.
The previous training session used all input–output pairs; i.e., all the data were “seen”

by the model. The next session used 90% of the input–output pairs (Figure 7). The 10%
(180) randomly picked input–output pairs were used to evaluate the calculated standard
measurement uncertainty.
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The maximal L1 loss of the model trained on 90% of the dataset was 0.1060 m,
i.e., uB = 0.06 m. The model was used for predictions in the 10% dataset. The number
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of predictions that did not fall into the standard measurement uncertainty interval in the
10% “unseen” dataset was five, i.e., 2.7%, similar to the previous session.

3.2. Discussion

The used ML model that implements the DART algorithm to predict the value of the
lsr contributed to the uncertainty budget of the non-iterative algorithm by u = uB = 0.06 m
(Table 2). The improvement to the trivial calculation of the mean value of lsr was between
four and five times (R2 > 0.75). The DART algorithm performed better than the random
forest, which was expected. The results showed that most predictions (>97%) fell into the
standard measurement uncertainty interval for both the whole considered dataset and the
10% “unseen” dataset.

Table 2. The example of the row layout in the measurement uncertainty budget of a non-iterative
algorithm would correspond to the use of the ML model to estimate lsr.

Quantity Estimate Standard Uncertainty Probability
Distribution Sensitivity Coefficient Uncertainty Contribution

lsr
Predicted value by

the ML model 0.06 m Uniform 1.0 0.06 m

The cube-shaped area with a side length of 0.60 m was considered in the experiment.
In the case of standard measurement uncertainty of the ML model, the contribution to the
uncertainty budget of the non-iterative algorithm accounts for 10% of the side length value,
while expanded measurement uncertainty accounts for approximately 18%.

The statistical value of >97% for the standard uncertainty of the ML model can find its
usefulness only when put in the appropriate context. For example, the standard measure-
ment uncertainty can be used for the periodical testing of power equipment performed on
demand or annually. On the other hand, for the online monitoring of power equipment
where the number of PD occurrences and temperature oscillations in mineral oil can be very
high, the expanded measurement uncertainty of the ML model could be more appropriate
to use as a contribution to the measurement uncertainty budget of a non-iterative algorithm.

4. Conclusions

In this paper, the authors presented a novel “judgmental” approach to evaluating the
measurement uncertainty of the machine learning model that implements the DART algo-
rithm. The considered method uses the procedure for expressing the type B measurement
uncertainty and the maximal value of the empirical absolute loss function of the model.
It is related to the testing and monitoring of power equipment and determining partial
discharge location by the non-iterative, all-acoustic method. The example uses the dataset
representing the correlation of the mean distance of partial discharge and acoustic sensors
and the temperature coefficient of sensitivity of the non-iterative algorithm.

The proposed procedure for uncertainty expression is straightforward and uncompli-
cated to implement. The results showed that most predictions (>97%) fell into the standard
measurement uncertainty interval for both “seen” and “unseen” data. The advantage of
employing the type B measurement uncertainty is that it uses the available data without
needing additional optimization (even one input–output pair is sufficient).

The limitation of the proposed method is that it is applicable only in supervised
learning regression techniques. Additionally, the method did not consider other sources
of the type B measurement uncertainty of the ML model, such as inadequate rounding of
predicted values by the ML model, CPU calculation uncertainty, actuator measurement
uncertainty, etc.

Further research will focus on applying the proposed procedure in various situations
and datasets.
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