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Abstract: This article presents a hybrid method of structural modal parameter identification, based on
improved empirical mode decomposition (EMD) and autoregressive and moving average (ARMA).
Special attention is given to some implementation issues, such as the modal mixing, false modes, the
judgment of the real intrinsic mode function (IMF) of classical EMD, and the difficulty of fixing the
order of ARMA. To resolve the existing defects of EMD, an improved EMD (IEMD) that combines
frequency band filtering and cluster analysis is proposed in this paper, where frequency band filtering
divides the signal into several narrowband signals before the EMD process, and cluster analysis is
used to determine the real IMFs. Euclidean distance is used to cluster the decomposition results,
with no need to adjust any indexes or thresholds, and only by means of using the nearest distance
to efficiently determine the real IMF. Moreover, IEMD is used as a pre-processing tool for ARMA,
to resolve the difficulty of fixing its order. The capabilities of the proposed method were compared
and assessed using a numerical simulation and an experimental model. The numerical simulation
and experimental results showed that the improved method could resolve the modal mixing and
false modal problems in the classical EMD process and could automatically identified the real IMFs,
while the proposed IEMD was combined with ARMA to successfully identify the frequency and
mode shape of the structure. Additionally, since each IMF is a single component signal, it is easy to
determine the order of the ARMA model.

Keywords: modal parameter identification; EMD; ARMA; natural excitation technique (NExT);
improved EMD

1. Introduction

It is of great practical significance to carry out research on the health monitoring and
damage identification of engineering structures based on structural vibration response [1–4],
especially the modal analysis of large structures using vibration response data under
environmental excitation, which has become a hot issue in current research [5–7].

In recent years, the time-domain method, frequency-domain method, and time-
frequency domain method have been commonly used to analyze vibration response, such
as the ITD (Ibrahim time domain), stochastic subspace identification (SSI) [8], natural
excitation technique (NExT) [9], variational mode decomposition (VMD) [10], and time
series analysis method, etc. Among the existing time series analysis methods, ARMA has
attracted much attention and been widely used, because of its superior performance [11].
However, in the process of practical application, the ARMA model method often requires
that the time series is a series of zero mean stationary random process, which is not con-
sistent with the measured signals of actual engineering [12,13]. Furthermore, it is hard to
select the order of an AR/ARMA model according to these limited measurements [14,15].

Aiming at analysis and processing for nonlinear and non-stationary signals, the
Hilbert–Huang transform (HHT) [16,17] was proposed, the core of which is the EMD
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method. After HHT was proposed, it was widely applied in many fields of engineering.
In the actual application of HHT, the scholars found that the HHT method for structural
modal parameter identification often encounters problems, such as mode mixing, false
mode, and endpoint effects; therefore, many scholars are trying to improve the classic
EMD [18,19]. At present, scholars have proposed relevant improvement methods based
on independent component analysis (ICA) [20], singular value decomposition (SVD) [21],
and empirical mode decomposition (EEMD) [22]. Among them, the most widely-accepted
improvement is the EEMD proposed by Huang. Unfortunately, the problems of mode
mixing and endpoint effects in EMD have not been fundamentally solved. Many scholars
are committed to solving the problem of the endpoint effect of EMD, but the results are
often not satisfactory, and many methods have problems of poor adaptivity, a large amount
of computation, and long operation time. On the other hand, mode mixing and false modal
are other bottleneck problems that hinder the application of EMD. Huang proposed the
method of interrupt detection, to solve the phenomenon of mode mixing; namely, the
results are directly observed and re-decomposed if modal mixing occurs. This method
required human posterior judgment, and the decomposition efficiency was greatly reduced.
Therefore, it is still necessary to efficiently solve the mode mixing of EMD. Inspired by
recent auto-ID (automatic identification) technology [23–25], this paper tries to use cluster
analysis to automatically identify the real IMFs.

In summary, in order to improve the above mentioned shortcomings of ARMA and
EMD and to also further expand the application of these methods, this paper proposes
a new hybrid automatic method for structural modal parameter identification based on
IEMD and ARMA, and the effect of the proposed method was verified using a seven-story
steel frame test apparatus in the laboratory. This paper is organized as follows: in Section 2,
the algorithms of ARMA and EMD are introduced. The improved ARMA based on IEMD
is discussed in detail in Section 3. A numerical simulation and a seven-story steel test frame
in the laboratory to verify its effects are discussed in Sections 4 and 5. The conclusions are
given in the last part.

2. Theoretical Background of Proposed Method
2.1. EMD

The EMD was first proposed by Huang et al. [16], in 1998, and uses a sifting process
to extract intrinsic mode functions(IMFs) and a final residue, from a complicated multi-
component signal x(t), i.e.,

x(t) =
m

∑
i=1

yi(t) + r(t) (1)

where m is the total number of IMFs, yi(t) (i = 1 to m) is the ith IMF, and r(t) is the final
residue. Each IMF represents a different type of frequency in theory, and each IMF satisfies
the following two features: (1) The maximum difference between the number of extreme
points and the number of zero crossings is one; (2) At any data point, the average value of
the local minimum envelope and the local maximum envelope of data are zero. The point
is that the decomposition process of EMD is adaptive, which means that it does not need to
select a basis function in the decomposition process, and is superior to wavelet transform.

However, there are still some drawbacks to the results of EMD, i.e., the end-point effect,
mode mixing, and real IMF determination [18,19,22]. Here, mode mixing is defined as any
IMF consisting of oscillations of dramatically disparate scales, or similarly featured time
scales that are distributed in different IMFs, resulting in the mixing and mutual influence
of two adjacent IMFs, which is difficult to identify. Owing to the phenomenon of mode
mixing, the decomposition of EMD loses its meaning, let alone the accurate identification
of modal parameters, so mode mixing is a limitation of EMD. Therefore, it is necessary to
improve the classical EMD to obtain a greater accuracy of modal parameter identification.
To solve the limitations of mode mixing and real IMF determination in classical EMD, an
IEMD is proposed in this paper.
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2.2. IEMD

The occurrence of mode mixing destroys the physical meaning of the subsequent IMF.
In addition, the issue of the judgement of real IMFs is also worth studying. Therefore, in
this study, in order to improve the mode mixing problem, frequency band filtering was
used to improve the classical EMD, so as to effectively suppress the occurrence of mode
mixing in the process of classical EMD. However, many false modes are generated at the
same time. For this reason, cluster analysis was used to obtain the real IMFs in this paper.
Hence, combining a band-pass filter and cluster analysis, an IEMD (as shown in Figure 1)
is proposed.
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Figure 1. The proposed IEMD method.

The specific steps are as follows:

(1) Use fast Fourier transform (FFT) to obtain the spectrum of the acceleration response
signal, seeking each peak frequency as the center frequency of the band-pass filter,
and then let the signal go through to the specific frequency-band filter. Namely, using
FFT to analyze the acceleration signal

..
xp(t), utilizing the frequency spectrum of FFT

to choose the peak frequency, and then roughly estimate each frequency range, for
example, µjL < µj < µjH , then let the signal

..
xp(t) pass the band-pass filter with

specific bandwidth µ′ jL < µj < µ′ jH , (here µjL < µ′jL, µ′jH < µjH) eventually, the
signal

..
xp(t) will be differentiated into limited sub-band acceleration signals.
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(2) After filtering, each sub-band signal is processed by EMD, and IMFs component of
each sub-signal are obtained successively.

(3) After the signal is processed according to the two steps mentioned above, multiple IMF
groups are obtained. The key problem is how to identify the real IMFs from multiple
IMF groups. In view of this, cluster analysis [26] using the multivariate data analysis
method is introduced in this paper to solve the problem of the determination of the
real IMF. Through a two-time cluster analysis, the screened IMF can be guaranteed to
be the real IMF, and there is no mode mixing among the IMFs.

2.3. ARMA

The basic principle of ARMA [12] is as follows:

(1) In a practical application, a high-order differential equation can be used to describe
the relationship between an incentive and response for the N degrees of freedom
linear system in a discrete time domain, which is composed of a series of time series
in different times; namely, the ARMA time-series model in Equation (2), this equation
can be used to represent specific relations between xt (response data sequence) and
xt−k (history value).

∑2N
k=0 akxt−k = ∑2N

k=0 bk ft−k (2)

where the left side of the equation is the AR model; namely, the autoregressive difference
polynomial. The right side of the equation is the MA model; namely, the sliding average
difference polynomial. 2N is the order of the autoregressive and sliding mean models. ak is
the autoregressive coefficient of the system to be identified, bk is the sliding mean coefficient
to be identified, and ft is excited by white noise. When k = 0, a0 and b0 are regarded as 1.

(2) According to the generalized Yule–Walker equation (Equation (3)), the least squares
solution (Equation (4)) of the system can be obtained using the pseudo-inverse method,
and the autoregressive coefficient ak (k = 1, 2, . . . , 2N) can be obtained.

[R](L−M)×M{a}M×1
= [R′](L−M)×1 (3)

{ a} = ([R]T [R]−1)([R]T
{

R′
}
) (4)

where R is the autocorrelation function of xt.

(3) The sliding average model coefficient bk (1, 2, . . . , 2N) can be obtained by using the
nonlinear equations (Equation (5)).


b2

0 + b2
1 + · · · b2

M = c0
b0b1 + · · ·+ bM−1bM = c1
...
b0bM = cM

(5)

(4) ak and bk can be obtained from Equations (4) and (5), and the modal parameters of
the system can be calculated through the transfer function expression of the ARMA
model. The transfer function of the ARMA model is shown in Equation (6):

Hz =
∑2N

K=0 bkz−k

∑2N
k=0 akz−k

(6)

Using a high-order algebraic equation to solve the poles of the transfer function, and
the relationship between the modal frequency ωk and damping ratio ξk of the system is
shown in Equation (7):

zk = esk∆t = e(−ξkωk+jωk

√
1−ξ2

k )∆t (7)
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(5) Modal frequency ωk and damping ratio ξk obtained using Equation (7), as shown in
Equation (8):

{
ωk = |Rk|/∆t, Rz = ln zk = sk∆t

ξk =
√

1
1+[lm(Rk)/Re(Rk)]

2
(8)

3. The Principle of IEMD and ARMA

Based on the IEMD, a hybrid method for structural modal parameter identification is
proposed, its identification process is shown in Figure 2; first, using IEMD to address two
groups of acceleration response signals, to obtain two sets of IMFs, with one group as the
reference signal and the obtained cross-spectral density function corresponding to every
IMF; then, using Fourier inverse transformation to obtain the cross-correlation function,
then, using NExT to obtain the free vibration response; finally, ARMA is used to identify
the modal parameters of the structure.
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ARMA was used to extract the modal parameters of the structure, assuming the cross-
correlation function was expressed by Rj, which was obtained using the inverse Fourier
transform of the jth cross-spectral density function and taken as the free vibration response
of the structure xj.

According to literature [11], the GREEN function of the ARMA model can be used
to solve the frequency and damping ratio of the system, while the residue can be used to
obtain the structural mode shapes. Assuming the excitation point is at the point q, and the
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kth residue corresponding to the transfer function Hpj(s) of the response at point p as Akpq,
then the residue can be obtained from the following equation:

Akpq = lim
z→zk

Hpq(z)(z− k) =

zN
∑

k=0
bkz−k

zN
∑

k=0
akz−k

(z− zk)

∣∣∣∣∣∣∣∣∣
z=zk

(9)

Thereby, the vibration pattern vector can be obtained by processing the residues
obtained from all response measurement points. If a structure contains n response mea-
surement points, it is necessary to determine the corresponding measurement points of
the maximum absolute value of the remaining number of n corresponding modes of the
same order. If the measurement point is m, the normalized complex mode shape vector
corresponding to the kth mode is:

{φk} =
[

Ak1q Ak2q · · · Aknq

]T
/Akmq (10)

4. Numerical Validation

To study the effectiveness of the proposed method, a simulated signal, denoted by
x(t), was applied. The signal is a mathematical model, used to describe the displacement
response of a damped system under free vibration [27]. It can be written as follows:

x(t) = 5e−2.2t sin(78.5t + 0.46) + 20e−3.4t sin 500.5t + 20e−2.24t sin 1401.1t + 5e−3.84t sin(2745.6t + 0.1) (11)

where An is the amplitude, ξn is the damping ratio, fn is the natural frequency, and θn is the
phase angle of the nth mode. N is the total number of modes. Here, the number of modes
is 4. The parameters used for generating x(t) are as follows: f1 = 12.5 Hz, f2 = 79.7 Hz,
f3 = 223.1 Hz and f4 = 437.2 Hz, Amplitudes are A1 = A4 = 5, A2 = A3 = 20. Phase
angles are θ1 = 0.46, θ4 = 0.1, and θ2 = θ3 = 0, and the correlated damping ratios are
ξ1 = 2.8%, ξ2 = 0.68%, ξ3 = 0.16%, and ξ4 = 0.14%.

Here, the sampling frequency is 4096 Hz, and the sampling points total 8192. Classical
EMD was performed on the simulated signals of the displacement response, and eight IMFs
and one residual term were obtained. The first four order IMFs and their corresponding
spectrum are shown in Figure 3. It can be seen from Figure 3 that the displacement
simulation signal was not decomposed into four single IMF components, but into eight
IMFs, and the decomposed low frequency components were not what we had expected
and should not have appeared, this was evidence of false modes. In addition, it can also
be seen from Figure 3 that the first generated IMFs covered a wide frequency range and
obviously contained three frequency components. The second decomposed IMF component
was a single frequency component; however, mode mixing appeared again in the third
IMF component obtained by EMD; namely, two frequency values appeared in the single
component of the third IMF.

The displacement simulation signal of Equation (11) was also analyzed using the
EEMD method. The first six orders of IMFs decomposed using the EEMD method are
shown in Figure 4. In the process of EEMD, the added white noise level was set to 0.1,
and the overall average mean number was 50. As can be seen from Figure 4, EEMD could
almost decompose signals into single components, except the first IMF, and there was very
obviously two frequency components (around 100 Hz); that is, modal mixing occurred. It
can also be seen from Figure 4 that energy leakage existed in the decomposition process
of the EEMD method, and it was obvious that the two different IMFs generated in the
low-frequency domain contained the same frequency component (labeled by the red dotted
rectangle). Meanwhile, one positive aspect was that EEMD successfully identified low order
frequency components, which is of great significance for modal analysis and structural
damage detection of large structures.
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IEMD was also used to analyze the simulated signals of Equation (11), and the obtained
four order IMFs are shown in Figure 5. First, the FFT spectrum was used to estimate the
frequency range quickly and roughly, four frequency ranges were defined from the four
peak frequencies in the Fourier spectrum; here, four band-pass filters with the center of
the peak frequency were formed, and each frequency range can be expressed as jL < j < jR.



Appl. Sci. 2022, 12, 8573 8 of 17

The frequency range is theoretically the difference between two adjacent frequencies of
the Fourier spectrum, but the smaller the frequency range is, the better the band-pass
filtering effect will be. Therefore, in this paper, the frequency range is no more than 5%.
Then, the simulated signal was processed by filtering through the band-pass filters with
four specified frequency bands and IMFs, after the processing of each filter were obtained
accordingly. For instance, there were 10 IMFs, and a residual could be obtained from
the first frequency-band after the processing of EMD, as shown in Figure 6. Finally, the
required IMF was automatically identified using clustering analysis shown in Figure 7.
Here, Euclidean distance was used to cluster the decomposition results, with no need to
adjust any indexes or thresholds, and only the nearest distance default in MATLAB was
used to efficiently determine the real IMF.
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Figure 5. IMFs obtained by IEMD and the corresponding FFT frequency−spectrum.
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Figure 6. IMFs obtained by the first band−filtering.
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Figure 7. Cluster analysis results of IMFs in Figure 6.

From Figure 7, it can be seen that the first IMF was required, this process was repeated
at each frequency-band, and the required IMF group was formed. Finally, the real IMFs
were obtained using a clustering analysis (Euclidean Distance) of the IMFs group again, as
shown in Figure 8. It can be seen from Figure 8 that the four IMFs obtained from IEMD
were independent of each other, and there was no mode mixing. By comparing Figures 3–5,
it can be seen that the proposed IEMD can improve the phenomenon of mode mixing
and could accurately identify each IMF, as well as make preparations for the subsequent
identification of structural modal parameters.
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Figure 8. Cluster analysis results of IMFs of IEMD.

5. Test Verification
5.1. Experiment

As shown in Figure 9, a seven-story steel-frame structure laboratory scale model [28]
was constructed, and the plane size of this model was 0.4 m × 0.2 m, and it was 1.4125 m
in height. Using hot-rolled 300 w grade steel (fy = 300 Mpa), the section size of the beam,
column, and the characteristics of the cross-section were as shown in Table 1. The beam
was continuous in the loading direction. Random excitation (hammering method) was
applied in the direction perpendicular to the beam at the rigid joints in the middle span of
the top floor of the steel frame structure. An acceleration sensor was arranged at the middle
beam end of each layer, parallel to the excitation direction, so that a total of seven sensors
were arranged to collect acceleration signals (Figure 10), and the sampling frequency was
2000 Hz.
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Table 1. Structural member characteristics.

Geometrical Features Beam Column

Sectional dimension 25 mm × 25 mm × 3 mm (SHS) 25 mm × 4.6 mm
Sectional area A/m2 286 × 10−6 115 × 10−6

Inertia moment I/m4 2.41 × 10−8 7.78 × 10−10

Young modulus E/Pa 206 × 109 206 × 109

Volume density ρ [kg/m3] 7850 7850
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5.2. Identification Results and Discussion

The measured acceleration response signal of the seven-story frame structure in a
healthy state is shown in Figure 11, the proposed hybrid method of IEMD and ARMA was
used for modal parameter identification, and the detailed identification process was shown
as follows:
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Figure 11. Acceleration signal and IMF1−7 using IEMD.

First, the acceleration signal was measured by means of IEMD for preprocessing;
namely, choosing two groups of the acceleration response in a structural healthy condition.
Then, a FFT process was performed, followed by picking up the peak frequency of the
Fourier spectrum as the central frequency of the band-pass filter. Two sets of acceleration
response signals separately passed through the band-pass filter with a specified frequency
band, and frequency range can be expressed as jL < j < jR, in this paper, while the frequency
range was no more than 5%. Finally, a two-time cluster analysis was used to determine the
real IMFs. Second, the cross-correlation function was obtained using the NExT method.
Obviously, two sets of acceleration response signals can obtain two groups of IMFs (The
first seven order IMFs are shown in Figure 11). With one set of IMFs as the reference
signal, the corresponding cross-spectral density function of each IMF was solved, and the
inverse Fourier transform was carried out to obtain the cross-correlation function, as the
free vibration response of the structure (as shown in Figure 12).
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Figure 12. Free vibration curves of IMF6 obtained using the NExT method.

Finally, by using an ARMA(2, 2) model to simulate the free vibration response (cross-
correlation function), the sixth IMF was taken as an example, as shown in Figure 13, for
identifying the modal frequency of the structures (as shown in Table 2). As mentioned
above, ARMA-based modal identification is one of the most popular methods, since it
offers a high accuracy of modal parameters, with the main obstacle in ARMA-based modal
identification being the determination of proper system order. This defect has attracted
a large number of scholars to complete a lot of related research [13–15], but the problem
of model order determination is still very difficult. However, in this paper, since the
components of the IMFs are all single-order modes after disposing of the IEMD, the order
of the model is two, which is twice the order of the mode. In order to identify the mode
shape, the vibration response signals of all freedom degrees should be measured. For
different measuring points, the coefficients of the vibration mode are obtained using the
residue and normalized to obtain the mode shape.
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Table 2. Comparison of the modal frequency identification results (Hz).

Mode Theoretical Value [28] Proposed Method HHT NExT/ARMA

1 11.7 11.86 13.35 –
2 35.2 35.5 8.96 35.6
3 58.6 58.58 35.56 58.54
4 80.1 79.94 58.30 80.75
5 99.6 98.71 99.48 98.76
6 113.3 113.4 67.92 113.27
7 123.0 122.84 293.22 122.94

In order to further illustrate the effect of the IEMD method, the IMFs obtained by
classical EMD decomposition are shown in Figure 14. From Figures 11 and 14, it can be
seen that mode mixing occurred for the six and seventh IMFs obtained by EMD locally,
i.e., some data with the same, or nearly the same, frequency are decomposed into more
than one IMF (labeled by the red dotted rectangle), while in Figure 11 the modes are well
separated from original signal. A Hilbert spectrum analysis and cluster analysis of IMFs
obtained using IEMD are shown in Figures 15 and 16, respectively. It can be seen from these
two figures that the IEMD resolved the problems of modal mixing, and the identified IMFs
were all single independent components. Therefore, the IEMD/ARMA methods could
obtain more accurate recognition results (as shown in Table 2). It can also be concluded that
EEMD cannot completely improve the mode mixing problem of classical EMD based on
the frequency identification results. However, EEMD can obtain more accurate frequency
identification results than classic EMD in the low frequency domain. It is worth noting
that during the process of EEMD, both the amplitude standard deviation σ of white noise
and the number N of adding white noise need to be selected artificially. The selection of
this value will affect the decomposition result, and the decomposition of EEMD is very
time-consuming. Here, in order to facilitate calculation, σ = 0.1 and N = 50. It should be
pointed out that, when NExT/ARMA was directly used for modal parameter identification,
the reason why the ideal frequency recognition results could be obtained, excepting that
the low-order frequency was not successfully identified, was because this paper used a
trial calculation method to determine the order of the ARMA model. However, with the
help of IEMD, the order of the ARMA model can be easily determined.
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Figure 14. Acceleration signal and IMF1−7 using EMD.
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Figure 15. Hilbert spectrum using IEMD + Hibert.
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Figure 16. Cluster analysis results of IMF.

Regarding identifying the mode shapes, it is necessary to obtain the acceleration
responses of all degrees of freedom; and repeating the above identification process, the
complex mode vectors corresponding to each mode of the measuring points were obtained.
The real part of the complex modal vector was the modal shape coefficient. The modal
vector can be obtained by normalizing the modal coefficients. The recognition results of the
first six order mode shapes are shown in Figure 17. From Figure 17, it is not difficult to see
that the identified mode shapes were in good agreement with the theoretical shapes, and
the overall shapes were basically consistent with the theoretical shapes.
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6. Conclusions

In view of the practical difficulties of the classic EMD and ARMA methods in practical
applications, such as mode mixing, and determination of real IMF and the model order,
as well as ARMA requiring the time series to be a series of stationary random processes
with a zero mean value, this paper proposed a hybrid method to improve the structural
modal parameter identification, by means of combining IEMD and ARMA. IEMD was used
to preprocess the signal, and a cluster analysis was used to determine the real IMFs. The
free vibration response was obtained using the NExT method and used as the input signal
for the ARMA method. The modal test of a seven-story steel frame showed that IMFs,
which were used as an input signal for ARMA and were obtained by preprocessed of IEMD,
which could resolve the mode mixing problem and make the determination of ARMA order
easier. Thus, the structure frequency and modal shape were identified successfully, which
proved the effectiveness of the proposed method and further expands the application range
of ARMA. However, the application of this proposed method will be limited in the case
of some dense modal vibration signals, when FFT cannot correctly divide the frequency
band. In addition, recognition of time-varying signals was not considered in this paper,
and continuous research work will be devoted to this aspect in the future.
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