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Abstract: As the core component of video analysis, Temporal Action Localization (TAL) has ex-
perienced remarkable success. However, some issues are not well addressed. First, most of the
existing methods process the local context individually, without explicitly exploiting the relations
between features in an action instance as a whole. Second, the duration of different actions varies
widely; thus, it is difficult to choose the proper temporal receptive field. To address these issues,
this paper proposes a novel network, GLFormer, which can aggregate short, medium, and long
temporal contexts. Our method consists of three independent branches with different ranges of
attention, and these features are then concatenated along the temporal dimension to obtain richer
features. One is multi-scale local convolution (MLC), which consists of multiple 1D convolutions with
varying kernel sizes to capture the multi-scale context information. Another is window self-attention
(WSA), which tries to explore the relationship between features within the window range. The last is
global attention (GA), which is used to establish long-range dependencies across the full sequence.
Moreover, we design a feature pyramid structure to be compatible with action instances of various
durations. GLFormer achieves state-of-the-art performance on two challenging video benchmarks,
THUMOS14 and ActivityNet 1.3. Our performance is 67.2% and 54.5% AP@0.5 on the datasets
THUMOS14 and ActivityNet 1.3, respectively.

Keywords: temporal action detection; computer vision; deep learning; artificial intelligence

1. Introduction

In recent years, with the popularization of multimedia devices and the rapid develop-
ment of the Internet, a dramatically increasing number of videos are produced every day,
and relying on people to analyze videos has been far from meeting the actual needs. As a
fundamental component of video content analysis technology, temporal action detection
(TAD) has attracted more and more interest from industry and academia. The TAD task
aims to predict the start/end boundaries and action categories for action instances as accu-
rately as possible in the untrimmed video. TAD is mainly for public areas such as security
surveillance, precision medicine, and intelligent manufacturing. It needs to collect a large
amount of video data; a distributed storage platform that can detect copyright infringement
is particularly important. In addition, there is still the threat of the raw video being forged
and tampered with. One can refer to the content in [1,2] for further information.

As we all know, image classification and object detection have achieved impressive
performance. Most of the previous works were inspired by object detection due to its macro-
scopic similarity to the temporal action detection task. Notable studies predominantly fall
into three paradigms. First is the temporal convolution paradigm, whose representative
works include SSAD [3], R-C3D [4], MGG [5], and A2net [6], stacking multiple 1D convolu-
tions with a fixed kernel size to extract feature information. Another thread of work, such
as [7–9], is tackling the TAD task in the form of evaluating frame-level action probabilities
and combining consecutive frames through the watershed algorithm to generate proposals.
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The third is a boundary-sensitive network, such as BSN [10] and BMN [11]. For each
temporal location, predict the probabilities of whether it belongs to boundaries or ac-
tionness, then proposals are generated based on boundary probabilities. However, these
approaches fall into a local trap; each temporal location is calculated independently as an
isolated point, resulting in a lack of contextual connection and sensitivity to noise.

To solve the island problem, several works have attempted to establish long-range
dependencies. PGCN [12] proposed exploiting the relations between proposals using
graph convolution. BSN++ [13] optimizes the method that generated proposals only
based on boundary probabilities, which designs a proposal relation block to explore the
proposal–proposal relations. These methods belong to the local-then-global strategy, whose
video-level prediction is achieved by following a post-processing step after the frame-level
processing results. However, these works ignore the fact that the internal features of an
action instance belong to a whole. Thus, this two-stage processing strategy will fragment
the integrity. Inspired by Transformer’s success in NLP [14] and object detection [15],
several recent works attempted to adopt the Transformer architecture to establish long-
range dependencies, such as TadTR [16], RTD-Net [17], and ActionFormer [18].

We observed that action instances with various durations are randomly distributed in
the original video. Therefore, if the Transformer structure is directly applied, there will be
noise and multi-scale problems. To address these issues, we present the global and local
context aggregation network (GLFormer). Compared with the other visual Transformer
methods, we make three significant improvements to adapt to the TAD task. Firstly,
to alleviate the noise issues while avoiding attention distraction caused by excessively
long temporal ranges, we replace the original self-attention of Transformer with window
self-attention. However, we are convinced that long-range dependencies are crucial for
generating proposals. Thus, in order to exploit its advantages, the local self-attention
module is followed by a lightweight global attention module as another branch. Lastly,
to tackle the temporal multi-scale problem, we propose a parallel branch structure, adding
a multi-scale local context module, which is parallel to the window self-attention module.
Furthermore, the temporal feature pyramid is constructed by the temporal downsampling
operation, and each level is regarded as a stage. The structure we design takes into account
multi-scale local context, long-range dependencies, and global information, all of which
complement each other. We conduct extensive ablation experiments on the THUMOS14 [19]
and ActivityNet 1.3 [20] datasets to verify the effectiveness of our work. In summary, our
main contributions are three-fold:

• We design a tandem structure with window self-attention followed by a lightweight
global attention module, which can not only establish long-range dependencies,
but also effectively avoid the introduction of noise.

• We add a multi-scale local context branch parallel to the window self-attention, form-
ing a dual-branch structure. This stems from our desire to simultaneously take into
account local context, long-range dependencies, and global information, which can
help adaptively capture temporal context for temporal action detection.

• We design a feature pyramid structure to be compatible with action instances of
various durations. Moreover, our network enables end-to-end training and achieves
state-of-the-art performance on two representative large-scale human activity datasets,
namely THUMOS14 and ActivityNet 1.3.

2. Related Work
2.1. Action Recognition

Like image recognition in the field of image analysis, as a fundamental task in video
understanding areas, action recognition has been extensively investigated in recent years.
Traditional methods such as MBH [21], HOF [22], and HOG [23] rely heavily on hand-
designed ways to extract features. Inspired by the vast success of convolutional neural
networks in the image domain, the current mainstream contains two categories: (a) The
first is two-stream networks [24], which take RGB and optical flow as the input. The spatial
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stream captures the appearance features from the RGB image, while the temporal stream
learns the motion information from dense optical flow. (b) The C3D network [25] obtains
spatial–temporal feature information directly from the input video. A pre-trained action
recognition model is usually used as a feature extractor for TAD tasks. By convention, we
adopt I3D [26] pre-trained on the Kinetics-400 [27] dataset to generate the feature sequence
as the input for our model.

2.2. Temporal Action Localization

Recent approaches in this task can be roughly divided into three categories: (1) The first
is local-then-proposal; these methods, such as TAG [8], BSN [10], and R-C3D [4], first extract
frame-level or snippet-level features and then generate proposals via action/boundary
probabilities or the distance from the boundary. (2) Next is proposal-and-proposal; pro-
cessing each proposal individually ignores the semantic relationship between proposals.
PGCN [12] constructs a graph of proposals to explore the proposal–proposal relations.
Complex videos may include overlapping, irregular, or non-sequential instances. AGT [28]
proposes a novel Graph Transformer method to model the non-linear temporal structure
using graph self-attention mechanisms. (3) The third is global-then-proposal, utilizing
the global context in the sequence task. RTD-Net [17] and ActionFormer [18] adopt the
Transformer structure, which helps to establish long-range dependencies. A summary of
some recent work is shown in Table 1.

Table 1. Summary of some representative temporal action detection methods.

Characteristic Ref. Year mAP@0.5 Advantages Limitations

RC3D [4] ICCV-2017 28.9 The method adopts the 3D fully convolutional
network and proposalwise pooling to predict
the class confidence and boundary offset for
each pre-specified anchor. These methods require

pre-defined anchors,
which are inflexible for
action instances with
varying durations.

Anchor-Based
TALNet [29] CVPR-2018 42.8 The method proposes dilated convolutions and

a multi-tower network to align receptive fields.
GTAN [30] CVPR-2019 38.8 The method learns a set of Gaussian kernels to

dynamically predict the duration of the
candidate proposal.

PBRNet [31] AAAI-2020 51.3 The method uses three cascaded modules to
refine the anchor boundary.

BSN [10] ECCV-2018 36.9 The method predicts the probability of the
start/end/action for each temporal location
and then pairs the locations with higher scores
to generate proposals.

Bottom-up

BMN [11] ICCV-2019 38.8 The method proposes an end-to-end framework
to predict the candidate proposal and category
scores simultaneously.

These methods utilize
the boundary probability
to estimate the proposal
quality, which are
sensitive to noise and
prone to local traps.

BUTAL [32] ECCV-2020 45.4 The method uses the potential relationship
between boundary actionness and boundary
probabilities to refine the start and end
positions of action instances.

BSN++ [13] AAAI-2021 41.3 The method exploits proposal–proposal
relation modeling and a novel boundary
regressor to improve boundary precision.

MGG [5] CVPR-2019 37.4 The method combines two complementary
generators with different granularities to
generate proposals from fine (frame) and coarse
(instance) perspectives, respectively.

These methods directly
localize action instances
without predefined
anchors, thus lacking the
guidance of prior
knowledge, resulting in
easily missed action
instances.

Anchor-Free A2Net [6] TIP-20 45.5 This method combines the anchor-free and
anchor-based methods.

AFSD [33] CVPR-2021 55.5 The method uses contrastive learning and
boundary pooling to refine candidate proposals’
boundary.

Actionr [18] 2022 65.6 This method introduces Transformer as the
feature encoder.
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2.3. Vision Transformer

Transformer was originally developed by [14] in the machine translation task. The core
of Transformer is the self-attention architecture, which can transform one sequence into
another sequence. Specifically, the output is computed as the weighted sum of the input
features, where the weight is computed by a dot product at each temporal location. There-
fore, Transformer can establish long-range dependencies. Recurrent neural networks such
as RNN [34], LSTM [35], and GRU [36] have natural advantages in sequence modeling.
However, in recent years, they have been gradually replaced by Transformers in many
sequential tasks. Transformers have three key advantages: (1) the design of the parallel
computing architecture breaks through the inherent serial properties of RNN models; (2) in
the self-attention structure, the distance between any two temporal locations is one, which
enables the model to remember longer-range dependencies’ information; (3) compared
with the convolutional neural network (CNN), the Transformer model has a stronger inter-
pretability. We only use the encoder part of the original Transformer on videos to explore
the long-range dependencies.

3. Approach
3.1. Overall Architecture

An overview of our method is depicted in Figure 1. Our method consists of a stack of
L = 6 stages, with the temporal length halved except for the first stage, thereby generating
a temporal feature pyramid structure. All stages have an identical structure, which is
used to aggregate multi-range context features. Moreover, every stage includes three
modules: multi-scale local convolution (MLC), window self-attention (WSA), and global
attention (GA).

3.2. Window Self-Attention

Unlike the traditional way of directly using X = {X1, X2, X3, · · · , XT} as the input, we
first use a 1D convolutional network to convert the dimension of the input X ∈ RT×C

into the dimension we need RT×C −→ RT×D, where T denotes the temporal length and
C and D represent the channel dimensions. This operation also contributes to the sta-

bility of the training process [37], represented as X = {X1, X2, X3, · · · , XT}
Conv1D
=⇒ Z =

{Z1, Z2, Z3, · · · , ZT}.
The core part in the Transformer [14] network is the self-attention. We inserted a

normalization block (Pre-LN [38]) before the self-attention block to remove the learning
rate warm-up stage. In order to perform the attention function, the traditional way uses
linear projection to generate values (V), queries (Q), and keys (k).These projections are
parameter matrices with parameters WQ ∈ RD×dq , WK ∈ RD×dk , WV ∈ RD×dv , used to
learn linear projections of features Z ∈ RT×D to Q ∈ RT×dq , K ∈ RT×dk , V ∈ RT×dv , where
dq, dk, dv denote the channel dimensions. However, we found that it was beneficial to
replace with 1D depthwise convolution (DC), which was implemented by using a layer
1D group convolution with a kernel size of 3 and group numbers the same as the channel
dimension. A main advantage of the self-attention block is the ability to capture global-
range dependencies across the full sequence. However, this advantage comes at the cost of
introducing noise and increasing computation when the temporal length exceeds a certain
range. Inspired by the local self-attention from Longformer [39] and Actionformer [18], we
adopted the window self-attention mechanism to get rid of the impact of a long sequence.
For features at location i ∈ [1, T], we call it a token. This gives a sequence of arbitrary length,
and our window self-attention pattern uses a fixed-range attention around each token.
For a specified window size ω, we evenly divided the input sequence into T/ω attention
chunks. A chunk is denoted as Φi = {φi, ϕi, ψi}, i ∈ [1, T/ω], where φi ϕi and ψi are keys
(Ki), queries (Qi), and values (Vi) of the feature sequence separately. For a chunk region
Ψi ∈ [ts, te], we denote its region RK = [ts, te], RQ = [ts −ω, te + ω], RV = [ts −ω, te + ω]
separately, where ω = te − ts (see Figure 2). In this way, the range of attention is limited
within a chunk. At stage j ∈ [1, L], the range of attention is j× ω. Stacking multiple window
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self-attention layers naturally integrates short-, medium-, and long-range features, which is
beneficial to multi-scale prediction. V, Q, and K are computed as

Q = Dw_Conv1D(Z), group = in_channel, k = 3 (1)

V = Dw_Conv1D(Z), group = in_channel, k = 3 (2)

K = Dw_Conv1D(Z), group = in_channel, k = 3 (3)
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Figure 1. Overview architecture of GLFormer. We first utilize a feature extraction network to encode
the raw video into clip features X ∈ RC×T , where C and T represent the channel dimension and tem-
poral length, respectively. Our model consists of four unique designs: a multi-scale local convolution
(MLC) module for capturing the multi-scale context information, a window self-attention (WSA)
module for exploring the relationship between features within the window range, a global attention
(GA) module for establishing long-range dependencies across the full sequence, and a temporal
feature pyramid module compatible with action instances of various durations. Finally, the model
outputs the predicted action category and boundary regression results to produce proposals.

We used projection Q and K-V pairs to compute the window attention of each chunk,
and the weight assigned to V ∈ R3ω×dv is computed by matrix multiplication QK>, where
K> represents the transpose of K, Q ∈ Rω×dq , K ∈ R3ω×dk . The attention of the full
sequence is obtained via the temporal sliding window approach with window size 3ω and
stride ω. The result of window self-attention is calculated as a weighted sum of V:

H = Attention(Q, K, V) = [So f tmax(
QiKi

>√
dq

)Vi]
T/ω
1 , H ∈ RT×D (4)



Appl. Sci. 2022, 12, 8557 6 of 16

In order to avoid the problem of gradient disappearance due to the dot product grow-
ing large in magnitude, we scaled the dot product S by 1/

√
dq. Similar to Transformer’s

multi-head attention, we used h = 4 parallel attention heads [H1, H2, H3, H4], where the
dimension of each head is dq = dk = dv = D/h = 256.

YW = MultiHead(Q, K, V) = Concat(H1, H2, H3, H4), YW ∈ RT×D (5)

3.3. Global Attention

In the actual processing, a fundamental problem for the window self-attention method
is how to set the window size. If it is too long, it goes against the original intention of the
design. On the contrary, it may not cover the full context of the longer action instance,
resulting in insufficient information. Inspired by Transformer [14] and non_local [40], the
window self-attention module is followed by a lightweight global attention module. We
define the operation in our network as:

YG = [
1

N (YWi)
∑
∀j
F (θ(YWi), φ(YWi))H(YWi)]

T
1 , 1 ≤ i, j ≤ T, YW ∈ RT×D (6)

where

θ(YWi) = Conv1D(YWi), φ(YWj) = Conv1D(YWj), H(YWj) = Conv1D(YWj) (7)

The linear projection functions θ, φ, and H are implemented in three independent
layers of 1D convolutions with kernel size 1. where i ∈ [1, T], j ∈ [1, T]. The pairwise
function F is utilized to calculate the dot product between arbitrary feature vectors, which
represent the similarity relationship. This similarity score is normalized by N (YWi) =
∑∀jF (θ(YWj)), φ(YWj), used to prevent the dot product from becoming too large.

SoftMax

V

ω

Q

K

3ω

3ω

Window Self-Attention

Figure 2. Visualization of window self-attention process. For a chunk region Ψi ∈ [ts, te], we denote
its region RQ = [ts, te], RK = [ts −ω, te + ω], RV = [ts −ω, te + ω].
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3.4. Multi-Scale Local Convolution

The Transformer structure is mainly used to establish long-range dependencies,
and capturing local context is its shortcoming. However, the convolutional neural network
(CNN) is adept at capturing local features, and combining convolution kernels of various
sizes can simultaneously extract multi-scale local features. Based on this concept, we pro-
pose a multi-scale local convolution (MLC) module parallel with the window self-attention
module to capture multi-scale local context information. MLC consists of multiple inde-
pendent 1D convolutions with different kernel sizes, the kernel size with a typical choice
d1 < · · · < dn, which defines increasingly larger receptive fields. Figure 1 shows a sketch
of MLC. As seen, MLC is composed of five different 1D convolutions, and the size of the
kernels ranges between d, d ∈ {1, 3, 5, 7, 11}. The feature maps {Mk}5

k=1 are directly con-
catenated into a dense aggregated intermediate feature map [M1, M2, M3, M4, M5]. The five
features have the same dimension. Then, we used the max pooling operation along the
temporal dimension to generate multi-scale local contextual features YM ∈ RT×D.

3.5. Temporal Feature Pyramid

Inspired by resnet [41] and FPN [42], we designed a temporal feature pyramid by
stacking multiple pyramid levels to enhance the expressiveness of the network. Specifically,
we applied a temporal downsampling operation at each pyramid level to accommodate
action instances with various durations, where the downsampling rate is between d,
d ∈ {1, 2, 2, 2, 2, 2}. Each pyramid level consists of MLC, WSA, and GA modules, and the
output of each module is independent. Therefore, the network has the ability to capture
local, window, and global range features simultaneously. In order to aggregate these
features, a MAX operator is adopted along the temporal dimension, which is used to filter
out the strongest features. The aggregation strategy can be expressed as

Sτ = YWτ ‖ YGτ ‖ YMτ , τ = 1, 2, 3, · · · , L (8)

S̃τ = MAX(Sτ
), τ = 1, 2, 3, · · · , L (9)

Sτ = ↓
(

S̃τ

)
, τ = 2, 3, · · · , L, Sτ ∈ RT/2(τ−1)×D (10)

where ‖ denotes the concatenation operation, τ represents the pyramid level, and ↓ repre-
sents the downsampling operation, which is implemented with a 1D convolution with a
stride of 2. Finally, we combined the results of all stages and obtained the temporal feature
pyramid set S = {S1, S2, · · · , S6}. We designed two lightweight prediction branches with
the same structure, but independent of each other, for action classification and boundary
regression, respectively. This structure consists of three layers of 1D convolution with a
kernel size of 3. We considered every location i ∈ [1, T] in the sequence as an action instance
candidate. For the classification branch, a sigmoid function was followed to predict the
probability Ci

t of action categories. Similar to the regression branch, in order to ensure that
the distance (ds

t , de
t ) to the left and right boundary is a positive number, a Relu activation

function is attached at the end.

4. Training and Inference
4.1. Loss Function

The output of our network includes the start/end boundary (ds
t , de

t) and class proba-
bility Ct, and we used the following loss function to optimize the model:

L = Lcls + λLreg (11)

where λ is a hyper-parameter, used to adjust the weight of the classification and regression
losses, and we treated these two losses equally and set λ = 1. Our classification loss uses the
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focal loss [43] function, which can effectively solve the problem of the imbalance between
the foreground and background

Lcls =
1
Tj

Tj

∑
t=0

N

∑
i=0
−αi

t

(
1− pi

t

)γ
log
(

pi
t

)
(12)

where

pi
t =

{
Ci

t if yi
t = 1, i = 0, 1, 2, · · · , N

1− Ci
t otherwise, i = 0, 1, 2, · · · , N

(13)

αi
t =

{
α if yi

t = 1, i = 0, 1, 2, · · · , N
1− α otherwise, i = 0, 1, 2, · · · , N

(14)

In the above, class label yt ∈ RN , yi
t ∈ {0, 1}, indicates whether the temporal location

t ∈ [1, T] belongs to action (yi
t = 1) or background (yt = {0}N

i=0), the predicted classification
score Ct = {C1

t , C2
t , · · · , CN

t }. Tj is the length of the full sequence in the j-th stage, and N
represents the total number of action categories. α and γ are hyper-parameters, which
are specified as 0.25 and 2 in the experiments. Lreg is the intersection over union (IOU)
loss [44] between predicted boundaries Ω̂t =

(
θ̂t, ξ̂t

)
and the corresponding ground truth

Ωt = (θt, ξt):

Lreg =
1

Tp
∑

t
I(yt ≥ 1)

(
1− |Ω̂t ∩Ωt|
|Ω̂t ∪Ωt|

)
(15)

where Tp represents the total number of positive samples. The function I is used to indicate
that the location t ∈ [1, T] is inside (I = 1) or outside (I = 0) an action instance.

4.2. Inference

During inference, we fed the feature sequences into the network and obtain the
predictions Aj

t = (Ci
t, ds

t , de
t)

L
0 for every temporal location t across all pyramid levels, where i

∈ RN and j ∈ RL represent the action category and pyramid level, respectively. For the t-th
temporal location in the j-th level, the predicted action instance is represented by

Ci
t = arg max Ct, st = t− ds

t , st = t + de
t (16)

where st and et are the left and right offsets of an action instance and Ci
t represents the

category of the action instance. Finally, the predicted results from all locations are merged,
and we performed Soft-NMS [45] and obtained the final outputs.

5. Experiments
5.1. Datasets and Settings

We evaluated our model on two widely used large-scale datasets, THUMOS14 [19]
and ActivityNet 1.3 [20]. THUMOS14 contains 20 sport categories and consist of three
parts: training, validation, and testing sets. Among all the videos, the training set with no
temporal annotations was used for action recognition. Following previous research [3,6,12],
we trained our model on the validation set including 213 untrimmed videos and evaluated
the performance on the test set including 200 untrimmed videos. ActivityNet 1.3 is com-
posed of 19,994 videos, which contain 200 action categories, and the dataset is divided into
training, testing, and validation subsets in a ratio of 2:1:1.

5.2. Evaluation Metrics

To compare with existing methods, we used official evaluation metrics, the mean
average precision (mAP) at different temporal intersection over unions (tIoUs) and the
average mAP to evaluate the performance on the two datasets. On THUMOS14, the tIoU
thresholds were chosen from [0.3:0.1:0.7], which focuses on the performance of mAP@0.5.
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On Activitynet v1.3, the tIoU thresholds were selected from 0.5, 0.75, 0.95, which pays
more attention to the results of mAP@avg [0.5:0.1:0.95]. Each video in THUMOS14 contains
more than 15 short-duration action instances, and each video in Activitynet v1.3 contains
an average of 1.7 long-duration action instances. Thus, the two datasets use different
evaluation metrics.

5.3. Implementation Details

THUMOS14: In order to extract spatial–temporal features from THUMOS14, we used
a two-stream inflated 3D ConvNet (I3D) [26] module pre-trained on the Kinetics-400 [27]
dataset. We sampled 16 consecutive RGB and optical-flow with an overlap rate of 75%
as clips, which were respectively input to the I3D network, and extracted features of
dimension 512 × 2 at the first fully connected layer. Then, the output features of the two-
stream network were concatenated to obtain the input features of our model. According
to the evaluation method, the mean average precision (mAP) with an IoU threshold {0.3,
0.4, 0.5, 0.6, 0.7} was the evaluation metric used on THUMOS-14. We used Adam [46] to
optimize the network and set the batch size, initial learning rate, and total epoch number
as 2, 10−4, and 50, respectively.

ActivityNet 1.3: We adopted an R(2+1)D model to extract features from ActivityNet
1.3 pre-trained on the TSP [47] dataset. We sampled 16 consecutive frames with a stride of
16 as clips (i.e., non-overlapping clips). Following [10,18], the length of the sequence was
rescaled into a fixed length of 128 using linear interpolation. According to the evaluation
method, a mAP with IoU threshold {0.5, 0.75, 0.95} and an average mAP [0.5:0.05:0.95] were
the evaluation metrics used on ActivityNet 1.3. We used Adam to optimize the network
and set the batch size, initial learning rate, and total epoch number as 16, 10−3, and 15,
respectively.

Our method was implemented based on PyTorch 1.1, Python 3.8, and CUDA 11.6. We
conducted experiments with one NVIDIA GeForce RTX 3090 GPU, Intel i5-10400 CPU, and
128 G memory.

5.4. Comparison with State-of-the-Art Methods

THUMOS14: We compared our model with several recent state-of-the-art methods
including one-stage, two-stage, and Transformer models on the THUMOS14 dataset. Table 2
summarizes the performance. It can be seen intuitively that our model outperformed all
previous methods, establishing the new state-of-the-art of 67.2% mAP@0.5 on THUMOS14.
In particular, our model achieved an improvement of 11.7% (from 55.5% to 67.2%) on
mAP@0.5 and 10.9% (from 52.0% to 62.9%) on the average mAP ([0.3:0.1:0.7]) compared with
AFSD [33], which is currently the best-performing one-stage detector. We outperformed
MUSES [48], which is the strongest two-stage competitor by 10.3% (from 56.9% to 67.2%)
on mAP@0.5 and 9.5% on the average mAP (from 53.4% to 62.9%). Moreover, our model
achieved up to 1.6% (from 65.6% to 67.2%) on mAP@0.5 and 0.3% (from 62.6% to 62.9%)
on the average mAP over the Transformer method [16], which is the current state-of-the-
art method in TAD tasks. The excellent performance proved that for TAD, simultaneous
modeling of local multi-scale features and long-range temporal dependencies can effectively
improve its performance.

ActivityNet 1.3: The performances on the ActivityNet 1.3 dataset are shown in Table 3.
On the average mAP, GLFormer reached an mAP of 36.3%, which is 0.7% higher than
the current state-of-the-art of 35.6% by ActionFormer [18]. Our method achieved 37.7%
mAP@0.75, outperforming all previous methods by at least 1.5%. GLFormer achieved 54.5%
mAP@0.5, but did not perform as well as the previous method ContextLoc [49] (54.5%
vs. 56.0%), but outperformed it on other evaluation metrics. Our method achieved 7.6%
mAP@0.95 and had no advantage over other methods. Considering that the evaluation
index mAP@avg is the average result of multiple tight tIoUs (such as tIoU = 0.95), it requires
higher accuracy, so the performance of 36.3% is also commendable. This demonstrates the
effectiveness and generalizability of fusing multi-scale context and long-range features.
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Table 2. Comparison with the state-of-the-art (THUMOS14), measured by the mAP at different tIoU
thresholds and the average mAP in {0.3, 0.4, 0.5,0.6,0.7}; the best results are in bold.

Method Year Backbone mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@avg

SCNN [50] CVPR16 C3D 36.3 28.7 19.0 10.3 5.3 19.9
RC3D [2] ICCV17 C3D 44.8 35.6 28.9 - - -
SSAD [3] ACM17 TSN 43.0 35.0 24.6 - - -

TALNet [29] CVPR18 I3D 53.2 48.5 42.8 33.8 20.8 39.8
BSN [10] ECCV18 TSN 53.5 45.0 36.9 28.4 20.0 36.8
MGG [5] CVPR19 I3D 53.9 46.8 37.4 29.5 21.3 37.8

PGCN [12] ICCV19 I3D 60.1 54.3 45.5 33.5 19.8 42.6
BMN [11] ICCV19 TSN 56.0 47.4 38.8 29.7 20.5 36.8
A2Net [6] TIP20 I3D 58.6 54.1 45.5 32.5 17.2 41.6
GTAD [51] CVPR20 TSN 54.5 47.6 40.2 30.8 23.4 39.3

BCGNN [52] ECCV20 TSN 57.1 49.1 40.4 31.2 23.1 40.2
CSA [53] ICCV21 TSN 64.4 58.0 49.2 38.2 27.8 47.5

AFSD [33] CVPR21 I3D 67.3 62.4 55.5 43.7 31.1 52.0
ContextLoc [49] ICCV21 I3D 68.3 63.8 54.3 41.8 26.2 50.9

TBOS [54] CVPR21 C3D 63.2 58.5 54.8 44.3 32.4 50.6
RefactorNet [55] CVPR2022 I3D 70.7 65.4 58.6 47.0 32.1 54.8

ActionFormer [18] 2022 I3D 75.5 72.5 65.6 56.6 42.7 62.6
BCNet [56] AAAI22 I3D 71.5 67.0 60.0 48.9 33.0 56.1
RCL [57] CVPR22 TSN 70.1 62.3 52.9 42.7 30.7 51.7
AES [58] CVPR22 SF R50 69.4 64.3 56.0 46.4 34.9 54.2

GLFormer(Ours) I3D 75.9 72.6 67.2 57.2 41.8 62.9

Table 3. Comparison with the state-of-the-art (ActivityNet 1.3), measured by the mAP at different
tIoU thresholds, as well as the average mAP in [0.5:0.1:0.95]; the best results are in bold.

Method Year mAP@0.5 mAP@0.75 mAP@0.95 mAP@avg

PGCN [12] ICCV19 48.3 33.2 3.3 31.1
BMN [11] ICCV19 50.1 34.8 8.3 33.9

PBRNet [31] AAAI20 54.0 35.0 9.0 35.0
GTAD [51] CVPR20 50.4 34.6 9.0 34.1
AFSD [33] CVPR21 52.4 35.3 6.5 34.4

ContextLoc [49] ICCV21 56.0 35.2 3.6 34.2
MUSES [48] CVPR21 50.0 35.0 6.6 34.0

ActionFormer [18] 2022 53.5 36.2 8.2 35.6
BCNet [56] AAAI22 53.2 36.2 10.6 35.5
RCL [57] CVPR22 51.7 35.3 8.0 34.4
AES [58] CVPR22 50.1 35.8 10.5 35.1

GLFormer(Ours) 54.5 37.7 7.6 36.3

6. Ablation Experiments

Here, in order to validate the various design decisions, we discuss the contributions
from several key modules. All ablation experiments were performed on THUMOS14.

6.1. Effectiveness of WSA Module

By comparing the first and second rows in Table 4, we found it beneficial to replace
the linear projection approach of the traditional Transformer model with a 1D depthwise
convolution to project the queries, keys, and values. The results showed that when using
the 1D depthwise convolution, the mAP at tIoU 0.5 and the average mAP increased by 0.9%
and 0.5%, respectively. This indicates that choosing an appropriate projection approach can
help improve the performance of the TAL task. Observed in the third row, we evaluated
the effect of the choice of the window size on the results. We can find that increasing the
window size from 4 to 9 had an improvement (from 65.7% to 67.2% on mAP@0.5), while
the performance dropped from 67.2% to 65.8% after continuing to increase the window
size to the full sequence. The features located in the deep layers of the network are already
highly abstracted, and simple linear projection may over-reorganize the channel features,
resulting in insufficient feature distinguishability. The 1D group convolution prevents
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the features between groups from interfering with each other, and it learns independent
expression patterns, which is beneficial to enhance the distinguishability of features. Setting
the window size too small will damage the integrity of the information, while setting the
window size too large will distract the attention and introduce irrelevant information.

Table 4. Ablation study on the window size in WSA. We report the mAP at tIoU from 0.3 to 0.7 and
the average mAP in [0.3,0.4,0.5,0.6,0.7] on THUMOS14.

Projection Method Window Size mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@avg

Conv1D 9 75.9 72.6 67.2 57.2 41.8 62.9
linear 9 75.1 71.9 65.5 55.8 43.1 62.3

Conv1D 4 75.6 72.3 65.7 56.6 42.3 62.5
Conv1D 6 76.0 72.8 66.4 56.1 42.2 62.7
Conv1D 12 75.2 72.2 65.5 55.7 42.0 62.2
Conv1D 18 76.1 73.1 66.9 56.6 42.1 62.9
Conv1D full 75.5 72.8 65.8 55.8 42.0 62.4

6.2. Effectiveness of MLC Module

To discuss the effectiveness of the MLC module, we compared two settings: (1) WSA +
GA module; (2) MLC + WSA + GA module. MLC is a multi-branch structure, and each
branch consists of a layer of 1D convolution with different kernel sizes. Table 5 shows the
comparison results on the THUMOS14 test set. It can be seen that MLC + WSA + GA had a
+1.1% mAP@0.5 improvement compared to only using the WSA + GA module, suggesting
that the MLC module can provide complementary information with WSA + GA. As the
number of branches increases, the accuracy further increases, with only a small increase in
the model parameters. However, when using a larger kernel size (k_s = 13), the effectiveness
of MLC seems to become weaker (−1.4% in mAP@0.5). Further expanding the kernel size
(e.g., k_s = 15) leads to greater performance degradation. Multi-scale local features play an
important role in enriching the feature details, but the range of the temporal receptive field
must be controlled within a certain range. Beyond a certain range, the module’s attention
is distracted, not only being unable to capture long-range features, but also unable to focus
on the local context.

Table 5. Ablation study on the kernel size in MLC.
√

indicates whether MLC contains the 1D
convolution with corresponding kernel size or not, respectively.

Method k = 1,3 k = 5,7 k = 9 k = 11 k = 13 k = 15 mAP@0.5 mAP@avg

WSA + GA 65.9 62.0
WSA + GA + MLC

√
66.5 62.9

WSA + GA + MLC
√ √

65.4 62.0
WSA + GA + MLC

√ √ √ √
66.2 62.3

WSA + GA + MLC
√ √ √

65.6 62.0
WSA + GA + MLC

√ √ √
67.2 62.9

WSA + GA + MLC
√ √ √

65.6 62.1
WSA + GA + MLC

√ √ √
65.3 62.2

6.3. Effectiveness of GA Module

We validated the design of the GA module in Figure 1 by comparing three settings:
(1) WSA + MLC module; (2) follow a GA after WSA; (3) follow multiple GAs after WSA.
We compare the performance with or without the GA module in Table 6. The result clearly
shows that with a GA, the performance improves by 1.1% mAP@0.5. This experiment
demonstrated that the GA was beneficial to make the localization precise. However, when
we replaced a single GA module with two or three GAs, the performance dropped by
1.2% and 1.1% mAP@0.5, respectively. Using a GA module can help improve performance,
indicating that only considering local features is not conducive to the model capturing
sufficient features, especially for instances with a long duration. While noise may be



Appl. Sci. 2022, 12, 8557 12 of 16

introduced, the benefits are greater. Stacking more than two GA modules will amplify the
noise in a cumulative manner, negating the benefits of capturing global features.

Table 6. Ablation study of different GA settings on THUMOS14 in terms of mAP(%)@tIoU.

Method mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@avg

WSA + MLC 75.4 72.5 66.1 56.0 42.1 62.4
WSA + MLC + GA 75.9 72.6 67.2 57.2 41.8 62.9

WSA + MLC + 2GA 75.3 72.1 66.0 56.2 43.0 62.5
WSA + MLC + 3GA 75.4 72.5 66.1 56.3 42.8 62.6

6.4. Module Complementarity

In order to study the relationship between the three modules of WSA (medium-range),
MLC (short-range), and GA (long-range), we compared different combinations of these
modules, and the results are presented in Table 7. Just using the WSA module alone,
the performance was 65.8% mAP@0.5, which is the strongest contributor to our model’s
performance. Combined with MLC or GA, the performance improved by 0.3% and 0.1%,
respectively. When we used these three modules together, the result were 67.2% mAP@0.5,
which proves that the three modules have a complementary relationship. The MLC module
is responsible for capturing multi-scale local contextual information. The WSA module
and the following lightweight GA module can not only establish long-range dependencies,
but also effectively avoid introducing noise. The three modules work together to enable
the network to adaptively capture action instances with randomly varying durations.

Table 7. Ablation study of complementarity on THUMOS14 in terms of mAP(%)@tIoU.

Method mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@avg

WSA 75.5 72.4 65.8 56.0 41.4 62.2
WSA + GA 75.4 72.0 65.9 55.3 41.1 62.3

WSA + MLC 75.4 72.5 66.1 56.0 42.1 62.4
WSA + MLC + GA 75.9 72.6 67.2 57.2 41.8 62.9

6.5. Temporal Feature Pyramid

The temporal feature pyramid is used to accommodate action instances with various
durations. In our experiments, different numbers of levels were tried, and the performance
are listed in Table 8. We can observe that the performance became progressively better as
the levels increased, with the six-level pyramid achieving the best result on mAP@0.5 and
the average mAP, while using more levels did not result in better performance; this is due
to more redundant candidates being involved. In Table 8, we also show the effectiveness of
different numbers of channels on the performance. The initial number of channels was set
to 256, and increasing the number of channels to 1024 can help improve the performance
(from 65.0% to 67.2%). However, when continuing to increase the number of channels to
4096, the performance dropped from 67.2% to 65.6%. The number of channels is directly
related to the expressiveness of the network. On the one hand, the low feature dimension
will have difficulty providing sufficient information, making it difficult for the network
to distinguish instances with a high similarity. On the other hand, for high-dimensional
features, performing linear projection operations on highly abstract features not only
increases the computational complexity, but also causes network overfitting.

6.6. Temporal Downsampling Module

For each pyramid level, we used a 1D convolution with a stride of 2 (except for the
first level, which is 1) to reduce the temporal resolution. In addition, we also tried other
downsampling methods, including average pooling and max pooling, and compared their
results with this method. The performance is summarized in Table 9. Among all tempo-
ral downsampling modes, the 1D convolution operation achieved the best performance,
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showing a 1.2% and 0.9% advantage for mAP@0.5 against average pooling and maximum
pooling respectively. For max pooling and avg pooling, the cost of losing some feature in-
formation will be paid when reducing the time series dimension. However, the convolution
with a stride of 2 reduces the dimension while not only retaining the features completely,
but also enhancing the expressiveness of the network.

Table 8. Ablation study of different channel settings on THUMOS14 in terms of mAP(%)@tIoU.

Levels Channels mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@avg GFLOPs

4 1024 74.1 69.7 61.3 50.2 36.5 58.4 37.5
5 1024 74.2 71.2 63.9 53.8 38.8 60.4 38.3
6 1024 75.9 72.6 67.2 57.2 41.8 62.9 38.8
7 1024 75.4 72.0 65.9 55.3 41.9 62.1 39.0
6 256 75.2 72.4 65.0 55.1 42.7 60.1 33.9
6 512 75.1 71.6 65.6 56.1 42.6 62.2 35.2
6 2048 75.7 72.4 66.0 56.1 42.5 62.5 50.2
6 4096 75.1 72.3 65.6 55.0 42.5 62.1 90.2

Table 9. Ablation study of different downsampling operations on THUMOS14 in terms of
mAP(%)@tIoU.

Method mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@avg

Max pooling 75.7 72.3 66.3 57.3 43.1 62.9
Avg pooling 75.5 72.0 66.0 55.6 42.1 62.3

stride = 2 75.9 72.6 67.2 57.2 41.8 62.9

6.7. Visualization Results

We visualize four proposals generated by GLFormer, which include short, medium,
and long action instances, and compare them with the ground truth in Figure 3. These
four action instance samples are from the THUMOS14 dataset. The visualizations indi-
cate that our results match the corresponding ground truth well even for short and long
action instances.

61.4s                           64.2s

61.8s                              64.9s

89.3s                                      94.0s

91.0s                     94.1s

                        GLFormerGround Truth                        

33.6s                           35.0s

33.2s                               35.4s

77.0s                               85.7s

76.8s                               86.0s

Figure 3. Visualization of four proposals generated by GLFormer on the THUMOS14 dataset, which
include short, medium, and long action instances.

7. Conclusions

In this paper, we introduced GLFormer for temporal action detection (TAD). This
network takes advantage of multi-scale 1D convolution, global attention, and window
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self-attention to learn rich contexts for action classification and boundary prediction. Fur-
thermore, taking into account action instances with various durations, an important com-
ponent of our network is the temporal feature pyramid, which is achieved by using a 2×
downsampling between successive stages. The experimental evaluation shows that our
model achieves state-of-the-art performance on the human activity datasets THUMOS14
and ActivityNet 1.3. Overall, this work highlights the importance of aggregating features
with different ranges of attention and shows that window self-attention is an effective
means to model longer-range temporal context in complex activity videos.

Discussion: Although great achievements have been made in temporal action detec-
tion, there still remain many shortcomings that need further improvement: (i) manually
labeling data results in excessive human and material investment, combining supervised
learning with semi-supervised or even unsupervised learning; (ii) exploring effective post-
processing methods to improve boundary positioning accuracy; (iii) the traditional TV-1
algorithm is inefficient and occupies storage space, which is replaced by the deep learning
algorithm to realize the end-to-end processing process; (iv) real-world action instances
are often dynamic and random (exploring effective methods to model nonlinear video
sequence features); (v) adding data preprocessing steps to improve the quality of the raw
data, such as the clutter effect, illumination effect, and complex scenarios.
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