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Abstract: Soil-cement mixtures reinforced with fibres are an alternative method of chemical soil
stabilisation in which the inherent disadvantage of low or no tensile or flexural strength is overcome
by incorporating fibres. These mixtures require a significant amount of time and resources for com-
prehensive laboratory characterisation, because a considerable number of parameters are involved.
Therefore, the implementation of a Machine Learning (ML) approach provides an alternative way
to predict the mechanical properties of soil-cement mixtures reinforced with fibres. In this study,
Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Random Forest (RF), and
Multiple Regression (MR) algorithms were trained for predicting the elastic modulus of soil-cement
mixtures reinforced with fibres. For ML algorithms training, a dataset of 121 records was used,
comprising 16 properties of the composite material (soil, binder, and fibres). ANN and RF showed a
promising determination coefficient (R2 ≥ 0.93) on elastic modulus prediction. Moreover, the results
of the proposed models are consistent with the findings that the fibre and binder content have a
significant effect on the elastic modulus.

Keywords: soil-cement mixtures; reinforced soil; fibres; machine learning; elastic modulus

1. Introduction

Soils are the most required resource for construction purposes either for buildings or
for roads. Some soils are naturally suitable for construction purposes, others are not. The
soils that are not suitable for construction are referred to as problematic soils, as described
in Patel [1] and Chijioke and Nwonu [2]. Examples of problematic soils include expansive
soils, which are commonly observed due to their worldwide occurrence except in the
Artic region [1,3], loess or sandy soils, etc. These soils usually exhibit low shear strength,
high compressibility, high susceptibility to volume changes, and sensitivity to moisture
content [2,4]. Therefore, there is a need to improve the natural properties of such soils for
construction purposes in a process called soil stabilisation. This can be achieved through
physical or chemical soil stabilisation methods. Physical soil stabilisation methods include
compaction, consolidation, mixing soils of different grain size to obtain a well-graded soil
for construction purposes, and finally removal of existing soil and replacing it with a natural
soil deposit suitable for construction [1,5,6]. Soil chemical stabilisation methods have been
used in recent decades [4,7–11] to improve slopes, foundation structures, increase slope
stability, prevent liquefaction, and stabilise contaminated soils, among others [9,12,13].

The major disadvantage of using a chemical soil stabilisation method is the low or no
tensile or flexural strength of the stabilised soil when required to accommodate horizontal
vibrations or horizontal displacements, from earthquakes, heavy machinery, traffic, wind,
ocean waves, and explosives [4,9]. Therefore, an alternative method has been developed, in
which short fibres are introduced into soil–binder mixtures to improve flexural and tensile
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behavior, independent of other mechanical properties such as the elastic modulus (Eu.50)
and compressive strength of the soil [9,14,15].

The effective use of short fibres in soil–binder–water mixtures has been extensively
studied by different authors, especially based on unconfined compressive strength (UCS)
and indirect tensile strength (ITS) tests [4,8,9,14,16,17].

The findings demonstrate how inclusion of short fibres changes with the type of soil,
the type and content of fibres, the amount of binder, and the test mechanism used [4,9,14,18].
Khattak and Alrashidi [19] found that the UCS, ITS and Eu.50 values of soil–cement–fibre
mixtures normally either remained the same or were higher than those of soil-cement
mixtures. Fatahi et al. [20] indicated that the addition of fibres increases the residual
strength and converts the brittle behavior of the soft clay treated with cement into a
ductile material.

Jurowski and Grzeszczyk [21], Correia et al. [9], Neville [22], Bahr et al. [23], and
Reinhold [24] pointed out, however, that compressive strength is related to the value of
Eu.50, where Eu.50 increases with the progress of hydration, curing time, clay content, cement
dosage, and fibre content. Jurowski and Grzeszczyk [21] show this through experimental
equations of compressive strength and elastic modulus, Eu.50.

Thanks to this knowledge and understanding, it becomes clear that the compres-
sive strength and Eu.50 are intimately linked. Moreover, an increase in Eu.50 is directly
proportional to the compressive strength.

Several factors are considered when conducting experiments to evaluate the mechani-
cal properties of soil–cement–fibre mixtures. Cost, time, and most important, the ability to
reproduce actual field conditions [4], are some of the factors. Thus, the use of prediction
tools will go a long way to solve experimental problems such as cost and time. Moreover,
this is especially helpful in predicting the mechanical properties of soil-cement mixtures
reinforced with fibres during the design phase.

To this end, a data-oriented approach was used in this work to investigate the capa-
bilities of four Machine Learning (ML) algorithms to predict the mechanical properties of
soil–cement–fibre mixtures, particularly the elastic modulus, Eu.50: namely, Artificial Neu-
ral Networks (ANNs) of type Multilayer Perceptron (MLP) [25], Support Vector Machines
(SVMs) [26] and Random Forest (RF) [27]. Multiple Regression (MR) has been used as the
basis of comparison for the ML algorithms above. Therefore, such advanced algorithms
are extensively used in diverse areas of learning [28,29] with very encouraging results
by leveraging on consolidated experience. In engineering, these tools have been used
successfully to solve complicated geotechnical problems associated with slope stability and
mechanical properties of soil-cement mixtures [30–35].

Given the prior application to UCS and ITS of unreinforced and fibre-reinforced soil-
cement mixtures [4,35,36], the emphasis and main originality of this work is to predict
the elastic modulus (Eu.50) of soil-cement mixtures reinforced with short fibres using
ML algorithms. The elastic modulus or Young’s modulus of soil-cement mixtures is
usually defined as the undrained Young’s modulus evaluated for 50% of the unconfined
compressive strength (UCS), Eu.50.

2. Methodology
2.1. Modeling

In this work, the prediction of the elastic modulus (Eu.50) was based on a data-driven
approach. The ML algorithms (ANN) [4,25], (SVM) [4,26], (RF) [4,27] and (MR) [4,28] were
used for the study. The prediction of Eu.50 using the above ML algorithms was based on the
database acquired from the sets of experiments on soil-cement mixtures reinforced with
fibres. The ML algorithms adopted the cross-validation approach (k-fold = 10) under a
5-run [37,38]. Here, k-fold validation evaluates the data across the entire training set, by
dividing the training set into k-folds and then training the model k times, with every time
leaving behind a different fold out of the training data and using it as a validation set [4].
Finally, the performance metrics are averaged over all the k-tests. Likewise, after acquiring
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the best parameters, the model is retrained on the full data. The ANN model adopted a
single hidden node with a logistic function as indicated in Figure 1. All models were tested
on the same data set.
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For a more comprehensive understanding of ML algorithms, interested parties need
to read the sources in the references above. Below is an overview of the hyperparameters
of the algorithms used, Figure 1.

For this data-driven approach, the R statistical environment was used exclusively [39]
and supported by the use of the Rminer package [40], which allows the execution of various
data mining (DM) algorithms, including the ANN, SVM, and RF algorithms. Thanks to the
Rminer package, cross-validation was also used in this work for the validation process.

2.2. Data Evaluation

A key problem with ML algorithms is their complexity. Thus, according to different
proposals, an algorithm is assessed based on three criteria, namely accuracy, computational
efficiency, and interpretability. To ensure accuracy, metrics such as the Mean Absolute Error
(MAE), the Root Mean Square Error (RMSE), and the determination Coefficient (R2) are
considered [37,38]. For both the MAE and the RMSE, the smaller or closer they are to zero,
the better the accuracy of the predictive model. In the case of R2, the closer it is to one, the
better the accuracy of the model. The MAE, RMSE and R2 are calculated as follows:

MAE =
1
n ∑n

i=1 |yi − xi|, (1)

RMSE =

√
∑n

i=1
(yi − xi)

2

n
, (2)

R2 = 1− SSR
SST

, (3)

where yi and xi are the predicted and observed values, respectively, whereas n denotes the
total number of data points. SSR is the sum of squared regression, while SST is the total
sum of squares.
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Moreover, Bi and Bennett [41] introduced the regression error characteristic curve
(REC), which is used here to represent the errors of the ML algorithms. The REC curve
plots the error tolerance on the x-axis against the percentage of points predicted within the
tolerance on the y-axis. The error on the x-axis can be defined as the absolute deviation. The
REC for a perfect model is one, which is located at the top-left corner. The area above the
curve represents a global error measure, which should be small as possible. Accordingly,
this plot provides for a quick and easy comparison of the different regression models.

Computational efficiency also refers to the estimated time it takes to execute an algo-
rithm. Here, the four ML algorithms were observed according to computational efficiency.

Next, the interpretability of an algorithm is another important criterion. In this
work, interpretability is based on the sensitivity analysis of the four ML algorithms. As
part of the data-driven approach, the sensitivity analyses were recorded in the form of
a global sensitivity response (GSA) after training the model. The GSA response is then
used to determine the relative importance of the input variables in relation to the output
variable Eu.50.

2.3. Experiment and Data

The soils used for the preparation of the laboratory samples were natural soils collected
from the lower valley of the Mondego River and from a gravel and silt pit, ranging from
cohesive to cohesionless soils, from organic to inorganic soils, and having different geotech-
nical properties. In all cases, the soils were chemically stabilised with Portland cement, the
most used binder for soil stabilisation [42], which was used in varying amounts from 75 to
500 kg/m3. Four fibres were selected for the laboratory experiments. The idea behind this
selection is to integrate all the types of fibres usually employed in soil stabilisation. These
are one natural fibre (Sisal) and three artificial fibres. The others, a synthetic (Polypropylene)
and two metallic fibres (Dramix and Wiremix, varying the anchoring conditions of the
fibres), which are characterised by different mechanical properties, namely stiffness and
tensile strength. The length of the fibres varied from 12 to 30 mm, and they were used in
different amounts from 2 to 150 kg/m3. A detailed description of all materials can be found
in [9,17,43].

In the case of the models, training and testing were performed on a dataset comprising
121 records for the Young’s modulus (Eu.50) studies. The samples were prepared in a
controlled environment within a laboratory testing program developed at the University
of Coimbra. The objective of this program was to characterise the mechanical property
Young’s modulus (Eu.50) of soil–binder–water mixtures reinforced with fibres through
unconfined compressive strength tests. The parameters considered in the study were soil
properties (grain size composition, organic matter content, water content, Atterberg limits),
binder content, curing time, and fibre properties (changing origin, length, fibre content,
mechanical properties [9,14,18]).

A set of 16 variables were selected as input variables to train the algorithms. Of all the
variables available in the study, these 16 features are considered to influence the behavior
of mechanical properties, as can be seen in the literatures [35,44,45]. Moreover, they were
also seen as pertinent by [4] in the UCS and ITS studies. The following are the 16 input
variables and statistics (Table 1) for all variables in this study. Figure 2 shows the matrix
scatter plots for each variable predicting the elastic modulus.

The Pearson correlation above the diagonal examines the linear relationship between
two continuous variables. The correlation coefficient ranges from −1 to +1, and the larger
the absolute value the stronger the relationship between the variables. A positive and
negative value indicates a positive and negative slope, respectively. A perfect linear
relationship corresponds to an absolute value of 1, and a correlation of 0 indicates no linear
relationship between variables.
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Table 1. The statistics for all input and output variables considered in this study.

Variable Minimum Maximum Mean Std. Deviation

%Sand 14.00 100.00 36.41 33.23
%Silt 0.00 61.00 45.49 23.56

%Clay 0.00 25.00 18.10 10.09
%OM 0.00 13.05 8.01 5.12
WLL 0.00 80.00 54.68 32.10
WPL 0.00 48.80 32.97 19.13
W0 14.20 113.00 67.05 27.41
aw 7.52 73.98 25.91 22.03

Dkg/m3 75.00 500.00 236.78 116.86
w0/aw 1.09 8.85 4.27 3.20

t 3.00 28.00 25.02 7.36
Tfibre 0.19 13.96 2.41 2.70
Lfibre 12.00 30.00 19.72 8.87

Fkg/m3 2.00 150.00 29.62 27.45
FCTfibre 250.00 1345.00 684.69 468.65

Efibre 3.70 210.00 92.36 98.61
Output, Eu.50 0.20 2443.30 236.68 391.29

Appl. Sci. 2022, 12, 8540 6 of 12 
 

 
Figure 2. Matrix scatter plots (SPLOM) for each variable predicting the Eu.50 for soil-cement mixtures 
reinforced with fibres (with bivariate scatter plots below the diagonal, histograms on the diagonal, 
Pearson correlation above the diagonal). 

3. Results and Discussion 
The objective of this section is to summarise the results obtained for the prediction of 

Eu.50 using the SVM, ANN, RF and MR algorithms with MR serving as the baseline for 
comparison in this work. These algorithms are analysed using criteria such as accuracy—
metrics, computational efficiency—time and interpretability—sensitivity analysis. This 
provided a sufficient understanding of the applicability of these models in predicting Eu.50 
of fibre-reinforced soil-cement mixtures. 

Table 2 lists the hyperparameters and computational times for the ML algorithms. 
This shows that MR and SVM have rapid computational times, averaging of 0.32 s and 

cor:
-0.995

cor:
-0.971

cor:
0.941

cor:
-0.896

cor:
0.864

cor:
0.934

cor:
-0.950

cor:
0.933

cor:
0.949

cor:
0.843

cor:
-0.959

cor:
0.946

cor:
0.947

cor:
0.888

cor:
0.974

cor:
-0.954

cor:
0.961

cor:
0.899

cor:
0.816

cor:
0.919

cor:
0.941

cor:
-0.509

cor:
0.489

cor:
0.535

cor:
0.725

cor:
0.357

cor:
0.482

cor:
0.434

cor:
-0.413

cor:
0.393

cor:
0.443

cor:
0.608

cor:
0.277

cor:
0.381

cor:
0.338

cor:
0.939

cor:
-0.279

cor:
0.294

cor:
0.232

cor:
-0.080

cor:
0.432

cor:
0.278

cor:
0.355

cor:
-0.623

cor:
-0.594

cor:
-0.753

cor:
0.756

cor:
0.715

cor:
0.622

cor:
0.694

cor:
0.702

cor:
0.786

cor:
0.340

cor:
0.274

cor:
0.303

cor:
-0.451

cor:
0.442

cor:
0.452

cor:
0.544

cor:
0.357

cor:
0.360

cor:
0.373

cor:
0.487

cor:
0.383

cor:
-0.197

cor:
0.295

cor:
-0.482

cor:
0.474

cor:
0.479

cor:
0.280

cor:
0.592

cor:
0.441

cor:
0.442

cor:
-0.153

cor:
-0.131

cor:
0.658

cor:
0.355

cor:
0.259

cor:
-0.444

cor:
0.434

cor:
0.448

cor:
0.492

cor:
0.384

cor:
0.353

cor:
0.363

cor:
0.407

cor:
0.367

cor:
-0.074

cor:
0.291

cor:
0.962

cor:
0.374

cor:
-0.287

cor:
0.280

cor:
0.290

cor:
0.047

cor:
0.457

cor:
0.280

cor:
0.259

cor:
-0.399

cor:
-0.354

cor:
0.777

cor:
0.199

cor:
0.034

cor:
0.906

cor:
0.173

cor:
-0.422

cor:
0.415

cor:
0.422

cor:
0.216

cor:
0.546

cor:
0.390

cor:
0.384

cor:
-0.214

cor:
-0.186

cor:
0.675

cor:
0.305

cor:
0.216

cor:
0.990

cor:
0.337

cor:
0.937

cor:
0.714

cor:
-0.716

cor:
-0.680

cor:
-0.549

cor:
-0.685

cor:
-0.668

cor:
-0.751

cor:
-0.180

cor:
-0.090

cor:
-0.432

cor:
-0.400

cor:
-0.219

cor:
-0.404

cor:
-0.224

cor:
-0.287

cor:
-0.360

Sand Silt Clay OM WLL WPL w0 aw DKg m3 w0 aw t Tfiber Lfiber FKg m3 FCTfiber Efiber Eu.50

Sand
Silt

C
lay

O
M

W
LL

W
PL

w
0

a
w

D
Kg

m
3

w
0

a
w

t
T

fiber
L

fiber
F

Kg
m

3
FC

T
fiber

E
fiber

Eu.50

Figure 2. Matrix scatter plots (SPLOM) for each variable predicting the Eu.50 for soil-cement mixtures
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Pearson correlation above the diagonal).
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Therefore, a close examination of Figure 2 shows that of the 16 variables, some had
good correlation: for instance, sand and silt, sand and clay, silt and clay and clay and soil
organic matter (OM). However, although there were good correlations among some vari-
ables, all of them were considered as models attributes. An overall superior performance
of the models was observed considering all variables.

1. Soil sand content (%)—%Sand
2. Soil silt content (%)—%Silt
3. Soil clay content (%)—%Clay
4. Soil organic matter content (%)—%OM
5. Liquid limit—WLL
6. Plastic limit—WPL
7. Water content (%)—W0
8. Cement content (%)—aw
9. Cement dosage (kg/m3)— Dkg/m3

10. Ratio between water and cement contents—w0/aw
11. Age of the mixture (days)—t
12. Length of the fibre (mm)—Lfibre
13. Fibre content (%)—Tfibre
14. Fibre dosage (kg/m3)—Fkg/m3

15. Tensile strength of the fibre (MPa)—FCTfibre
16. Deformability modulus of the fibre (GPa)—Efibre

3. Results and Discussion

The objective of this section is to summarise the results obtained for the prediction
of Eu.50 using the SVM, ANN, RF and MR algorithms with MR serving as the baseline for
comparison in this work. These algorithms are analysed using criteria such as accuracy—
metrics, computational efficiency—time and interpretability—sensitivity analysis. This
provided a sufficient understanding of the applicability of these models in predicting Eu.50
of fibre-reinforced soil-cement mixtures.

Table 2 lists the hyperparameters and computational times for the ML algorithms.
This shows that MR and SVM have rapid computational times, averaging of 0.32 s and
0.06 s, respectively, for the five runs. ANN and RF took about 2 s on average for the five
runs. This indicates that using the ANN and RF algorithms to learn the problem takes time
relative to SVM and MR.

Table 2. Hyperparameters and computational time for ML model.

Model Hyperparameter Time (s)

Young Modulus (Eu.50) Young Modulus (Eu.50)

ANN H = 3 ± 1 2.01 ± 0.045

SVM γ = 0.16 ± 0.01
ε = 0.3 ± 0.01 0.06 ± 0.02

RF Mtry = 5 ± 1 2.31 ± 0.19

MR - 0.32 ± 0.03
NB.: Best Value in Bold.

As mentioned earlier, metrics are used to analyse the accuracy of the algorithms.
Table 3 demonstrate that the ANN and RF algorithms have an especially good determina-
tion coefficient, based on R2 close to one. ANN has the lowest mean absolute error (MAE)
among all four trained ML algorithms. This is followed by SVM, then RF and finally MR.
The result is further explained by the REC curve in Figure 3.



Appl. Sci. 2022, 12, 8540 7 of 11

Table 3. Metrics for ML algorithms.

Model Young Modulus (Eu.50)

MAE RMSE R2

ANN 103.52 207.66 0.95
SVM 106.14 230.45 0.88
RF 108.77 242.67 0.93
MR 139.21 261.85 0.81

NB.: Best Value in Bold.
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The REC is used in this study to determine the regression error for the ML algorithms.
The best REC curve shows an accuracy of one on the y-axis, which is achieved for the
lowest possible absolute deviation on the x-axis.

Figure 3 compares the REC curves from the ML algorithms used in this study, con-
firming the better response of SVM and the lower response of MR. Thus, for an absolute
deviation of 200 kPa in the elastic modulus, SVM shows a better response than the other
algorithms. RF and MLP (ANN) show comparable results for this absolute deviation.

Figure 4 shows the correlation between the experimental values of Eu.50 and the
predicted results for the four ML algorithms. From its analysis, although some dispersions
can be observed, the overall performance is very promising as shown by the calculated
metric, namely by the R2 values close to 1, particularly according to the ANN model (see
Table 3). The ANN and RF models showed the best correlation based on the determination
coefficient, as indicated in Table 3 above.
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As already mentioned, interpretability is one of the most important aspects when
explaining an algorithm. For this reason, a sensitivity analysis was conducted for all
ML algorithms. Relative importance was generated to identify the relevant variables
(inputs) that contribute to the predictions of Eu.50 for the four ML algorithms, as shown in
Figure 5. Figure 5 helps to understand what was learned by the algorithm and compare it
to empirical knowledge.

Of the 16 variables considered for the sensitivity analysis, binder dosage
(Dkg/m3 = 12.8% or 7.6%), cement content (aw = 5.1% or 5.5%), soil properties (wo = 11.3%
or 10.4%, %clay = 10.7% or 6.8%), fibre content (Tfibre = 16.9% or 8.2%), ratio between
water and cement contents (wo/aw = 10.8% or 5.1%), and age of cure (t = 5.2% or 7.5%)
are the most important variables that contributed to the predictions for ANN and SVM,
respectively. This is consistent with previous studies [17,21,22,24,38], which reveal the most
important parameters controlling Eu.50 in soil-cement mixtures. Moreover, Eu.50 is related
to the compressive strength. As indicated in [4,9,16], the input variables for UCS prediction
are similar to those for Eu.50, indicating the accuracy of the prediction models, especially
for ANN.

In the case of RF, aw and wo showed an exaggerated relative importance of 22.0%. These
are influential parameters for the development of the mechanical properties of soil-cement
mixtures, especially in relation to the Eu.50.
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Figure 5. Relative Importance for ML algorithms to indicate the most contributing variables to the
elastic modulus (Eu.50) prediction.

4. Conclusions

In this study, four Machine Learning (ML) algorithms for predicting the mechanical
properties, more specifically the elastic Young’s modulus (Eu.50), of soil–binder–water
mixtures reinforced with fibres, were introduced and investigated.

The four ML algorithms applied were Artificial Neural Networks (ANNs), Random
Forest (RF), Support Vector Machines (SVMs) and Multiple Regression (MR), this last
one being used for baseline comparison. Training and testing of the proposed models
were performed on a representative data set of 121 records containing the 16 mechanical
properties needed for the prediction of Eu.50. The results showed an elastic modulus
prediction accuracy with R2 ≥ 0.93 primarily for ANN and RF.

A subsequent sensitivity analysis based on relative importance revealed some of the
most important variables for Eu.50. Binder dosage (Dkg/m

3), fibre content (Tfibre), water
content, water/cement content ratio, curing time, and clay content were found to be the
most important in predicting Eu.50.

In summary, the ML algorithms have shown that they can be used to estimate specific
mechanical properties of soil-cement mixtures reinforced with fibres if only data are avail-
able. This can help engineers in the design phase when testing is not possible or available
budget is limited. In addition, these ML algorithms have proven their merits in complex
geotechnical problems.
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