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Abstract: For a sensing network comprising multiple directional sensors, maximizing the number
of covered targets but minimizing sensor energy use is a challenging problem. Directional sensors
that can rotate to modify their sensing directions can be used to increase coverage and decrease the
number of activated sensors. Solving this target coverage problem requires creating an optimized
schedule where (1) the number of covered targets is maximized and (2) the number of activated
directional sensors is minimized. Herein, we used a discrete particle swarm optimization algorithm
(DPSO) combined with genetic operators of the genetic algorithm (GA) to compute feasible and
quasioptimal schedules for directional sensors and to determine the sensing orientations among the
directional sensors. We simulated the hybrid DPSO with GA operators and compared its performance
to a conventional greedy algorithm and two evolutionary algorithms, GA and DPSO. Our findings
show that the hybrid scheme outperforms the greedy, GA, and DPSO algorithms up to 45%, 5%, and
9%, respectively, in terms of maximization of covered targets and minimization of active sensors
under different perspectives. Finally, the simulation results revealed that the hybrid DPSO with GA
produced schedules and orientations consistently superior to those produced when only DPSO was
used, those produced when only GA was used, and those produced when the conventional greedy
algorithm was used.

Keywords: target coverage problem; directional sensor networks; genetic algorithm; discrete particle
swarm optimization

1. Introduction

A wireless sensor network (WSN) comprises many tiny sensors that can both acquire
data and communicate. These sensors can monitor their environment and transmit the
acquired data to other sensors or base stations to coordinate specific tasks [1]. WSNs are
widely used in many fields, such as smart homes, military operations, environmental
monitoring, animal conservation, medicine, and poaching prevention. Most studies have
assumed that sensors are omnidirectional; however, this assumption may not hold for other
types of sensors with directional sensing ranges, such as video, ultrasonic, or infrared [2].
Such sensors are called “directional sensors”. The sensing range of an omnidirectional
sensor node is a circular disk, whereas that of a directional sensor is a smaller, sector-like
sensing area determined by its sensing angle. Research results for omnidirectional sensor
networks cannot be directly applied to directional sensor networks (DSNs), which comprise
numerous directional sensors. Many challenges specific to DSNs still require investigation.

Several methods of amplifying the sensing capabilities of sensor nodes have been
proposed. One involves placing several of the same type of directional sensors on one
sensor node, with each sensor facing a different direction. In [3], four pairs of ultrasonic
sensors on a single node were used for omnidirectional detection of ultrasonic signals.
Another technique is placing the sensor node on a mobile device to enable it to move and
change direction. Third, sensor nodes can be equipped with devices that enable them to
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switch directions or to rotate. This third technique was adopted in the DSN investigated in
this study.

A key challenge in DSN coverage is gathering data from a predetermined area. Cov-
erage problems can be categorized as area coverage or target coverage problems. In area
coverage, the purpose is to monitor a predetermined region; that of target coverage is
to determine a set of sensors that can provide coverage for a set of targets [2]. Another
challenge in DSNs is energy-consumption management; reducing energy usage can extend
the network lifetime because sensor nodes are typically battery powered and, thus, can
only continuously operate for a limited period of time [4].

In this study, we focused the target coverage problem for a DSN with a set of directional
sensors that can rotate to any direction. Specifically, the full coverage of a set of targets in
a predetermined region is required, but the limited sensing range of directional sensors
prevents the targets from being entirely covered by the deployed sensors. Thus, rotating the
directional sensors may be necessary to cover as many targets as possible. To increase the
network lifetime, a scheduling technique in which some sensor nodes were active and others
were inactivated was used to reduce energy use while maximizing the target coverage.
This problem has increased complexity because of its multiple objectives. For such complex
problems, the exact solution can be obtained by exhausting a lot of computational effort
which increases exponentially with the problem size. The solutions obtained by traditional
heuristic algorithms are only near to the optimal; thus, these algorithms should only be
used to solve smaller or simple problems. As the problem size increases, the metaheuristic
algorithms can be used to improve the solutions because of their high performance in
a global search. Many metaheuristic algorithms, such as genetic algorithm (GA) [5–7],
particle swarm optimization (PSO) [8], differential evolution (DE) [9], simulated annealing
(SA) [10,11], and ant-colony optimization (ACO) [12,13], have been introduced for solving
complex optimization problems that cannot be solved using traditional deterministic
algorithms in the last two decades and some of them may lead to real improvement in
optimization algorithms [14,15]. However, they will easily fall into the local optimal and
the cost of computation iteration will increase explosively when the problem scale increases.
Therefore, instead of proposing a new metaheuristic algorithm, this paper focuses on
presenting a hybrid method for optimization problems. In our previous work [16], we
focused on using a genetic algorithm to achieve optimal, or near-optimal, solutions to the
target coverage problem. However, the accuracy of the solutions obtained by GA is affected
by the selection and mutation operators and the convergence rate is slow. This paper first
presents a discrete particle swarm optimization (DPSO) algorithm for the target coverage
problem. Particle swarm optimization has gained increasing popularity in solving complex
optimization problems due to its simplicity and high convergence speed. This paper also
presents a hybrid metaheuristic algorithm based on the DPSO method combined with
GA operators, namely DPSO_GA, to solve the target coverage problem. The use of GA
operators aims to achieve the goal of intelligent exploration-exploitation. The hybridization
of PSO and GA involves using two approaches sequentially or in parallel or using GA
operators within the PSO framework [17–23]. In this study, the hybridization consists of
a two-phase mechanism where the evolution process is accelerated by using DPSO and
diversity is maintained by using GA. Our presented algorithm can achieve more precise
solutions than conventional heuristic algorithms can. The main contributions of this paper
are as follows:

1. We defined and proved the complexity of the target coverage problem in directional
sensor networks with rotatable sensors, and we also mathematically formulated the
problem;

2. We proposed a greedy algorithm according to the targets’ maximally being covered
by a number of directional sensors—the proposed greedy solutions are used as base
for comparison;

3. We firstly proposed a metaheuristic algorithm, namely DPSO, for the target coverage
problem to determine the schedule of the covered sector for each directional sensor
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with the goal of not only maximizing the total number of covered targets but also
minimizing the number of active sensors to conserve energy;

4. We secondly proposed a hybrid metaheuristic algorithm based on the DPSO method
and combined with GA operators, namely DPSO_GA, to solve the target coverage
problem;

5. We performed experiments to evaluate the performance of the proposed algorithms,
described the results, and compared them with the results of a greedy algorithm;

6. We discussed the quality of the solutions generated by proposed DPSO and DPSO_GA
algorithms along with the solutions generated by previous proposed GA, highlighting
the most suitable algorithm for the target coverage problem in various environments.

The remainder of this paper is organized as follows. In Section 2, we present a review
of the related work of target coverage problem. In Section 3, we define the target coverage
problem in the DSN. Section 4 presents the details of our proposed algorithms. Section 5
presents the experimental results. In Section 6, we present a discussion of the experimental
results. Finally, we conclude the paper and propose some future research topics in Section 7.

2. Related Works

The coverage problem is regarded as a key task in both WSNs or DSNs that are
intended to collect information from an area of interests or to monitor targets in a prede-
termined region. Numerous studies have presented solutions for the coverage problem in
omnidirectional WSNs [24–28]. However, the algorithms proposed in these WSNs cannot
be directly applied to DSNs because of the limited angle of view of directional sensors.
Therefore, new solutions specific to DSNs are necessary. The remainder of this section
reviews studies conducted on the target coverage problem in DSNs.

Ma and Liu [29] presented a model of DSNs in which the orientations of the sensor
nodes are static. They analyzed the probability of full coverage (i.e., each target is covered
by at least one sensor). Ai and Abouzeid [30] presented a model of a sensor network in
which the orientations of the sensors’ nodes are adjustable. They defined the maximum-
coverage-with-minimum-sensor (MCMS) problem, in which the coverage rate is maximized
while minimizing the number of active sensors. They also demonstrated that the MCMS
problem is NP-complete and presented two greedy algorithms, namely, the centralized
greedy algorithm (CGA) and distributed greedy algorithm (DGA) for MCMS problems.
Chen et al. [31] developed a weighted centralized greedy algorithm by modifying the CGA
with adjustable weight functions to obtain a higher coverage rate. Cai et al. [4] addressed
the multiple directional cover set (MDCS) problem of organizing sensor directions into a
group of nondisjoint sets to prolong the network lifetime. Only one cover set is activated at
a time, in which all targets are covered. They also demonstrated that the MDCS problem
is NP-complete and proposed several algorithms for obtaining solutions to this problem.
Han et al. [32] addressed the maximum set cover for DSN (MSCD) problems, which are
NP-complete, and proposed an algorithm to provide energy-efficient cover sets that could
cover all targets. The network lifetime was maximized by activating each cover set for
various durations on a schedule. Gil and Han [33] presented a greedy target coverage
scheduling algorithm for the MSCD problem and a GA that could identify optimal cover
sets that could maximize the network lifetime while monitoring all targets by using the evo-
lutionary global search technique. Li et al. [34] used a bounded service delay constraint to
extend the network lifetimes on the target Q-coverage problem in DSNs. They proposed an
algorithm to identify a collection of coverage sets that the bounded service delay constraint
and the coverage quality requirement are satisfied; the target in each coverage set was
not required to be served continuously but could be served with a tolerable service delay.
Mohamadi et al. [35] reduced sensor energy consumption by partitioning the DSN into
several cover sets, each of which could cover all targets, and activating these covers succes-
sively. They presented an irregular cellular learning automata-based distributed algorithm
to identify a near-optimal solution for selecting an appropriate working direction for each
sensor. Zannat et al. [36] addressed the target coverage problem in a visual sensor network
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(VSN) that comprised a number of self-configurable visual sensors with adjustable spherical
sectors with limited angles. Razali et al. [37] investigated priority-based target coverage
with adjustable sensing ranges. They proposed two scheduling algorithms—greedy-based
and learning-automata-based algorithms—to organize the sensors into a few cover sets that
were successively activated to maximize network lifetime. The simulation revealed that
the learning automata-based scheduling algorithm was superior to the greedy-based algo-
rithm in terms of extending network lifetime. Zishan et al. [38] addressed heterogeneous
coverage in VSNs, in which the coverage requirements of targets vary. Their main goal was
to maximize the coverage of all targets (on the basis of their coverage requirements) by acti-
vating a minimal number of sensors. They solved this heterogeneous coverage problem by
modifying the formulation of an existing integer linear programming method for the single
and k-coverage MCMS problems. They also presented a sensor-oriented greedy algorithm
to obtain an approximate solution of the formulated problem. Bakht et al. [39] successfully
addressed the k-coverage problem by determining the orientation of a minimum number
of directional sensors in which each target is monitored at least k times, with a learning
automata-based algorithm.

The sensor nodes used in these studies comprise a fixed number of sensors with fixed
orientations. However, many sensor nodes can rotate. Liang and Chen [40] addressed the
maximum coverage with rotatable angles (MCRA) problem; they maximized the coverage
rate of targets and minimized the total rotation (in degrees) of the sensors. They took
advantage of the ability to adjust the working direction and presented two centralized
greedy algorithms for the MCRA problem. In both greedy methods, the weights of sectors
were used to select the appropriate working direction to which the sensors should rotate to
cover more targets. Wu and Lu [41] redefined the MCMS problem for a DSN comprising
rotatable sensors. They proposed a greedy algorithm that used a minimum number of
sectors to cover targets within the sensing range of the sensors. Lo and Liang [16] also
addressed the MCMS problem in a DSN with rotatable sensors. They proposed a GA for
scheduling the orientation of active sensors to obtain a higher coverage rate of targets
compared with that of other greedy algorithms.

We considered the target coverage problem with rotatable sensors. The goal aims to
determine an appropriate orientation schedule in which each active sensor rotates to the
scheduled orientation such that (1) the total number of covered targets is maximized and
(2) the total number of active sensors is minimized. We focused on presenting different
metaheuristic algorithms, including GA, DPSO, and the hybridization of DPSO and GA,
for the problem due to its complexity. The hybridization of PSO and GA approaches has
been applied to many applications in the last two decades [17–24]. Robinson et al. [17]
proposed a hybrid PSO and GA algorithm by taking the population of one algorithm
when the algorithm fails to improve, and using it as the new population of the other
algorithm. Shi et al. [18] proposed a hybrid algorithm, namely PSO–GA-series-hybrid
evolutionary algorithm (PGSHEA), which is to integrate PSO and GA methods in series.
The PSO algorithm is terminated after a certain number of iterations and the best particles
are selected and encoded into chromosomes to constitute the population for GA algorithm.
The GA algorithm is terminated after a specific number of iterations and the best solutions
of GA are transmitted back to the PSO populations. Yang et al. [19] proposed a PSO–GA-
based hybrid evolutionary algorithm (HEA) for solving unconstrained and constrained
optimization problems. Their proposed evolution strategy is divided into two stages in
which the evolution process is accelerated by using PSO and diversity is maintained by
using GA. Valdez et al. [20] proposed a fuzzy approach in the PSO-GA hybridization. They
used several fuzzy rules to determine whether to consider GA or PSO particles and changes
their parameters or to take a decision. Ghamisi and Benediktsson [21] proposed a feature
selection method by hybridizing GA and PSO. The proposed method was confirmed to be
able to automatically select the most informative features within an acceptable processing
time without requiring the users to set the number of desired features beforehand. Moussa
and Azar [22] introduced a combination of PSO and GA approach to classify software
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modules as fault-prone or not using object-oriented metrics. Nik et al. [23] presented various
combinations of the hybrid GA and PSO algorithms to find an optimal arrangement of
surveyed pavement inspection units (SIUs) in massive networks.

In a preliminary work [16], we focused on using a GA to achieve optimal, or near-
optimal, solutions to the target coverage problem with a small problem size. In this study,
we extend the previous work by formulating the target coverage problem with rotatable
sensors mathematically; proposing a greedy algorithm and two swarm algorithms (a DPSO
and a hybrid DPSO with GA operators, namely DPSO_GA); and conducting experiments
to verify the performance of our proposed algorithms compared with that of the greedy
algorithm and previous GA.

3. Preliminaries and Problem Statement
3.1. Network Model and Problem Definition

We studied the target coverage problem with the following model. All of the net-
working nodes are located in an obstacle-free predetermined region, including sensors and
targets. T = {t1, t2,..., tM} is a set of M targets distributed randomly; the position of each
is known. S = {s1, s2,..., sN} is a set of N homogeneous directional sensors with the same
field of view θ and the same sensing radius r; these sensors should be scheduled to cover
all targets. For a directional sensor s with field of view θ and sensing radius r located at
location (x, y) in the region (Figure 1), the sensing area for sensing orientation α is a sector
of a circle with center (x, y) and radius r; the sector is bounded by two radii between α
− θ/2 and α + θ/2. This sector is represented by Dα. Target t is covered by sensor s if
its location is within Dα. The directional sensors can rotate to any direction to monitor a
specific target.
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Figure 1. Directional sensing for a rotatable sensor.

Because of the limited field of view of each directional sensor, a target may not be
covered by a sensor, even if it is located within the sensor’s sensing radius. In this case,
the directional sensor can rotate to cover the targets (Figure 2). In Figure 2a, three targets,
namely, t1, t2, and t3, are located within the sensing range of deployed sensor s with original
orientation α. Targets t1 and t2 are covered by the sensor; however, target t3 can also be
covered if sensor s rotates its sensing orientation clockwise to β.
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Definition 1. For sector Dα, |T(Dα)| denotes the number of targets in this sector, where T(Dα) is
the set of targets in T covered by sector Dα. Then, Dα is called a cover sector of T if |T(Dα)| > 0.

Definition 2. Let Dα and Dβ be two different cover sectors of T for directional sensor s. Then, Dα

is equivalent to Dβ and vice versa if T(Dα) = T(Dβ). Furthermore, Dα is dominated by Dβ or Dβ

dominates Dα if T(Dα)⊂T(Dβ).

Definition 3. Let Dα be a cover sector of T for a directional sensor s. Then, Dα is called a maximal
cover sector if Dα is not dominated by any other cover sector in sensor s.

Proposition 1. Let k be the number of targets within the sensing radius r of sensor s. Then, at most
k different (or nonequivalent) maximal cover sectors exist for sensor s.

For the target coverage problem, after the initial deployment of sensors, not all tar-
gets are covered under the random deployment fashion. Our goal is to rotate the initial
orientations of the sensor to maximize the number of covered targets while minimizing the
number of activated sensors. Therefore, the target coverage problem with rotatable sensors
is defined as follows:

Definition 4 . Maximum Coverage with Minimum Rotatable Sensors (MCMRS) Problem:
Assume a set of targets T = {t1, t2, . . . , tM} to be covered, a set of homogeneous rotatable
directional sensors S = {s1,s2, . . . ,sN} withpi possible orientations each, and a set of cover
sectors D = {Dij, 1 ≤ i ≤ n, 1 ≤ j ≤ pi}, where Dij is the jth maximal cover sector for sensor
sii,pi denotes the maximum number of cover sectors for sensor sii, and T(Dij) is a subset of
T. Find a subset Z of D with the constraint that at most oneDij can be selected for each i to
maximize the cardinality of the union of chosen∪(i, j)T

(
Dij
)

while minimizing the cardinality of
Z = {Dij, (i, j) chosen}.

Let xk
ij and yij be binary variables defined as follows:

xk
ij =

{
1 if target tk is covered by Dij,
0 otherwise.

yij =

{
1 if Dij is active,
0 otherwise.
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ϕk =

{
1 if target tk is covered by any directional sensor,
0 otherwise.

δi
k =

{
1 if target tk is located within the sensing radius of sensor i,
0 otherwise.

The MCMRS problem can be formulated mathematically as follows:

max ∑ m
k=1 ϕk, (1)

min ∑ n
i=1 ∑ pi

j=1yij (2)

Subject to:

∑n
i=1 ∑

pi
j=1 xk

ij·yij

n
≤ ϕk ≤∑ n

i=1 ∑ pi
j=1xk

ij·yij for every target tkk ∈ T, (3)

∑ pi
j=1yij ≤ 1 for every sensor sii ∈ S, (4)

∑ m
k=1δi

k
m

≤ pi ≤∑ m
k=1δi

k for every sensor sii ∈ S, (5)

The objective in (1) represents the number of covered targets to be maximized while
the objective in (2) represents the number of activated sensors to be minimized. Equation (3)
reveals that the value of ϕk can only be 0 or 1, indicating that each target must be covered
or not covered. If target tk is covered by any directional sensor, then ϕk = 1 to conform with
the left inequality; otherwise, ϕk = 0 to conform with the right inequality. For each sensor,
at most one cover sector that can be activated exists, as indicated by (4), and the number of
maximal cover sectors is bounded by the number of targets located within that sensor, as
indicated in (5).

3.2. Hardness of the Problem

We demonstrate that the MCMRS problem is NP-complete.

Theorem 1. The MCMRS problem is NP-complete.

Proof. Consider the special case of the MCMRS problem where sensors are omnidirectional
(i.e., θ = 360◦). In this special case, maximizing the number of covered targets for a given k
which represents the upper bound of the number of activated sensors can be viewed as
a known NP-complete problem, the classic Maximum Coverage Problem [42]. Thus, the
result is as follows. �

3.3. Greedy Algorithm

In this subsection, we propose a heuristic algorithm in which, at each step, the available
maximal cover sector of an unselected sensor that covers the uncovered targets with greatest
importance is identified. In our algorithm, we assign each target a weight indicating its
importance. We first consider the maximally covered number (MCN) [31] for each target
tk, where MCN(tk) = |{ Dij

∣∣tk ∈ T(Dij), 1 ≤ i ≤ n, 1 ≤ j ≤ pi}| indicates the number of
maximal sectors that cover tk. The weight of target tk is 1/MCN(tk). Therefore, targets
with a smaller MCN value have greater weight (i.e., coverage of targets covered by fewer
sectors should be considered more critical). We determine the weight of each maximal
cover sector by summing the weights of all targets covered by the maximal cover sector. We
then begin scheduling by selecting the sector with the highest weight among all unselected
sectors. When a sector is selected, the corresponding sensor is scheduled as active with the
orientation of the corresponding selected sector, and all remaining cover sets are eliminated
from the unselected sectors for that sensor. The weights of all targets covered by the selected
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sector are set to 0, and the weights of the remaining unselected sectors that cover those
targets are updated. This scheduling process continues until the set of unselected sectors is
empty. The pseudocode of our proposed greedy algorithm is shown in Algorithm 1.

Algorithm 1: Greedy Algorithm (GREEDY)

1: Find the set of cover sectors D = {Dij, 1 ≤ i ≤ N, 1 ≤ j ≤ pi}, where Dij is the jth maximal
cover sector of sensor i. Find the weight of each target tk, 1 ≤ k ≤M, and the weight of each
sector in D.

2: Z = {}
3: while (D is not empty) do
4: Choose the cover sector in D with maximum weight, denoted Dnq
5: Z = Z ∪ Dnq
6: Delete Dnj from D where 1 ≤ j ≤ pn

7: Set the weight all targets covered by Dnq to 0
8: Update the weight of all sectors in D that contain the targets covered by Dnq
9: end while
10: return Z

The time complexity of the greedy target coverage algorithm, denoted as GREEDY, is
as follows. Determining the MCN values of all targets requires mn steps. The running time
for identifying all cover sectors is thus bounded by O(mn). In the worst case, D has O(mn)
cover sectors. Therefore, we can identify the cover sector in D with maximum weight in
O(mnlog(mn)). Because at most n loops are required to select the cover sectors and each
update takes at most O(mlog(mn)), the time complexity of GREEDY is O(mnlog(mn)) in the
worst case.

4. Proposed Metaheuristic Schemes

In this section, we propose two metaheuristic algorithms for the MCMRS problem:
DPSO and DPSO_GA, to obtain better solutions than that obtained by the greedy algorithm.

4.1. Particle Swarm Optimization (PSO)

Swarm intelligence is an innovative distributed intelligence paradigm for solving opti-
mization problems. The paradigm was inspired by biological phenomena, such as flocking,
swarming, and herding in vertebrates. Particle swarm optimization (PSO) incorporates
swarming behaviors observed in schools of fish, flocks of birds, swarms of bees, or even
human social behavior [43,44]. PSO is a population-based optimization technique that can
be easily applied to solve various optimization problems. The major strength of a PSO
algorithm is its fast convergence, which has advantages over other global optimization
algorithms, such as GAs and simulated annealing.

In PSO, a swarm of particles explores the solution space of an optimization problem to
identify an optimal or quasioptimal solution. Each particle represents a candidate solution
and is identified with specific position in the D-dimensional search space. The position and
velocity of ith particle is represented as Xi = (xi1, xi2, . . . , xiD) and Vi = (vi1, vi2, . . . , viD),
respectively. The fitness function is evaluated for each particle in the swarm, and the result
is compared with the best previous fitness obtained by that particle and to the best fitness
ever achieved by any particles of the swarm. Then, each particle updates its velocity and
position in accordance with the following equations:

Vt+1
i = ω ∗Vt

i + c1 ∗ r1 ∗
(

Pt
i − Xt

i
)
+ c2 ∗ r2 ∗

(
Gt − Xt

i
)

(6)

Xt+1
i = Xt

i + Vt+1
i (7)

where 1≤ i ≤ P; P is the size of the swarm; Vt
i and Xt

i are the velocity and position of the
ith particle at iteration t, respectively; Pt

i is the current best solution for the ith particle
at iteration t; Gt is the global best solution at iteration t; ω is the inertia weight; and c1
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and c2 are acceleration coefficients. Here, r1 and r2 denote uniform random numbers
between (0, 1).

4.1.1. Particle Encoding

In target coverage problem, the coverage of targets depends on determining the
appropriate sector of each directional sensor. Therefore, each particle in a population can be
encoded as the selection of a cover sector to represent a candidate solution to the problem.
The length of each particle is the same as the number of directional sensors. Thus, a possible
schedule of directional sensors or particle can be expressed as follows:

(d1 , d2 , . . . dn),

where 0 ≤ di ≤ pi represents the selected cover sector of the ith directional sensor. In this
representation, di = 0 indicates that sensor si is inactive.

4.1.2. Fitness

The proposed particle encoding representation was evaluated to determine an optimal
schedule of directional sensors with a fitness function. To determine the optimal solution for
the problem, the evolutionary process of our proposed PSO should achieve two objectives:
(1) maximizing the target coverage rate and (2) minimizing the active sensor rate. The
second condition is equivalent to maximizing the number of inactive sensors. These two
objectives suggest the following. If two schedules of directional sensors or particles have
the same total number of covered targets, a chromosome with fewer active sensors is
preferable because of its reduced energy consumption. To achieve these two objectives,
an appropriate fitness function is proposed which is used in the metasearch algorithm
for searching for a schedule that maximizes the fitness function. In general, a schedule
of directional sensors with a high fitness value would satisfy all of the objectives well.
Therefore, the fitness function for the target coverage problem is defined as follows:

F = w·RT + (1− w)·(1− RS),

where RT is the target coverage rate and RS is the active sensor rate. The target coverage
rate is the ratio of the total number of covered targets to M, and the active sensor rate is the
ratio of the total number of active sensors to N. In addition, w is a predefined weight where
0 ≤ w ≤ 1.

4.2. DPSO Algorithm

Because the MCMRS problem defined in Equations (1)–(5) is a discrete optimization
problem, traditional PSO algorithm cannot be used and, thus, discrete particle swarm
optimization algorithm will be developed for the MCMRS problem. Therefore, the evolu-
tionary process of particle velocity and position represented by (6) and (7) in the original
PSO algorithm, respectively, must be modified such that they can span the discrete search
domain. For our proposed MCMRS problem, we developed a DPSO algorithm which is an
adaptation of the method established in [45] for updating the particle positions. According
to [45], the position of the ith particle at iteration t can be updated as follows:

Xt+1
i = c2

⊕
F3

(
c1
⊕

F2

(
ω
⊕

F1
(
Xt

i
)
, Pt

i

)
, Gt

)
(8)

where F1, F2, and F3 are operations with the probabilities ω, c1, and c2, respectively.
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In the DPSO algorithm, the particle velocities and positions are updated by three
operations. The first operation is τt+1

i = ω
⊕

F1
(
Xt

i
)
, which represents the velocity

operation for a particle and generates a temporary particle τt+1
i . F1 denotes the mu-

tation operator, which is applied with a probability of ω. Generate a random number
r ∈ (0, 1). A new particle τt+1

i = F1
(
Xt

i
)

is generated by applying the mutation operator
to the current particle if r < ω. Otherwise, set the new particle to be the current particle,
i.e., τt+1

i = Xt
i . The second operation is δt+1

i = c1
⊕

F2

(
τt+1

i , Pt
i

)
, which is the cognitive

part of the particle. F2 represents the crossover operator, which is applied with a probability
of c1. The outcome is, thus, either δt+1

i = F2

(
τt+1

i , Pt
i

)
or δt+1

i = τt+1
i , where δt+1

i is a

temporary particle. The third operation is Xt+1
i = c2

⊕
F3

(
δt+1

i , Gt
)

, which is the social
part of the particle. F3 represents the crossover operator, which is applied with a probability
of c2. The outcome is either Xt+1

i = F3

(
δt+1

i , Gt
)

or Xt+1
i = δt+1

i .

Mutation operator F1 for position Xt
i represents the replacement of the original cover

sector for a sensor by a randomly selected cover sector. For example, with Xt
i = (1, 3, 0,

2, 3, 1, 4, 0, 2) and mutations occurring in the second, third, and seventh positions, we
might obtain τt+1

i = (1, 2, 1, 2, 3, 1, 3, 0, 2). Operator F2 represents selecting τt+1
i and Pt

i to
be the first and second parents for a crossover operation, respectively. Each of the cover
sectors in τt+1

i and Pt
i are exchanged, from left to right, if a random number r ∈ (0, 1) < c1.

For example, with τt+1
i = (1, 3, 0, 2, 3, 1, 4, 0, 2) and Pt

i = (1, 3, 1, 2, 4, 1, 3, 0, 1), we obtain
δt+1

i = (1, 3, 1, 2, 4, 1, 3, 0, 1) if all generated uniform random numbers are less than
c1. The crossover operator F3 represents selecting δt+1

i and Gt as the first and second
parents, respectively, for a crossover operator in a similar manner for that of F2; each of the
different cover sectors in δt+1

i and Gt, from left to right, is exchanged if a random number
r ∈ (0, 1) < c2.

The pseudocode of the procedure of our proposed DPSO algorithm for the MCMRS
problem is shown in Algorithm 2.

Algorithm 2: Discrete Particle Swarm Optimization (DPSO) Algorithm

1: Initialize the parameters: P, ω, c1, and c2. Initialize the position and velocity for each particle
randomly. Set tmax to be the maximum generations, and set t to 1

2: Evaluate the fitness of each particle, and set particle_best to the particle itself
3: Set global_best to the particle with the highest fitness
4: while t < tmax do
5: for each particle do
6: Update particle.position and particle.velocity by applying the operations F1, F2, and F3 in (8)

with their respective probabilities
7: Compute new fitness
8: if new fitness > particle_best.fitness
9: particle_best.fitness← new fitness
10: particle_best← particle
11: if new fitness > global_best.fitness
12: global_best.fitness← new fitness
13: global_best← particle
14: end
15: t← t + 1
16: end
17: return global_best
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4.3. Hybrid DPSO Algorithm with GA Operators

The proposed hybrid DPSO algorithm with GA operators comprises two stages in
each iteration of the evolutionary process. The first stage is the same process as in the
DPSO algorithm; the new position and velocity of each particle are generated in accordance
with the particle’s best solution and the global swarm’s best solution. In the second stage,
the GA operators, namely, selection, crossover, and mutation operations, are applied to
create new particles for the next iteration. We present the GA operators used in the hybrid
algorithm in the following subsections.

4.3.1. Selection

The selection operation selects candidate particles, based on their fitness, from the
population of the current generation. Roulette-wheel selection was employed in our
proposed DPSO_GA scheme. Specifically, a slot on a biased roulette wheel was assigned to
each particle with the slot size proportional to its fitness value. As a result, particles with
higher fitness values were more likely to be chosen into the crossover operation queue.

4.3.2. Crossover

In the crossover operation, two individuals were selected and used to produce two new
individuals by exchanging genes or chromosomes in accordance with a probability denoted
the crossover rate. A uniform crossover mask was used to produce two children by
exchanging two parent genes from the corresponding mask positions. An example of a
crossover operation is presented in Figure 3a:
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4.3.3. Mutation

For the MCMRS problem, the mutation operator is applied to each particle or chro-
mosome to prevent premature convergence. It is used on each gene of a particle with a
probability. A cover sector of the sensor is randomly selected to be the new value each
chosen gene. An example of a mutation operation is presented in Figure 3b.

4.3.4. Pseudocode of the Hybrid DPSO_GA Algorithm

Algorithm 3 shows the pseudocode of the procedure of our hybrid DPSO_GA algo-
rithm for the MCMRS problem.
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Algorithm 3: Discrete PSO with GA operators (DPSO_GA) Algorithm

1: Initialize the parameters: P, ω, c1, and c2. Initilize the position and velocity for each particle
randomly. Set tmax to be the maximum generations, and set t to 1

2: Evaluate the fitness of each particle, and set particle_best to the particle itself
3: Set global_best to the particle with the highest fitness
4: while t < tmax do
5: for each particle do
6: Update particle.position and particle.velocity by applying the operations F1, F2, and F3 in (8)

with their respective probabilities
7: Compute new fitness
8: if new fitness > particle_best.fitness
9: particle_best.fitness← new fitness
10: particle_best← particle
11: if new fitness > global_best.fitness
12: global_best.fitness← new fitness
13: global_best← particle
14: end
15: while crossover_queue_length < P do
16: Randomly select two particles and compare their fitness
17: Add particle with higher fitness into crossover_queue
18: end
19: while crossover_queue != ∅ do
20: Randomly select and remove two particles from crossover_queue
21: Crossover the selected particles with a certain probability
22: Insert these two particles into new population
23: end
24: for each particle in new population do
25: Mutate particle with a certain probability
26: Compute fitness
27: particle_best.fitness← fitness
28: particle_best← particle
29: end
30: Descending sort of particles in new population according to their fitness
31: Select the particles with higher fitness as the swarm
32: Set global_best to the particle with the best fitness
33: t← t + 1
34: end
35: return global_best

5. Performance Evaluation

We evaluated the results obtained with the DPSO and hybrid DPSO_GA algorithms in
a set of experiments and compared the results with the results obtained with the greedy
algorithm and GA. We performed all experiments with a program in C# on a Windows
10 computer. We investigated the effects of four network parameters on the number of
covered targets and the number of activated sensors: the number of sensors N, the number
of targets M, the field of view θ, and the sensing radius R. In the experiments, all targets and
sensors were randomly scattered in a region of size 800 m × 800 m. Specifically, for each
combination of network parameters, we randomly generated 40 instances of the network
and reported the mean results. The simulation parameters are shown in Table 1.

Our simulations focused on determining the algorithm’s performance for various
network parameters in terms of the total number of covered targets, the total number of
activated sensors, and the quality of the solutions. The quality of a solution was represented
by its fitness value.
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Table 1. Simulation parameters.

Parameter Value Meaning

N 50, 75, 100, 125, 150, 175, 200 Number of directional sensors
M 50, 100, 150, 200 Number of targets
R 60, 80, 100, 120 Sensing radius (m)
θ 30◦, 60◦, 90◦, 120◦ Field of view
w 0.5 Weight of fitness function
P 100 Population size
Pc 0.8 Probability of GA crossover operator
Pm 0.1 Probability of GA mutation operator
ω 0.1 Probability of DPSO mutation (F1)
c1 0.5 Probability of DPSO crossover (F2)
c2 0.5 Probability of DPSO crossover (F3)
Ic 1000 Number of generations or iterations

Figure 4 shows how the number of sensors has an impact on the target coverage rate,
active sensor rate, and fitness values under the GA, DPSO, and DPSO_GA algorithms,
compared with the solutions obtained by the greedy algorithm. This experiment had
200 targets, and number of sensors N was 50, 75, 100, 125, 150, 175, or 200; the sensor
and targets were randomly generated in the specified region. The sensors’ coverage
radius R = 80 m, the field of view θ = 60◦, and the weight of the fitness function w = 0.5.
Figure 4a reveals that the greedy algorithm has at least a 17% higher target coverage
rate than do the other three evolutionary algorithms. However, the active sensor rate of
the greedy algorithm is also higher than others by at least 15% (Figure 4b). Therefore,
in terms of the solution quality, the evolutionary algorithms achieve better performance
than does the greedy algorithm by 0.01% to 40.08% (Figure 4c). Furthermore, among
the proposed metaheuristic algorithms, the DPSO_GA algorithm outperforms both the
GA and DPSO algorithms in terms of target coverage rate and fitness values; however,
the DPSO_GA algorithm requires the greatest number of active sensors. The DPSO_GA
algorithm outperforms the GA and DPSO algorithms by 0.4% to 2.9% in terms of the fitness
value. Figure 4d plots the fitness values versus the number of generations for the GA,
DPSO, and DPSO_GA schemes with N = 100, M = 200, R = 80, θ = 60◦, w = 0.5, and Ic = 1000.
The DPSO_GA and DPSO approaches had higher fitness than GA did after 10 generations,
and the DPSO_GA approach achieved solutions that were 0.42% and 0.82% better than
those of DPSO and GA, respectively. Therefore, the proposed hybrid DPSO_GA algorithm
can better identify high-fitness particles and transmit them to subsequent generations than
the other algorithms. As a result, the hybrid scheme was more likely to achieve the global
optimum solutions for the MCMRS problem in terms of the number of sensors.

Figure 5 shows how the number of targets has an impact on the target coverage
rate, active sensor rate, and fitness values for the GA, DPSO, and DPSO_GA algorithms
compared with the solutions obtained with the greedy algorithm. In the experiment, the
number of targets varied from 50 to 200, and the number of sensors N = 100. All targets
and sensors are randomly generated in the specified region. The sensor coverage radius
R = 80 m, the field of view θ = 60◦, and the weight of fitness function w = 0.5. Figure 5a
reveals that as the number of targets increases, the number of targets covered increases, but
the target coverage rate decreases because increasing the number of targets increases both
the number of uncovered and covered targets. The number of uncovered targets increases
more quickly; thus, the total target coverage rate decreases. The greedy algorithm achieves
6% to 35% higher target coverage rates than do the other three evolutionary algorithms as
the number of targets increases. However, Figure 5b reveals that the active sensor rate of
the greedy algorithm is 4–41% higher than the other three algorithms. Therefore, the quality
of the solutions of the evolutionary algorithms is higher than that of greedy algorithm
for larger numbers of targets (Figure 5c). Moreover, among the proposed metaheuristic
algorithms, the DPSO_GA algorithm outperforms the GA and DPSO algorithms in terms
of the target coverage rate and the fitness values despite requiring the most active sensors.
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The fitness of the DPSO_GA algorithm is 0.17–1.23% higher than that of the GA and DPSO
algorithm. Figure 5d plots the fitness values versus the number of generations for the GA,
DPSO, and DPSO_GA schemes with N = 100, M = 150, R = 80, θ = 60◦, w = 0.5, and Ic = 1000.
The fitness values of the DPSO_GA and DPSO approaches were greater than that of the
GA approach after the first three generations, that of the DPSO_GA approach was greater
than the DPSO approach after 110 generations, and DPSO_GA obtained solutions that were
0.58% and 1.23% better than those of DPSO and GA, respectively, after 1000 generations.
As a result, the hybrid scheme was more likely to achieve the global optimum solutions for
the MCMRS problem in terms of the number of targets.
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Figure 6 shows how the field of view has an impact on the target coverage rate, active
sensor rate, and fitness values in the GA, DPSO, and DPSO_GA algorithms compared with
the solutions obtained by the greedy algorithm. In this experiment, N = 200 targets and
M = 100 sensors were randomly generated in the specified region. The sensors’ coverage
radius R = 80 m and the weight of fitness function w = 0.5. The field of view varied from
30◦ to 120◦ in increments of 30◦. Figure 6a,b reveals that, as in the other experiments, the
greedy algorithm achieves a > 20% higher target coverage rate but requires a > 25% higher
active sensor rate and thus is outperformed by the evolutionary algorithms by 2.53–45.61%
(Figure 6c). The DPSO_GA algorithm again outperforms the GA and DPSO algorithms by
4.73% to 8.89% but requires more active sensors. Figure 6d plots the fitness values versus
the number of generations for GA, DPSO, and DPSO_GA with N = 100, M = 200, R = 80,
θ = 90◦, w = 0.5, and Ic = 1000. DPSO_GA and DPSO outperformed the GA approach after
12 generations, and DPSO_GA ultimately obtained solutions that were 3% and 5% better
than those of DPSO and GA, respectively. As a result, the hybrid scheme was more likely to
achieve the global optimum solutions for the MCMRS problem in terms of the field of view.
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values in greedy, GA, DPSO, and DPSO_GA algorithms. (a) Target coverage rate, (b) active sensor
rate, (c) fitness values, and (d) fitness values versus number of generations for the GA, DPSO, and
DPSO_GA algorithms.
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Figure 7 presents the effect of the sensing radius on the target coverage rate, active
sensor rate, and fitness values for the GA, DPSO, and DPSO_GA algorithms compared
with the solutions of the greedy algorithm. In this experiment, N = 200 targets and M = 100
sensors were randomly generated in the specified region. The field of view θ = 60◦ and the
weight of fitness function w = 0.5. The sensing radius varied from 60 to 120 m in increments
of 20 m. Figure 7a reveals that the number of covered targets increases as the sensing
radius increases because the cover sector area increases. Again, Figure 7a,b reveals that
the greedy algorithm achieved a 23–35% higher target coverage rate but required 19–51%
more activated sensors than did the evolutionary algorithms and thus was outperformed
by them by 1.2–15% (Figure 7c). Notably, the greedy algorithm outperforms the GA and
DPSO algorithms if the sensing radius is 120 m because both the GA and DPSO algorithms
become trapped in local optima. However, the proposed DPSO_GA operators’ algorithm
still outperforms the greedy algorithm. Figure 7d plots the fitness values versus the number
of generations for GA, DPSO, and DPSO_GA with N = 100, M = 200, R = 100, θ = 60◦, w = 0.5,
and Ic = 1000. DPSO_GA and DPSO had higher fitness than did the GA approach after five
generations, and DPSO_GA, ultimately, achieved solutions 1.1% and 3.3% better than those
of DPSO and GA, respectively. As a result, the hybrid scheme was more likely to achieve
the global optimum solutions for the MCMRS problem in terms of the sensing radius.
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6. Discussion

In this study, we presented a DPSO algorithm and a hybrid DPSO with GA operators’
algorithm for solving the MCMRS problem in a DSN and compared their performance in
terms of solution optimality and system efficiency. Directional sensors are increasingly used
in traditional WSNs for target monitoring and tracking. Therefore, determining an effective
schedule of active sensors to maximize target coverage rates is a crucial research topic. This
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paper provides effective algorithms to obtain high coverage and quality of solutions and
contributes to the work of research topics related to the target coverage problem.

Although the proposed metaheuristic algorithms can effectively resolve the target
coverage problem, this work has some limitations. (1) All targets were assumed to be static
to reduce the complexity of the problem. (2) The coverage requirements of all targets were
assumed to be identical; priority of target coverage was not considered. (3) All directional
sensors were assumed to have identical parameters. (4) The proposed metaheuristic
schemes have disadvantages, such as the premature convergence of the DPSO algorithm,
and no guarantee of achieving the optimal solution.

Despite these limitations, the simulation results reveal that these algorithms outper-
form a conventional heuristic algorithm for solving complex optimization problems, such
as the MCMRS problem in a DSN.

Our simulation results also revealed that the hybrid DPSO_GA algorithm outper-
formed both GA and DPSO algorithms in all of the evaluation metrics, especially for
solving the largest and most complex problems. Thus, the hybrid algorithm effectively
achieved the advantages of both the GA and DPSO algorithms; combining these algorithms
resulted in a new metaheuristic algorithm with practical utility and high performance.
Inspired by the satisfactory achievements obtained by the hybrid algorithm, it is worthy
of discussing the applicability of the proposed mechanism to related nature-inspired and
evolutionary algorithms to solve MCMRS problem. Finally, additional factors affecting the
energy consumption of active sensors must be considered in practical applications, such as
the energy required to rotate a sensor.

7. Concluding Remarks and Future Work

We investigated the MCMRS problem for a DSN. We required full coverage of a set
of targets in a predetermined region. To conserve energy, we determined an arrangement
of cover sectors such that the number of covered targets was maximized but the number
of active sensors was minimized. Because the MCMRS problem is NP-complete, it will
take a long computational time to determine the optimal schedule of active sensors. We
employed two nondeterministic algorithms, the DPSO algorithm and the DPSO_GA algo-
rithm, which is a hybrid DPSO scheme with GA operators, to manage this complexity and
produce solutions in a relatively short computation time. Our proposed algorithms quickly
determined high-quality sensor schedules and could be applied in situations with more
numerous targets and sensors. The hybrid DPSO_GA algorithm produced solutions that
were consistently superior to those produced by both the GA and the DPSO algorithms.

In the future, our proposed algorithms could be applied for targets with different
coverage requirements (i.e., different coverage weights or priorities). It is also worth
focusing on combining other metaheuristic methods to solve MCMRS problem. Moreover,
energy is required to rotate the sensors in practical applications; this cost of reorientation
could be investigated in future research.
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