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Abstract: The quality of a mine’s microseismic network layout directly affects the location accuracy
of the microseismic network. Introducing the microseismic probability factor Fe, the microseismic
importance factor FQ, and the effective range factor FV, an improved particle swarm algorithm with
bacterial foraging algorithm is proposed to optimize the mine’s microseismic network layout and
evaluation system based on the D-value optimization design theory. Through numerical simulation
experiments, it is found that the system has the advantages of fast optimization speed and good
network layout effect. Combined with the system application at Xiashijie Coal Mine in Tongchuan
City, Shaanxi Province, the method in this paper successfully optimizes the layout of the 20-channel
network, ensuring that the positioning error of key monitoring areas is controlled within 20 m, and
the minimum measurable magnitude can reach −3.26. Finally, it is verified by blasting tests that the
maximum spatial positioning accuracy of the site is within 12.2 m, and the positioning capability of
the site network is more accurately evaluated. The relevant research can provide a reference for the
layout of the microseismic monitoring network for similar projects.

Keywords: microseismic network layout; the D-value optimization design theory; improved particle
swarm algorithm (IPSO); numerical simulation experiment; blasting test

1. Introduction

With the increase in large-scale mining equipment and the improvement in mine
production management levels, long-term mining leads to the depletion of shallow mineral
resources and the continuous increase in mining depth [1,2]. Due to the existence of complex
environments such as deep high stress, the incidence of high-energy rock bursts and mine
earthquakes increases [3], and traditional monitoring methods are difficult to accurately
analyze due to the main distribution of the surrounding rock surfaces [4]. Microseismic
monitoring technology utilizes modern computing technology, communication technology,
GPS timing, and precise positioning technology to determine the location and magnitude
of microseismic events in rock mass in three-dimensional space. The technology catches
microseismic events, which occur in the form of weak seismic waves in the process of fault
failure, to perform a safety evaluation of the deformation activity and stability of the deep
coal and rock mass [5].

The positioning accuracy of the source is an important indicator to measure the moni-
toring quality of the microseismic network, which determines the effect of the microseismic
monitoring to a large extent [6]. The quality of the network layout directly affects the mi-
croseismic location accuracy [7,8]. Foreign scholars have conducted a lot of research in this
area and achieved remarkable results. For example, Kijko [9,10] and Mendecki et al. [11]
proposed a microseismic network evaluation method based on the optimal design theory
of D and C values (determinant value of the source covariance matrix and the condition
number of non-linear travel-time equations with respect to the known source parameter
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vector). Although these two methods use numerical methods to evaluate the positioning
capability of the network, they do not consider the key monitoring areas and actual engi-
neering conditions. Andrzej [12] used the covariance matrix of the microseismic arrival
equation to evaluate the positioning ability of the combined single-component sensor
and three-component sensor arrangements, respectively. Zhang et al. [13] significantly
improved the positioning error of the three-channel sensor arrangement by increasing the
number of sensors reasonably. Tang et al. [14] used the D-value optimization method to
study the optimization of the station network layout of the microseismic monitoring system,
designed several spatial layout schemes for the sensor station network, and calculated the
event source location error and system sensitivity for each scheme. Gong et al. [15,16] put
forward the general principles for determining the risk monitoring area of rockburst and the
layout requirements for station candidate points by using the comprehensive index method
and then using the D-value optimization criterion to form the final scheme. Gao et al. [17]
added relevant influencing factors to reconstruct the objective function of the network
optimization based on the D-value theory, combined with the actual situation of mine
engineering so that the microseismic monitoring system can meet the actual needs of the
mine. Li et al. [18] used principal component analysis (PCA) to construct a comprehensive
optimization analysis model for the microseismic monitoring network. However, these
studies only solve the problems of monitoring range and monitoring accuracy calculation
from the technical level. Due to the complexity of underground engineering, the arrange-
ment of the microseismic monitoring network is greatly restricted, so it is often necessary
to select multiple schemes while meeting the technical requirements. Moreover, the above
methods give more certain evaluation indicators, and comprehensive network optimization
determination and evaluation methods need to be developed and proposed.

In terms of scheme optimization, the traditional empirical analogy method is highly
subjective, and it is difficult to achieve a quantitative judgment. For example, the exhaustive
algorithm (EA) has a huge computational cost for problems with too many candidate
points. With the development of optimization theory, many intelligent methods have
been introduced into scheme optimization in recent years. Li et al. [19] proposed an
improved multi-path immune particle swarm optimization based on the transport strategy
(IPSMT) to optimize multi-path transmission routing in dynamic wireless sensor networks
with movable nodes. Wang et al. [20] proposed an inertial weighted particle swarm
optimization (NL-wPSO) algorithm based on nonlinear decreasing low-latency layout
planning to optimize the low-latency planning problem of 5G networks. Su et al. [21]
proposed the design optimization of the McPherson suspension system for minivans based
on the weighted combination method and the neighborhood cultivation genetic algorithm.
Liu et al. [22] established a systematic index evaluation model based on the fuzzy analytic
hierarchy process model, considering the multi-indicator and multi-level structure of
technology, science, and funding. Shen et al. [23] pointed out that the evaluation and
optimization of mining schemes are greatly influenced by subjective factors, analyzed
various factors required for the comprehensive index and multi-plan comparison and
selection of uranium mining plans, and selected a scientific and reasonable evaluation. The
weight of each index is optimized by introducing a genetic algorithm, and a mathematical
model for the evaluation and optimization of the uranium mining scheme is constructed.
However, traditional optimization algorithms easily fall into local extremums for solving
discrete and complex problems. It is urgent to propose reasonable and improved intelligent
optimization algorithms according to the complexity of actual problems.

Based on the above problems, the microseismic probability factor Fe, the microseismic
importance factor FQ, and the effective range factor FV are introduced according to the
actual conditions of coal mines. The D-value optimization criterion optimized by the
improved particle swarm algorithm (IPSO) forms the optimal plan for the microseismic
network layout, and the evaluation indicators are proposed to characterize the sensitivity
and positioning error and verify the superiority of the microseismic network layout through
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simulation tests and field applications. Finally, a global optimal layout and evaluation
system for a microseismic network layout is formed.

2. Optimization Theory of the Microseismic Network

The spatial array of sensors is one of the factors that affect the reliability of microseismic
data. Considering the reasonable arrangement density, installation horizon, and other
conditions, a small system positioning error can be guaranteed. Because of the above
problems, the method of analyzing the positioning accuracy error is usually adopted to
optimize the layout scheme of the combined system. The D-value theory holds that the
size of the determinant of the covariance matrix of source parameters is proportional to
the volume of the error ellipsoid. The method has been successfully applied to various
fields [14,24].

The microseismic source is H (t0, x0, y0, z0), and the ith station is Si (ti, xi, yi, zi). For
the uniform and isotropic velocity models, the shortest time Ti from the source H to the ith

station Si can be described by Equation (1):

Ti =

√
(x0 − xi)

2 + (x0 − xi)
2 + (x0 − xi)

2

Vp
(1)

In the equation, H (t0, x0, y0, z0) are the time and three-dimensional coordinates of
the microseismic source, respectively. Si (ti, xi, yi, zi) are the time and three-dimensional
coordinates of the ith sensor, respectively. Vp is the uniform microseismic propagation
velocity, i = 1, 2, . . . , n, where n is the number of stations installed in the mine. Kijko [9,10]
considered that the optimization of the sensor station location depends on the covariance
matrix Cx of x, as shown in Equation (2):

Cx = k(AT A)
−1

A =


1 ∂T1

∂x0

∂T1
∂y0

∂T1
∂z0

...
...

...
...

1 ∂Tn
∂x0

∂Tn
∂y0

∂Tn
∂z0

 (2)

In Equation (2), A is the calculated partial differential matrix with the corresponding
earthquake arrival time, and k is a constant. This covariance can be graphically explained
with the confidence ellipsoid, i.e., the eigenvalues of the covariance matrix constitute the
length of the principal axis of the confidence ellipsoid. Finding the station arrangement
with the smallest volume of the ellipsoid is called the optimal design of the D value. The
volume of the ellipsoid is proportional to the product of the covariance eigenvalues, that
is, to the determinant of Cx. As shown in Equation (3), det [Cx] is minimized to satisfy the
D-value optimization criterion:

obj = min

(
ne

∑
i=1

Me(hi)λx0(hi)λy0(hi)λz0(hi)λt0(hi)

)
(3)

In the equation, ne is the number of hypocenter points calculated in the monitoring
area. Me(hi) is the microseismic event impact factor index. λx0(hi), λy0(hi), λz0(hi), and
λt0(hi) are the eigenvalues of Cx.

3. Impact Factors Analysis

The microseismic network layout scheme is preferably a decision-making system
project involving multiple factors, multiple indicators, and complex decision-making sys-
tems, and there are multiple correlations between the indicators and variables. When
using these indicators for specific data analysis, the situation will be very complicated.
The main factors involved the probability of microseismic events, positioning accuracy
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requirements, effective monitoring range, monitoring area importance, construction con-
dition requirements, economic factor indicators, and effective use time, etc. The goal of
the D-value optimization criterion is to meet the positioning precision requirements. The
construction conditions are mainly considered from the perspective of traffic and economy.
It is necessary to investigate whether the site has the feasibility of installing geophones in
boreholes. The installation location requires small interference signals, stable lithology, and
no broken zone. Pre-selected feasible areas are made according to the site inspection. The
economic factor indicators and the effective usage time should be evaluated and completed
before equipment installation. The actual influencing factors that we need to care about
include the probability of microseismic events, the effective monitoring range, and the
importance of monitoring areas.

3.1. The Microseismic Probability Factor

There are many micro-fracture events in rock mass under mining disturbance, and the
distribution law is complex. When microseismic monitoring is not carried out in mines, it
is often assumed that the probability of microseismic occurrence in each area is the same
to simplify the calculation. With the advancement of the mining face, when the geophone
needs to be moved, the microseismic activity law during this period is used as a reference
for the probability of microseismic events to optimize the next monitoring network layout
scheme in the mining area. The microseismic probability factor in the whole mining area
always satisfies Equation (4): ∫

Ω
Fe(Hi)dHi ≡ 1 (4)

This equation is based on analyzing the rockburst disaster in each region taking into
account the geological and mining factors in the region. Fe(Hi) is determined by numerical
simulation and field measurement.

3.2. The Microseismic Importance Factor

In the process of underground mining, due to the complex and changeable ore body
shape and mining conditions, the microseismic monitoring range is often of irregular ge-
ometry. The macroscopic requirement of network optimization is that the spatial geometry
formed by the stations has good properties, that is, the effective monitoring range and the
designed monitoring range are highly consistent [25]. To construct the monitoring range
index of the station network from a quantitative point of view, it is necessary to define
the effective monitoring range. The D-value method is used to calculate the theoretical
positioning error under the network, and it is considered that the three-dimensional space
with an error less than e (the value of e is set by the mine according to the needs of safety
production, such as 50 m) is an effective monitoring area [17]. The design monitoring range
is recorded as V0, the effective monitoring range of the station network is V1, and the
overlapping area of the design monitoring range and the effective monitoring range is V′.
The microseismic importance factor FV is introduced, and its mathematical definition is
shown in Equation (5):

FV =
V′

V0
(5)

Ideally, the effective monitoring range of the station network completely coincides
with the designed monitoring range, that is, FV = 1, and it is stipulated that FV ≤ 1.

3.3. The Effective Range Factor

The deployment of the microseismic network in the mining area is mainly to monitor
the stability of the stope, control the large-scale subsidence and subsidence of the stope,
protect the mineral resources and ecological environment, and prevent the occurrence of
coal or rock dynamic disasters. Therefore, the dangerous area or special location of the
stope should be designated as the key monitoring area. At the same time, it is necessary
to monitor the disturbance impact of the current mining method on the rock mass. The
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area can be divided into key monitoring areas, sub-key monitoring areas, and normal
monitoring areas. In this way, the effective range factor FQ is used to mark the region
division, as shown in Table 1.

Table 1. The effective range factor of different monitoring areas.

Monitoring Area Key Areas Sub-Key Areas Normal Areas

the effective range
factor FQ

1.5 1.2 1.0

4. Optimization of Microseismic Monitoring Network Design Based on Particle
Swarm Optimization
4.1. Improved Particle Swarm Algorithm

Particle swarm optimization (PSO) is an evolutionary computing technique, which
originated from the study of predation behavior of birds and was first proposed by Kenney
and Eberhart [26]. In PSO, the solution to each optimization problem is considered as a
particle in the search space [27]. All particles have an adaptive value determined by the
optimized function, and each particle also has a velocity to determine its flying direction
and distance. Then, the particles search the solution space following the current optimal
particle. PSO initializes to produce a group of random particles and then finds the optimal
solution through iteration. In each iteration, the particle updates itself by tracking two
extremes. One is the optimal solution reached by each particle in the search through the
ages, which is called individual extremum Pbest. The other is the optimal solution reached
by all particles in the whole particle swarm in the search of previous generations, which
is called the global extreme value gbest. The position of the ith particle in the population
in n-dimensional space is expressed as xi = (xi1, xi2, ···, xin), and its velocity is vi = (vi1,
vi2, ···, vin). When finding these two extremes, update the speed and position with the
following equation:

vi(k + 1) = wvi(k) + c1rand1(Pbest − xi(k)) + c2rand2(gbest − xi(k))

xi(k + 1) = xi(k) + vi(k + 1) (6)

where k is the iteration number; c1 and c2 are learning factors, which are usually taken
between (0, 2); rand1 and rand2 are random Numbers between (0, 1); and w is the momentum
coefficient, whose value can change with algorithm iteration [28].

The traditional particle swarm optimization (PSO) algorithm has defects such as a
slow iterative speed and easily falling into local extremums. Bacterial foraging optimiza-
tion (BFO) is a swarm intelligence algorithm inspired from the foraging behavior of the
E. coli bacteria. The BFO is based on three basic processes: chemotaxis, reproduction, and
elimination-dispersal [29]. The bacterial foraging algorithm was introduced to the particle
swarm optimization (PSO) algorithm, which will be added to the chemotaxis behavior and
the elimination-dispersal behavior, such as in Equations (7) and (8), to increase the random-
ness of particle movement and modify the particle fitness value [30]. When calculating
fitness value, the chemotaxis behavior should be increased to improve the searching speed
of particles. When the particle is trapped in the local optimum, the elimination-dispersal
behavior is increased to rapidly change the direction and carry out the random walk:

Fvcc
i (k) =

l

∑
i=1

[−dattr exp

(
−wattr

p

∑
m=1

(xm(k)− xm
i (k)

)2

+
l

∑
i=1

[−hrep exp

(
−wrep

p

∑
m=1

(xm(k)− xm
i (k)

)2

]

Fvi(k) = Fvi(k) + Fvcc
i (k) (7)

xi(k) = xi(k) + ci(k)
∆(k)√

∆T(k)∆(k)
(trapped in the local optimum) (8)
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where Ci(k) is the forward moving step of particle i in kth iteration, and ∆(k) is a unit vector
in the random direction at kth iteration and takes the value [−1, 1]. Fvi

cc(k) is the modified
increment value of the fitness function of particle i in the kth iteration, which reflects the
sum of the gravitational and repulsive forces generated by the whole particle swarm at the
position of particle i. Fvi(k) is the fitness function value of particle i in kth iteration; dattr is
the depth of gravity, wattr is the width of gravity, hrep is the height of repulsion, wrep is the
width of repulsion, xmi is mth component of particle i, and xm is the mth component of other
particles in the whole particle population.

4.2. Objective Function Construction

To sum up, the microseismic events are locally concentrated and distributed discretely
in the whole area due to the existence of faults and broken zones and the diversity of
mining techniques. The distribution characteristics are directly related to mine production
and safety. It is necessary to increase the number of sensors in key areas. While it is only
necessary to monitor large-scale events such as mine earthquakes, a few sensors can be
arranged in some areas. Therefore, factors such as the importance of the monitoring area
and the possibility of microseismic occurrence need to be considered.

According to the above analysis, the microseismic probability factor Fe, the microseis-
mic importance factor FQ, and the effective range factor FV are introduced to establish the
objective function of the optimal network layout scheme. The microseismic monitoring
network optimization problem can be transformed into the D-value optimization problem
shown in Equation (9):

obj = min

[
PV

( nQ

∑
j=1

ne

∑
i=1

PQj(hi)Pe(hi)λx0(hi)λy0(hi)λz0(hi)λt0(hi)

)]
(9)

In the equation, FV is the effective range factor. FQj is the importance factor in the jth

area of the microseismic monitoring space. Fe is the microseismic probability factor. nQ
is the number of areas divided into the monitoring space, and other parameters are as in
Equation (3).

4.3. Evaluation Indicators of Network Design

When designing a network of microseismic monitoring stations in an actual mine, the
standard error map of the seismic event parameters H{t0, x0, y0, z0} corresponding to the
station layout scheme obtained by the above method is expressed by S. J. Gibowicz and A.
Kijko [31]. The source error is shown in Equation (10):

σxy =
[
(Cx)22(Cx)33 − [(Cx)23]

2
] 1

4

σz = [(Cx)44]
1/2

σxyz =
[
(σxy)

2 + (σz)
2
]1/2

(10)

In the equation, (Cx)ij is the matrix Cx of the element (i, j). σxy is the epicenter error. σz
is the focal depth error, and σxyz is the focal spatial error.

Whether a microseismic monitoring system with a certain monitoring station network
configuration can detect earthquake events with magnitude ML at Hi constitutes the concept
of monitoring system’s sensitivity [32]. The expected standard deviation graph drawn
by Equation (10) is a function of the event magnitude; that is, the equation represents the
source location standard error whose magnitude is ML and whose source coordinates are Hi.
In the proposed monitoring area, the event magnitude ML can be related to its measurable
distance r. The distance r from the point Hi to the monitoring station can be calculated, and
then the distance can be converted into an earthquake magnitude, and a sensitivity contour
map can be drawn. All stations within this distance r are used to calculate the expected
error of the source [14]. The ideal microseismic station network layout must have good
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sensitivity and positioning error. Therefore, we combine the sensitivity contour map and
the positioning error map to evaluate the network array.

4.4. Design Process of Microseismic Monitoring Network Based on IPSO

The microseismic network optimization layout system consists of two modules,
namely, the station optimal scheme selection of Module I and the station scheme eval-
uation of Module II. According to the algorithm flow in Figure 1, in Module I, the improved
particle swarm algorithm proposed (IPSO) in this paper is used for microseismic network
layout optimization following the principle of not only taking care of the current mining
area but also considering the mining scheme in a certain period in the future, according to
the delineation of the dangerous area of the mine and geological factors, etc. In Module
II, the positioning error and sensitivity of the current network are evaluated. The specific
process is shown in Figure 1.
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(1) Module I: Station optimal scheme selection:
1© According to the mining technical factors and geological factors related to the

risk of rock burst on site, select the microseismic monitoring area, divide the
structural area into a geographic grid, and determine the range of candidate
points for the station.

2© According to the on-site investigation or numerical analysis method, determine
the microseismic probability factor Fe, the microseismic importance factor FQ,
and the effective range factor FV to form a set of station candidate points.

3© According to the D-value optimization theory, establish the station optimiza-
tion objective function of Equation (9).

4© Use the improved particle swarm algorithm (IPSO) proposed in this paper to
select the optimal station scheme.

(2) Module II: Station Scheme Evaluation:
1© According to Equation (10), the sensitivity contour map and the positioning

error map of the current network are calculated to preliminarily evaluate the
feasibility of the network layout.

2© Carry out the field test of percussion or blasting in the mine to obtain the
positioning accuracy and stability of the current network layout scheme and
further evaluate the pros and cons of the network layout.

3© According to the above results, judge whether the performance of the station
network can meet the needs of on-site microseismic monitoring.
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5. Theory and Field Test Verification
5.1. Theoretical Experimental Research

To verify the superiority of IPSO in solving the optimal arrangement of the microseis-
mic monitoring network, a hypothetical artificial network was studied. For the mining
working face, we assume that the X direction interval of the monitoring model is [0 m,
100 m], the Y direction interval is [0 m, 50 m], and the elevation is 200 m. The key monitor-
ing area range is [200 m, 500 m] in the X direction, [0 m, 200 m] in the Y direction, and the
elevation is 200 m. The grid spacing is 100 m × 50 m, and the sensor arrangement elevation
is 0 m. The probability of shaking at all grid nodes is 1.0. The distribution of candidate
points for all 18 stations is shown in Figure 2. The key monitoring area is the yellow area in
Figure 2. According to the provisions of Table 1, FQ of the key monitoring area is 1.5, and
the FQ of other monitoring areas is 1.0.
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To simplify the solution process, it is assumed that all vibrations in the monitoring
area can be monitored, and the expected value of the P-wave velocity is 3200 m/s. The test
is divided into three schemes. Scheme I selects four candidate points from the set of the
optimal network layout scheme. Scheme II selects six candidate points from the set. Scheme
III selects eight candidate points from the candidate point set. The three schemes are solved
by using IPSO, the simulated annealing algorithm (SA), and the exhaustive algorithm (EA),
respectively. IPSO parameters are set as follows: the learning factor c1 = c2 = 2, the group
size Npop = 100, w0 = 1, C = 10, dattr = wattr = 0.05, hrep = wrep = 0.05, the end condition
ε0 = 0.001, and the search times Et = 50. The parameters of SA are set as follows: the initial
temperature t0 = 97, the end temperature tf = 89.9, and the temperature drop ratio λ = 0.99.

Table 2 lists the results of different network layout schemes. It can be seen that the
candidate points layout schemes show multiple increases with the increase in the number
of sensors. The model solution results are shown in Table 3 and Figures 3 and 4. From the
results of EA, it can be seen that, except for scheme I, which has multiple solutions, both
schemes II and III have unique solutions. Since the monitoring area is a cube, it can be
seen that there is symmetry among the multiple solutions through rotation. Although SA
and IPSO cannot obtain all the optimal solutions, the global optimal solutions are found
for the three schemes. However, more importantly, the two optimization algorithms do
not significantly increase the computation time as the number of combinations increases.
After the number of probes increased to eight, the time-consumption of EA increased to
261.88 s, while SA needed 37.4 s and IPSO needed 27.06 s to obtain the optimal network
layout. Therefore, EA and IPSO are global in the optimization of the network optimization
problem, and they are also efficient in time. As can be seen from Figure 5, for scheme I,
IPSO found the optimal solution when it evolved to the 10th generation, and SA obtained
the optimal solution in the 38th generation. In scheme II and scheme III, IPSO finds the
optimal solution in the 22nd and the 6th generations, respectively, which are better than
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the 29th and the 31st generations of SA. It can be seen that the time-consumption of IPSO
should be shorter.
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Table 2. Comparison of the results of different network layout schemes.

Schemes Monitoring Points Sensors Combinations Results

Scheme I 18 4 3060 Figure 3a
Scheme II 18 6 18564 Figure 3b
Scheme III 18 8 43758 Figure 3c

Table 3. Comparison of optimization results of different algorithms.

Schemes
Running time Solutions

EA SA IPSO EA EA and IPSO

Scheme I 48.01 17.74 15.63 Figure 3a Figure 4a
Scheme II 144.32 26.65 22.55 Figure 3b Figure 4b
Scheme III 261.88 37.4 27.06 Figure 3c Figure 4c

The source error and sensitivity of different sensor arrangement schemes are calculated
by Equation (10). The evaluation results are shown in Figures 6 and 7. It can be seen from
Figure 6 that the source error of the six-channel sensor in scheme II is significantly lower
than that of the four-channel sensor in scheme I, and the source error of the eight-channel
sensor in scheme III is even lower than the previous two, keeping the source error in key
areas within 50 m. It can be seen that as the number of sensors increases, the positioning
error decreases significantly. The monitorable magnitude of the key monitoring area of
Scheme II is −3.5481 in Figure 7, which is better than that of Scheme I, which is −3.1222.
However, the sensitivity of scheme III and scheme II is the same. In addition, it can be
obtained by calculation that the effective range factor FV of scheme I is 0.44, the effective
range factor FV of scheme II is 0.75, and the effective range factor FV of scheme III is 0.87. It
can be seen that the arrangement scheme of the eight-channel sensor of scheme III has the
best monitoring advantage.
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5.2. Field Application Studies
5.2.1. Determination of Monitoring Area and Candidate Point Scheme

Xiashijie coal mine is located in Yaoqu town, Tongchuan City, Shaanxi Province, China,
and it is 54 km away from Tongchuan city, as shown in Figure 8. The minefield is 4 km long,
with a stope width of 3.3 km and a coal-bearing area of 13.2 square kilometers. The mine
design is two levels, which include the ‘Cross Double U’ roadway layout of the mining face
and the adit-inclined shaft stage mining. Longwall mining and fully mechanized top coal
caving are adopted, and the total collapse method manages the roof. The general structure
of the mine is an undulatory monocline with a north dip, and the deep part is a syncline of
Xinmin village. The fault structure is not developed and is simple.
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Figure 8. Location of Xiashijie coal mine.

In view of the randomness and multiple problems of mine rock-burst, to reveal and
predict potential risk areas of the working face in advance, our research group adopted
the advanced high-precision microseismic monitoring system produced by the Canadian
Engineering Seismology Group (ESG) in October 2019 to carry out real-time monitoring,
positioning, and analysis of coal and rock fractures in the affected mining area of the
working face 2305. The system consists of an underground signal acquisition system, a
ground data processing system, and a remote system. The underground signal acquisition
system includes microseismic sensors and the Paladin downhole digital signal acquisition
system. The remote system contains a big data processing system and 3D visualization
software based on remote network transmission developed by Mechsoft (Dalian) Co., Ltd.
The microseismic sensors use seismometers with a response frequency range of 15–1000 Hz
and a sensitivity of 43.3 v·s/m.

The mine was in the mining stage. The mining position is shown in Figure 9. There is
a syncline at a distance of 300 m from the incision. The working face about 50 m before
and after the syncline is used as the microseismic risk area, and the probability of mine
earthquakes increases by 20%. The mining face within the mining stop line is taken as the
key monitoring area, and the microseismic importance factor FQ of the key monitoring
area is 1.5. According to the general principles of microseismic sensor arrangement, on-
site mining technology, and geological conditions, 82 candidate points are selected in the
installation area with a grid interval of 50 m according to the size of the layout area, since
the installation positions are mainly arranged in the haulage roadway and the air return
roadway. Using 20 sensors, the improved particle swarm algorithm (IPSO) proposed in
this paper is used to optimize the design of the network optimization.
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Figure 9. Layout scheme of on-site microseismic network.

5.2.2. Solving the Optimal Solution

Due to a large number of candidate points, if the exhaustive method is used, there are
a total of 3.5352 × 1018 solutions, which is not feasible in terms of time. However, using
IPSO to solve the problem, it is found that the algorithm has a fast convergence speed (see
Figure 10), and the running time is 244.86 s, the individual population has converged to the
optimal solution when it has evolved to the 50th generations. The algorithm parameters
are set as in Section 5.1. According to the field test, the expected velocity of the P wave is
taken as 4200 m/s. According to the above setting parameters and models, the optimal
layout scheme is shown in Figure 9.
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Combined with the on-site installation conditions, the actual installation position
of the microseismic sensor is shown in Figure 9, which is dragged 200 m forward along
the incision position. On the one hand, this adjustment is beneficial to the recovery of
the on-site sensors, and on the other hand, it can effectively monitor the ore body at the
working face behind the stopped mining line.

5.2.3. Evaluation of the Positioning Capability

(1) Numerical simulation evaluation

The source location accuracy and sensitivity are calculated for the proposed site layout
scheme. According to the test results of the acoustic characteristics of the mine, the P-wave
velocity is 4200 m/s, and the P-wave arrival error is 1.5 ms. Drawing the positioning
accuracy map, take the magnitude ML = 1. Drawing the sensitivity map, the effective
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number of digits is 5, and the minimum peak particle velocity that the microseismic sensor
can resolve is 0.09 mm/s. Draw the expected standard error map and the contour map at
different depths, as shown in Figures 11 and 12.
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Figures 11 and 12 show the positioning error and sensitivity distribution of the bottom
plate (920 m) and the top plate (970 m) of the working surface 2305, respectively. Different
colors are used to represent the positioning error and sensitivity. The numerical units on the
positioning error color scale and the sensitivity color scale are m and Richter scale values,
respectively. It can be seen that for the coal seam roof and floor of the working face 2305,
the source positioning errors of the key monitoring areas are all within the range of less
than 20 m, indicating that the working face back to the mining body and its surrounding
rocks are basically in the area with high source positioning accuracy. In addition, the source
positioning accuracy is still in the range of less than 20 m within the range of not less than
200 m along the working face. The source positioning accuracy decays rapidly as it moves
away from the sensor array along the working face. Therefore, from the perspective of
source location accuracy, the sensor arrangement scheme not only satisfies the requirements
of location accuracy but also makes the microseismic monitoring system economical.
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It can be seen from Figures 11 and 12 that, regardless of the mine roof or floor, the
minimum magnitude that can be measured in the ore body and its surrounding rock of
the key monitoring area is −3.26, and the local position of the floor can reach −3.31. In
the area around the working face, the minimum measurable magnitude of the top plate is
−2.35, and that of the bottom plate is −2.48. Therefore, the sensor arrangement scheme has
sufficient system sensitivity.

(2) Field test evaluation

To further evaluate the rationality of the network layout, taking the three blasting
tests of the mine stope on 8 November 2019 as examples, the positioning calculation was
carried out according to the coordinates of the geophone and the corresponding arrival
time. Compared with the measured blasting position, the positioning coordinates are as
shown in Table 4. Using the simplex localization method in the microseismic system, the
blasting event was effectively located. The test results are shown in Table 5.
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Table 4. Blasting point positioning coordinates.

Serial Number
Blasting Coordinates Positioning Coordinates

x/m y/m z/m x/m y/m z/m

1 2710.5 3647.4 935.5 2709 3640 938.1
2 2220.6 3302.8 938.7 2215 3310 933.4
3 2065.9 3201.3 925.8 2061 3210 932.9

Table 5. Blasting test results.

Serial Number Time
Errors

Absolute Error/m
x/m y/m z/m

1 15:35 1.5 7.4 2.6 8
2 15:54 5.6 7.2 5.3 10.6
3 17:55 4.9 8.7 7.1 12.2

Max - 5.6 8.7 7.1 12.2
Mean - 4.0 7.8 5.0 10.3

From the comparison in Table 5, it can be seen that the maximum positioning errors
of the three coordinate directions are 5.6 m, 8.7 m, and 7.1 m, respectively. The average
positioning errors are 4.0 m, 7.8 m, and 5.0 m, respectively, the maximum spatial positioning
error is 12.2 m, and the average is 10.3 m. Therefore, the positioning accuracy can meet
the needs of engineering monitoring. From the coverage rate of the monitoring area, the
effective range factor FV of the coal seam floor is 0.7831, while the effective range factor FV
of the coal seam roof is 0.7880. The above research shows that the layout of the microseismic
station network in Xiashijie Coal Mine is reasonable and meets the needs of the mine’s
microseismic monitoring.

6. Conclusions

(1) With the D-value optimization design theory and the good global optimization ability
of IPSO, the microseismic probability factor Fe, the microseismic importance factor
FQ, and the effective range factor FV are introduced to establish the objective function
of the optimal network layout scheme. The monitoring sensitivity and positioning
error are used as evaluation criteria, and an optimization and evaluation system for
the optimal layout of a mine’s microseismic network is proposed. The system consists
of the station optimal scheme selection of Module I and the station scheme evaluation
of Module II.

(2) Using numerical simulation experiments, the improved particle swarm algorithm
(IPSO) proposed provides a feasible method for the optimal design of the microseismic
network. When there are a large number of candidate points, the method in this paper
can quickly and cost-effectively complete the optimal network layout. In addition,
the superiority of the optimal scheme is verified by the evaluation method.

(3) Taking Xiashijie Coal Mine in Tongchuan, Shaanxi Province, as an example, IPSO took
244.86 s to optimize the arrangement of sensor candidate points in the key monitoring
area of the mining area, according to the on-site geological conditions. The research
results show that the algorithm can quickly find the optimal solution, the errors in
key monitoring areas are all within 20 m, and the minimum monitoring magnitude is
−3.26. The blasting test analysis shows that with the network layout scheme proposed
in this study, the maximum error in the comprehensive location of the source is 12.2 m,
and the average is 10.3 m. The positioning accuracy can meet the needs of engineering
monitoring, and related research can provide a reference for the microseismic layout
of similar projects.
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