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Abstract: We propose and study a Susceptible-Infected-Confined-Recovered (SICR) epidemic model.
For the proposed model, the driving forces include (for example) the Brownian motion processes
and the jump Lévy noise. Usually, in the existing literature involving epidemiology models, the
Lévy noise perturbations are ignored. However, in view of the presence of strong fluctuations in the
SICR dynamics, it is worth including these perturbations in SICR epidemic models. Quite frequently,
this results in several discontinuities in the processes under investigation. In our present study,
we consider our SICR model after justifying its used form, namely, the component related to the
Lévy noise. The existence and uniqueness of a global positive solution is established. Under some
assumptions, we show the extinction and the persistence of the infection. In order to give some
numerical simulations, we illustrate a new numerical method to validate our theoretical findings.

Keywords: Susceptible-Infected-Confined-Recovered (SICR) epidemic model; Lévy jump; stochastic
model; Brownian motion; extinction; persistence

MSC: Primary 60H10; 65D25; 92B05; Secondary 68Q87

1. Introduction

In a large variety of ecosystems and in humans, which are the most affected species,
epidemics are known to pose a significant threat to living organisms. Every year, millions
of humans die from epidemics, which has motivated researchers in mathematical and
biological sciences to develop control and mitigation strategies in the fight against epidemic
diseases. Using various mathematical modeling techniques, epidemiologists have gained
deeper insights into the dynamics by using this mathematical and cost-effective analytical
setup, whereas traditional experimental techniques are time-consuming and more expen-
sive. This has encouraged many mathematicians and biologists to develop competent
epidemic models that can present a vivid picture of the reality (see, for details, [1–6]).

The first SIR model describing the dynamics of the three principal populations: the
susceptible (S), the infected (I) and the recovered (R), was studied by Kermack and
McKendricks in 1927 (see [7]). Their proposed model played a cruciel role in initianting
different research works in the field of disease dynamics. Based upon the natural history of
hepatitis C, a recent study proposed a Susceptible–Infectious–Chronic–Recovered (SICR)
type model (see [8]).

A natural phenomenon is always affected by environmental factors that can aggravate
or mitigate the spread of the epidemic. The stochastic quantification of several real-life
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phenomena has been immensely helpful in understanding the random nature of their
incidence or occurrence. It has also helped to find solutions to those problems that arise
from it, either in the form of minimizing their undesirability or maximizing their rewards.
In addition, infectious diseases are subject to chance and uncertainty in terms of the normal
progression of the infection. Therefore, stochastic models are more suitable when compared
to deterministic models, keeping in view the fact that stochastic systems consider not only
the moving mean, but also the standard deviation behavior around it. On the other hand,
deterministic systems generate similar results for fixed initial values, but stochastic systems
may give different predicted results. Several stochastic infection models describing the
effect of the Brownian motion on viral dynamics have been developed in the literature (see,
for example, [9–13]; see also [14]).

Motivated essentially by the above-mentioned and other recent developments
(see [15–32]), we propose here a mathematical model for the transmission of an SICR
model. Our goal is to show the effect of the Lévy jump in population dynamics, in which
the Lévy noise is used to describe contingency and outburst. It will, therefore, be interesting
to consider the following stochastic model jointly driven by white noise and Lévy noise:

dS(t) =[λ− βI(t)S(t)− µS(t)]dt− σI(t)S(t)dWt

−
∫

U
Q(u)I(t−)S(t−)Ň(dt, du),

dI(t) =[βI(t)S(t)− (γ1 + γ2 + µ)I(t) + εR(t) + δC(t)]dt + σI(t)S(t)dWt

+
∫

U
Q(u)I(t−)S(t−)Ň(dt, du),

dC(t) =[γ2 I(t)− (δ + µ + d)C(t)]dt,

dR(t) =[γ1 I(t)− (ε + µ)R(t)]dt,

(1)

where S(t) denotes the number of susceptible individuals at time t. The infected individuals
with no clinical symptoms (that is, the virus is living or developing in the individuals, but
without producing symptoms or only mild ones) are able to transmit the infection to other
individuals I(t). The infected individuals under treatment (that is, those in the so-called
chronic stage) with a viral load remaining low C(t), and R(t) denotes the number of the
recovered individuals at time t. The parameters of the SICR model (1) are given in Table 1
and the two-strain SEIR diagram is illustrated in Figure 1. Moreover, Wt is a standard
Brownian motion with intensity σ defined on a complete filtered probability space:(

Ω,F , (Ft)t=0,P
)

with the filtration (Ft)t=0 satisfying the usual conditions. We denote by S(t−), I(t−),
C(t−) and R(t−) the left limits of S(t), I(t), C(t) and R(t), respectively. N(dt, du) is a
Poisson counting measure with the stationary compensator ν(du)dt given by

Ñ(dt, du) = N(dt, du)− ν(du)dt,

where ν is defined on a measurable subset U of the non-negative half-line with ν(U) < ∞.
Q(u) represents the jump intensity.
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Figure 1. The diagram of the SICR model.

Table 1. Parameters and their meanings in the suggested SICR model.

Parameter Meaning

λ The recruitment rate

µ Natural death rate

β The transmission rate

γ2 The average to the infected I individuals becoming chronically infected

γ1 Default treatment rate for I individuals

ε The average of the recovered individuals returning infected

δ The average the chronically infected individuals returning infected

d Death rate due to the infection in chronic stage

2. Existence and Uniqueness of the Global Positive Solution

In this section, we first define ∆ as follows:

∆ :=
{
(S; I; C; R) ∈ R4

+ :
λ

µ + d
5 S + I + C + R 5

λ

µ

}
and we consider the following assumption:

(A) : 0 < Q(u) 5
µ

λ
(u ∈ U).

Theorem 1. With the initial condition
(
S(0); I(0); C(0); R(0)

)
∈ ∆, the system (1) has a unique

global solution
(
S(t); I(t); C(t); R(t)

)
∈ ∆ for any t = 0 a.s.

Moreover, each of the following inequalities holds true:

lim sup
t→∞

S(t) 5
λ

µ
a.s. and lim inf

t→∞
S(t) =

λ

µ + d
a.s.,

lim sup
t→∞

I(t) 5
λ

µ
a.s. and lim inf

t→∞
I(t) =

λ

µ + d
a.s.,

lim sup
t→∞

C(t) 5
λ

µ
a.s. and lim inf

t→∞
C(t) =

λ

µ + d
a.s.,

and
lim sup

t→∞
R(t) 5

λ

µ
a.s. and lim inf

t→∞
R(t) =

λ

µ + d
a.s.

Proof. Since the drift and the diffusion are local Lipschitzian, and in view of the initial
condition

(
S(0); I(0); C(0); R(0)

)
∈ ∆, we prove the existence and uniqueness of the local
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solution
(
S(t); I(t); C(t); R(t)

)
∈ ∆ for t ∈ [0, te), where te is the explosion time.

In order to prove that this solution is global, we define the stopping time τ given by

τ = {t ∈ [0, te) : S(t) 5 0, I(t) 5 0, C(t) 5 0 and R(t) 5 0}.

If we suppose that te < ∞, then τ 5 te, so there exist T > 0 and ε > 0 such that
P(τ 5 T) > ε.

Consider the function V on R4
+ defined by

V(S, I, C, R) = log(SICR).

Using the Itô’s formula, we get

dV = LVdt +
(

λ

S
− βI + βS− γ1 − γ2 − 2µ + ε

R
I
+ δ

C
I

)
dWt

+
∫

U
log(1−QI)(1 + QS)Ň(dt, du),

where

LV =(λ− βIS− µS)
1
S
+ (βIS− (γ1 + γ2 + µ)I + εR + δC)

1
I
− σ2 I2

2

− σ2S2

2
+
∫

U
[log(1−QI)(1 + QS)−QI + QS]ν(du).

Noting that 1−QI > 0 from Assumption (A), this fact implies that

LV = − βλ

µ
− 2µ− γ1 − γ2 −

σ2λ2

µ2 +
∫

U
[log(1−QI) + QI]ν(du)

+
∫

U
[log(1 + QS)−QS]ν(du)

:= K.

Since x 7−→ log(1− x) + x and x 7−→ log(1 + x)− x are nonpositive functions, we
find that

dV = Kdt +
(

λ

S
− βI + βS− γ1 − γ2 − 2µ + ε

R
I
+ δ

C
I

)
dWt

+
∫

U
log(1−QI)(1 + QS)Ň(dt, du),

which, upon integrating from 0 to t, yields

V
(
S(t), I(t), C(t), R(t)

)
= Kt +

∫ t

0

∫
U

(
λ

S
− βI + βS− γ1 − γ2 − 2µ + ε

R
I
+ δ

C
I

)
dWs

+ V
(
S(0), I(0), C(0), R(0)

)
+
∫ t

0

∫
U

log(1−QI)(1 + QS)Ň(ds, du).

Now, by using the continuity property, some components of
(
S(τ), I(τ), C(τ), R(τ)

)
will be equal to 0, so we obtain

lim
t→τ

V(τ) = −∞.



Appl. Sci. 2022, 12, 8434 5 of 13

For t→ τ, we get

−∞ =V
(
S(0), I(0), C(0), R(0)

)
+ Kt

+
∫ t

0

∫
U

(
λ

S
− βI + βS− γ1 − γ2 − 2µ + ε

R
I
+ δ

C
I

)
dWs

+
∫ t

0

∫
U

log(1−QI)(1 + QS)Ň(ds, du) > ∞,

which contradicts our hypothesis. Thus, clearly, we have shown that the solution of (1)
is global.

Next, we will prove the boundedness of the solution. The equation of the system (1)
implies that

dN(t)
dt

= λ− µN(t)− dC(t),

where
N(t) = S(t) + I(t) + C(t) + R(t).

Therefore, we have

λ− (µ + d)N(t) 5
dN(t)

dt
5 λ− µN(t),

so that

eµt dN(t)
dt

5 eµt(λ− µN(t)
)
,

∫ t

0
eµs dN(s)

ds
ds 5

∫ t

0
eµs(λ− µN(s))ds,

eµtN(t) 5
λ

µ

(
eµt − 1

)
+ N(0),

N(t) 5
λ

µ
(1− e−µt) + N(0)e−µt

and

lim sup
t→∞

N(t) 5
λ

µ
a.s.

Using the same technique as above, we get

lim inf
t→∞

N(t) =
λ

µ + d
a.s.

This proves the boundedness.

The above result shows the biologically well-posedness of our model and also that the
solution is ultimately bounded such that

lim sup
t→∞

N(t) 5
λ

µ
a.s.

and
lim inf

t→∞
N(t) =

λ

µ + d
a.s.
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3. Extinction of the Infection

In this section, we will prove the extinction of the infection under some sufficient
condition. We first define M1 by

M1 := (γ1 + γ2 + µ) + (ε + δ)
λ

µ
− β2

2σ2 .

Theorem 2. If M1 > 0, then I(t)→ 0 when t→ ∞ a.s.

Proof. Let
V(I) = log(I).

Then, by using Itô’s formula, we obtain

dV
(
t, X(t)

)
= LV

(
t, X(t)

)
dt + σS(t)dWt +

∫
U

(
log(1 + QS)

)
Ň(dt, du),

with

LV = (βIS− (γ1 + γ2 + µ)I + εA + δC)
1
I
− σ2S2

2
+
∫

U
log(1 + QS)−QS]ν(du),

so we have

LV 5
β2

2σ2 − (γ1 + γ2 + µ) + (ε + δ)
λ

µ
,

so that

dV 5
(

β2

2σ2 − (γ1 + γ2 + µ) + (ε + δ)
λ

µ

)
dt + σS(t)dWt +

∫
U

log(1 + QS)Ň(dt, du).

Therefore, we get

log I(t)
t

5
log(I0)

t
+

1
t

∫ t

0

(
β2

2σ2 − (γ1 + γ2 + µ) + (ε + δ)
λ

µ

)
ds +

1
t

∫ t

0
σS(s)dW(s)

+
1
t

∫ t

0

∫
U

log(1 + QS)Ň(ds, du)

5
log(I0)

t
+

β2

2σ2 − (γ1 + γ2 + µ) + (ε + δ)
λ

µ
+

σ

t

∫ t

0
S(s)dW(s)

+
1
t

∫ t

0

∫
U

log(1 + QS)Ň(ds, du).

If we now define Mt by

Mt :=
∫ t

0
σS(s)dWs,

then

lim sup
t→∞

〈Mt, Mt〉
t

= lim sup
t→∞

σ2

t

∫ t

0
u2(s)ds 5 σ2

(
λ

µ

)2
< ∞.

Thus, by using the fact that the solution of the system (1) is bounded and also the
strong law of large numbers theorem for martingales, we have (see [33])

lim sup
t→∞

Mt

t
= 0,
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so that

lim sup
t→∞

log I(t)
t

5
β2

2σ2 − (γ1 + γ2 + µ) + (ε + δ)
λ

µ
.

So, if
β2

2σ2 < (γ1 + γ2 + µ) + (ε + δ)
λ

µ

when M1 > 0, then I(t)→ 0 when t→ ∞ a.s.

This result shows that the disease dies out when we have the critical threshold of a
possibly greater amplitude of the volatility σ, which is described as follows:

β2

2σ2 < (γ1 + γ2 + µ) + (ε + δ)
λ

µ
.

4. Persistence in the Mean

Firstly, we define

〈x(t)〉 :=
1
t

∫ t

0
x(s)ds,

then the persistence in the mean of x(t) is defined as follows:

lim inf
t→∞

〈x(t)〉 > 0.

Now, we will give some condition to prove the persistence of S(t), I(t), C(t) and R(t)
in the mean. For this purpose we define M2 by

M2 := β
λ

µ + d
− (γ1 + γ2 + µ)− σ2λ2

2µ2 .

Theorem 3. If, for any solution
(
S(t), I(t), C(t), R(t)

)
of the system (1), M2 > 0, then

lim inf
t→∞

〈S(t)〉 =
λµ

λβ + µ2 > 0,

lim inf
t→∞

〈I(t)〉 =
M2

(γ1 + γ2 + µ)
> 0,

lim inf
t→∞

〈C(t)〉 =
γ2M2

(γ1 + γ2 + µ)(δ + µ + d)
> 0

and
lim inf

t→∞
〈R(t)〉 =

γ1M2

(γ1 + γ2 + µ)(ε + µ)
> 0.

Proof. Using the first equation of the system (1), we have

S(t)− S(0)
t

=
1
t

∫ t

0
(λ− βIS− µS)ds− 1

t

∫ t

0
σISdWs −

1
t

∫ t

0

∫
U

Q(u)ISŇ(ds, du)

=
1
t

∫ t

0
(λ− β

λ

µ
S− µS)ds− 1

t

∫ t

0
σISdWs −

1
t

∫ t

0

∫
U

Q(u)ISŇ(ds, du)

and(
λβ

µ
+ µ

)
〈S(t)〉 = λ− S(t)− S(0)

t
− 1

t

∫ t

0
σISdWs −

1
t

∫ t

0

∫
U

Q(u)ISŇ(ds, du).
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Thus, by the boundedness of solution and the strong law of large numbers for the
martingales, we obtain

lim inf
t→∞

〈S(t)〉 =
λµ

λβ + µ2 > 0.

Next, by integrating the second equation of the system (1) from 0 to t and dividing
both sides by t, we obtain

I(t)− I(0)
t

=
1
t

∫ t

0
[βI(s)S(s)− (γ1 + γ2 + µ)I(s) + εR(s) + δC(s)]ds +

1
t

∫ t

0
σISdWs

+
1
t

∫ t

0

∫
U

Q(u)ISŇ(ds, du)

= −(γ1 + γ2 + µ)〈I(t)〉 + 1
t

∫ t

0
σISdWs +

1
t

∫ t

0

∫
U

Q(u)ISŇ(ds, du).

Using the Itô’s formula on V(I) = log(I), we have

dV = (βIS− (γ1 + γ2 + µ)I + εR + δC)
1
I
− σ2S2

2

+
∫

U
log(1 + QS)−QS]ν(du)dt

+ σS(t)dWt +
∫

U
log(1 + QS)Ň(dt, du)

=
(

β
λ

µ + d
− (γ1 + γ2 + µ) + ε

µ

µ + d
+ δ

µ

µ + d

)
− σ2S2

2

+
∫

U
log(1 + QS)−QS]ν(du)dt

+ σS(t)dWt

+
∫

U
log(1 + QS)Ň(dt, du)

and

log I(t)− log I(0)
t

= (β
λ

µ + d
− (γ1 + γ2 + µ) + ε

µ

µ + d
+ δ

µ

µ + d
)− σ2λ2

2µ2

+
1
t

∫
U

log(1 + QS)−QS]ν(du)ds +
1
t

∫ t

0
σS(s)dWs

+
1
t

∫ t

0

∫
U

log(1 + QS)Ň(ds, du).

Now, if we sum

log I(t)− log I(0)
t

and
I(t)− I(0)

t

by using the positivity and the boundedness of the solution as well as the strong law of
large numbers for the martingales, we find that

lim inf
t→∞

〈I(t)〉 =
1

γ1 + γ2 + µ

(
βλ

µ + d
− (γ1 + γ2 + µ)− σ2λ2

2µ2

)
> 0.

Hence, we have

lim inf
t→∞

〈I(t)〉 =
M2

γ1 + γ2 + µ
> 0.

Consequently, the persistence in the mean of I(t) is proved.
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Using the third equation of the model (1), we have

C(t)− C(0)
t

=
1
t

∫ t

0
(γ2 I(s)− (δ + µ + d)C(s))ds = γ2〈I(t)〉 + (δ + µ + d)〈C(t)〉,

so that

lim inf
t→∞

〈C(t)〉 =
γ2M2

(γ1 + γ2 + µ)(δ + µ + d)
> 0.

This last equation of the model (1) implies that

R(t)− R(0)
t

=
1
t

∫ t

0

(
γ1 I(s)− (ε + µ)R(s)

)
ds,

= γ1〈I(t)〉 + (ε + µ)〈R(t)〉.

Therefore, we finally obtain

lim inf
t→∞

〈R(t)〉 =
γ1M2

(γ1 + γ2 + µ)(ε + µ)
> 0.

The theorem involving the persistence in the mean has been proved under the follow-
ing sufficient condition:

(γ1 + γ2 + µ) +
σ2λ2

2µ2 < β
λ

µ + d
.

This means that, with an adopted smallest magnitude of volatility σ, the model is
persistent in the mean.

5. Numerical Results

In order to illustrate the numerical simulations of the model (1), we consider the
following problem:

dX(t) = f
(
t, X(t)

)
dt + σ

(
t, X(t)

)
dWt +

∫
U

Q(t, u)g
(
t−, X(t−)

)
Ň(dt, du). (2)

The solution of the system (2) will now be given by

X(t) = X(0) +
∫ t

0
f
(
s, X(s)

)
ds +

∫ t

0
σ
(
s, X(s)

)
dWs︸ ︷︷ ︸

Part 1

+ g
(
t−, X(t−)

) ∫ t

0

∫
U

Q(s, u)Ň(ds, du)︸ ︷︷ ︸
Part 2

, (3)

The Milsteins Higher Order Method consists of approximating Part 1 in the system (2)
in the following form:

Xk+1 = Xk + f (tk, Xk)∆t + σ(tk, Xk)(Wk+1 −Wk)

+
1
2

σ2(tk, Xk)
[
(Wk+1 −Wk)

2 − (tk+1 − tk)
]
.

About the approximation of Part 2, we have two cases. Consider any infinitesimal
interval [Ti, Ti+1) ⊂ (τi, τi+1).
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There is no jump point in this interval:

g
(
t−, X(t−)

) ∫ Ti+1

Ti

∫
U

Q(s, u)Ň(ds, du) = 0.

If there is only one jump point τi ∈ [Ti, Ti+1), then

g
(
t−, X(t−)

) ∫ Ti+1

Ti

∫
U

Q(u)Ň(ds, du) = g
(
τi−, X(τi−)

)
Q
(
τi, ζ(τi)

)
,

so that

g
(
t−, X(t−)

) ∫ t

0

∫
U

Q(s, u)Ň(ds, du) =
i=n

∑
i=0

g
(
τi−, X(τi−)

)
Q
(
τi, ζ(τi)

)
.

Therefore, the Milsteins Higher Order Method of the system (2) will be given by

Xk+1 = Xk + f
(
tk, Xk)

)
∆t + σ(tk, Xk)(Wk+1 −Wk)

+
1
2

σ2(tk, Xk)
(
(Wk+1 −Wk)

2 − ∆t
)
+ g
(
tk−, X(tk)

)
Q
(
tk, ζ(tk)

)
We now use the previous method to solve the system (1).
Figures 2 and 3 show the dynamics of the susceptible population for the case of

the extinction of the infection. From these figures, we observe clearly that the infected
compartment converges to 0. It should be noted that, in this case, the susceptible class
increases to attain their maximum, which means the the disease dies out. This is consistent
with our theoretical results for the extinction of the infection.
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Figure 2. The Susceptible population as a function of time when λ = 10, µ = 0.0125, β = 0.0001,
γ2 = 1, γ1 = 0.1, ε = 0.33, δ = 0.09 and d = 0.025.

The behavior of the infection for both the infected and susceptible population with the
Lévy jump process is graphically illustrated in Figures 4 and 5 in the case of the persistence
of the infection. In this epidemic scenario, we note from all of the four SICR compartments,
that is, the infected, the susceptible, the chronic sub-population and the recovered, that the
infection persists. This shows that our theoretical and numerical results are compatible.
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Figure 3. The infected population as a function of time when λ = 10, µ = 0.0125, β = 0.0001, γ2 = 1,
γ1 = 0.1, ε = 0.33, δ = 0.09 and d = 0.025.
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Figure 4. The susceptible and infected populations as functions of time when λ = 100, µ = 0.0013,
β = 0.1, γ2 = 1, γ1 = 0.1, ε = 0.33, δ = 0.09 and d = 0.025.
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Figure 5. The infected population as a function of time when λ = 100, µ = 0.0013, β = 0.1, γ2 = 1,
γ1 = 0.1, ε = 0.33, δ = 0.09 and d = 0.025.
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6. Conclusions

In our present investigation, we have considered the stochastic epidemic SICR model
which is driven by the Brownian motion and the Lévy noise jointly so as to better describe the
sudden social fluctuations. We have also performed some adequate numerical simulations
not only to support our theoretical results, but also for predicting the asymptotic behavior
of the solutions of the corresponding system in this study. More precisely, first of all, by
using the Lyapunov analysis method, we have demonstrated the existence and uniqueness
of the derived solutions. In addition, we have shown the positivity and the boundedness:

lim sup
t→∞

N(t) 5
λ

µ
a.s.

and
lim inf

t→∞
N(t) =

λ

µ + d
a.s.

The extinction of the infection is established with a critical threshold of a possible
greater amplitude of the volatility σ, which is described as follows:

M1 = (γ1 + γ2 + µ) + (ε + δ)
λ

µ
− β2

2σ2 > 0.

The persistence of the infection has been proved under the following sufficient condition:

M2 = β
λ

µ + d
− (γ1 + γ2 + µ)− σ2λ2

2µ2 > 0.

Finally, we have constructed a modified Milsteins Higher Order Method, which is im-
plemented in order to validate our theoretical findings in relation to the model considered,
with the aim to provide additional information to help the decision makers choose a good
disease control strategy. On the one hand, we have decreased or increased the intensity
of fluctuations. On the other hand, we have considered the effect of the Lévy noise in the
development of the system variables. In possible sequels to our investigation in this paper,
one can extend the model (1) to various fractional-order models, which are based upon
several operators of fractional derivatives such as those known as the Riemann–Liouville,
Liouville–Caputo and other fractional derivatives (see, for example, [34,35]) and also extend
our model to an impulsive model such as that considered in [36].
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